Table B.2. Metrics about psychometric predicted validity using the most informative features of EPISODIX+S+P dataset, sorted by Cohen’s kappa coefficient.
EPISODIX+S+P DATA SET | Chi-square | ANOVA-F | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Precision-Recall area | Precision-Recall area | |||||||||||
F1 | k↓ | HC | MCI | AD | ALL | F1 | k↓ | HC | MCI | AD | ALL | |
GB: Gradient Boosting | 0,92 | 0,89 | 0,85 | 0,81 | 0,95 | 0,87 | 0,96 | 0,95 | 0,94 | 0,86 | 0,98 | 0,93 |
ET: Extra Trees | 0,88 | 0,83 | 0,76 | 0,75 | 0,92 | 0,81 | 0,93 | 0,90 | 0,89 | 0,79 | 0,95 | 0,88 |
RF: Random Forest | 0,88 | 0,82 | 0,75 | 0,76 | 0,91 | 0,81 | 0,93 | 0,91 | 0,9 | 0,8 | 0,95 | 0,88 |
SVM: support Vector Machine | 0,71 | 0,60 | 0,56 | 0,46 | 0,81 | 0,61 | 0,74 | 0,65 | 0,56 | 0,49 | 0,87 | 0,64 |
AB: Ada Boost | 0,68 | 0,58 | 0,56 | 0,38 | 0,8 | 0,58 | 0,69 | 0,60 | 0,54 | 0,42 | 0,81 | 0,59 |
LR: Logistic Regression | 0,61 | 0,54 | 0,5 | 0,29 | 0,84 | 0,55 | 0,59 | 0,50 | 0,58 | 0,21 | 0,83 | 0,54 |
Notes.
Episodix, semantic memory and procedural memory dataset (458 triples). Features: 10 most informative features, age and genre, using chi-squared and ANOVA F-value methods. ML algorithms: ET, Extra Trees classifier; GB, Gradient Boosting classifier; AB, Ada Boost classifier; SVM, Support Vector Machines; LR, Logistic regression; and RF, Random forest. Metrics: F1 score; Cohen’s Kappa (i.e., used as index to order best classification); average and precision-recall area distributed by cognitive group. Cross validation (cv-fold = 55).