Abstract
分子靶向治疗是目前非小细胞肺癌(non-small cell lung cancer, NSCLC)最热门研究的领域之一,表皮生长因子受体(epidermal growth factor receptor, EGFR)和间变淋巴瘤激酶(anaplastic lymphoma kinase, ALK)是NSCLC最重要的两个驱动基因,早期研究认为是独立的分子事件,相互排斥,但不断有EGFR和ALK双突变的病例或小样本研究报道。EGFR和ALK双突变作为罕见分子事件,发生率约为1%,其临床病理特点还不很清楚,治疗缺乏定论。本综述汇总已发表病例报道,发现EGFR和ALK基因双突变多见于女性、东亚、不吸烟、Ⅳ期肺腺癌,一线治疗可选择EGFR或ALK酪氨酸激酶抑制剂(tyrosine kinase inhibitors, TKIs)。然而,目前双突变的起源和耐药机制研究较少,需要更深入的基础和临床研究。
Keywords: 肺肿瘤, 表皮生长因子受体, 间变淋巴瘤激酶
Abstract
Molecular target therapy is one of the most popular field of non-small cell lung cancer (NSCLC) treatmnet. Epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) rearragement are the most important two oncogenic drivers in NSCLC, early studies suggested that EGFR mutations and ALK rearrangements are mutually exclusive, but isolated cases or small sample research with concomitant EGFR and ALK alterations have been constantly reported. The co-occurrence of EGFR mutations and anaplastic lymphoma kinase (ALK) rearrangements constitutes a rare molecular, the frequency of EGFR/ALK co-alterations was about 1%, however, little has been known about clinicopathologic feature and treatment. This review summarized published case report, EGFR and ALK alterations are common in female, Asian origin, never smoker, Ⅳ stage, and denocarcinomas. First-line treatment can choose EGFR or ALK tyrosine kinase inhibitors (TKIs). However, studies about the origin and resistance mechanism in EGFR/ALK co-alterations are little, require more experimental and clinical research.
Keywords: Lung neoplasms, Epidermal growth factor receptor (EGFR), Anaplastic lymphoma kinase (ALK)
肺癌是我国最常见和病死率最高的恶性肿瘤[1]。非小细胞肺癌(non-small cell lung cancer, NSCLC)占肺癌的80%-85%,随着NSCLC发病机制研究的不断深入,驱动基因的发现,靶向治疗显著改善驱动阳性晚期NSCLC的预后。表皮生长因子受体(epidermal growth factor receptor, EGFR)突变和间变淋巴瘤激酶(anaplastic lymphoma kinase, ALK)重排作为NSCLC最重要的两个驱动基因,在多数情况下被认为是独立的分子事件,相互排斥[2]。ALK或EGFR的改变又是EGFR或ALK酪氨酸激酶抑制剂(tyrosine kinase inhibitors, TKIs)耐药机制之一[3]。然而,在临床实践中随着检测技术发展,陆续发现伴有EGFR突变和ALK重排双突变(简称为“双突变”)的患者[4-6]。在强调个体化治疗的时代,双突变患者的临床病理特点还不很清楚,EGFR或ALK TKI等药物疗效如何还没有定论。本文总结近年来有关EGFR和ALK双突变的相关研究结果,阐述双突变发生率、临床病理特点、治疗和生物学机制。
