Skip to main content
. 2018 Sep 5;6:e5478. doi: 10.7717/peerj.5478

Table B.2. Metrics about psychometric predicted validity using the most informative features of EPISODIX+S+P dataset, sorted by Cohen’s kappa coefficient.

EPISODIX+S+P DATA SET Chi-square ANOVA-F
Precision-Recall area Precision-Recall area
F1 k↓ HC MCI AD ALL F1 k↓ HC MCI AD ALL
GB: Gradient Boosting 0,92 0,89 0,85 0,81 0,95 0,87 0,96 0,95 0,94 0,86 0,98 0,93
ET: Extra Trees 0,88 0,83 0,76 0,75 0,92 0,81 0,93 0,90 0,89 0,79 0,95 0,88
RF: Random Forest 0,88 0,82 0,75 0,76 0,91 0,81 0,93 0,91 0,9 0,8 0,95 0,88
SVM: support Vector Machine 0,71 0,60 0,56 0,46 0,81 0,61 0,74 0,65 0,56 0,49 0,87 0,64
AB: Ada Boost 0,68 0,58 0,56 0,38 0,8 0,58 0,69 0,60 0,54 0,42 0,81 0,59
LR: Logistic Regression 0,61 0,54 0,5 0,29 0,84 0,55 0,59 0,50 0,58 0,21 0,83 0,54

Notes.

Episodix, semantic memory and procedural memory dataset (458 triples). Features: 10 most informative features, age and genre, using chi-squared and ANOVA F-value methods. ML algorithms: ET, Extra Trees classifier; GB, Gradient Boosting classifier; AB, Ada Boost classifier; SVM, Support Vector Machines; LR, Logistic regression; and RF, Random forest. Metrics: F1 score; Cohen’s Kappa (i.e., used as index to order best classification); average and precision-recall area distributed by cognitive group. Cross validation (cv-fold = 55).