1. EGFR和ALK双突变的发现和发生率
1.1. 双突变的发现
2008年Koivunen等[4]在305例NSCLC中第1次发现1例双突变患者,同时伴有19外显子缺失和棘皮动物微管相关类蛋白4(echinoderm microtubule-associated protein-like4, EML4)-ALK重排。2010年Zhang等[5]对103例NSCLC行EGFR和ALK检测,报道了中国首例双突变患者,为女性、不吸烟、术后肺腺癌,同时存在19外显子缺失和ALK重排,总生存期超过38个月。然而,上述两项报道均为基因检测方面的研究,未提供双突变患者详细的临床病理特征和治疗预后信息。2010年Tiseo等[7]发表第1例双突变的病例报道,男性48岁,否认吸烟,右上肺腺癌伴骨转移,临床分期T1N0M1,同时伴有19外显子缺失和EML4-ALK重排,一线给予吉西他滨联合顺铂治疗6个周期,评效为部分缓解(partial repsonse, PR),无进展生存时间(progressive free survival, PFS)为7个月,因肝内新发病灶和骨转移考虑肿瘤进展,给予厄洛替尼治疗2个月无效后死亡。随后,双突变的病例报道或小样本研究越来越多,在不同的种族或地域均有报道。
1.2. 双突变的发生率
EGFR突变是肺腺癌最常见的驱动基因,东亚和高加索人种的突变率分别在50%和10%左右[8, 9]。东亚和高加索人种ALK重排发生率约5%[10]。对EGFR突变或ALK重排患者,EGFR或ALK TKIs较标准化疗显著提高有效率和延长PFS。
EGFR和ALK作为最重要的两个NSCLC驱动基因,一般认为它们是相互排斥的。Gainor等[2]曾对1, 683例NSCLC检测EGFR、ALK和KRAS,未发现有这三个基因改变相互重叠的患者。但是,随着基因检测深度和广度的增加,两个及两个以上基因改变的发生率明显增加。肺癌突变联盟[10]对1, 007例标本,检测10个肺癌相关的基因,两个及以上基因改变发生率高达2.7%,其中ALK和EGFR双突变3例,发生率为0.3%,其他多为PIK3CA、MET扩增等非确定驱动基因改变的重叠。Lee等[11]报道韩国肺腺癌EGFR和ALK双突变发生率为0.9%(4/444)。Yang等[12]连续检测中国NSCLC患者977例,共发现EGFR和ALK双突变患者13例,双突变发生率为1.3%。因此,在NSCLC中双突变属于少见或罕见基因改变事件,发生率0.3%-1.3%[10, 12]。
影响双突变发生率的可能原因如下:(1)种族因素,双突变可能存在种族差异,鉴于亚裔患者EGFR突变率高于高加索人种,亚裔患者双突变的机会增加,文献报道双突变患者以亚裔居多,最高的双突变发生率发生在亚裔人群[12];(2)检测方式,单基因检测或序贯的检测方式会降低双突变发生率;(3)检测技术,Won等[13]纳入1, 445例韩国NSCLC患者,采用直接测序法和FISH发现双突变发生率0.3%(4/1, 445),再对ALK阳性患者进行NGS检测,又发现10例EGFR突变,双突变发生率增加至1%。相信随着检测深度和灵敏度的提高,未来双突变发生率会增加;(4)肿瘤分期,双突变的文献报道多发生在晚期转移NSCLC中,可能是疾病发展进程中基因改变不断积累的结果;(5)是否伴有驱动基因改变,在EGFR突变和ALK重排患者中,双突变发生率分别为3.9%和18.6%[12]。
2. EGFR和ALK双突变的临床病理特点
EGFR突变和ALK重排均多见于不/轻度吸烟的肺腺癌,然而,EGFR突变多见于亚裔女性患者,ALK重排则无性别种族差异、发病年龄上更年轻、病理上粘液型多见。目前伴有双突变患者研究以病例报道为主,最大样本也仅有14例[13],为了更好了解双突变患者临床病理特征和治疗信息,作者收集2017年10月前发表的双突变病例报道,提取患者临床病理、基因检测和治疗数据,共检索到文献20篇[7, 11-29],其中1篇为来自同一中心的不同报道[25]未纳入分析,最终纳入患者66例,见表 1。
1.
Authors | n | Gender | Age | Ethnicity | Smoking history | Staging | EGFR mutation | Frist EGFR/ALK TKI | |
Drug | Repsonse rate | ||||||||
M: male; F: female; PR: partial respones; SD: stable disease; PD: progressive disease; EGFR: epidermal growth factor receptor; ALK: anaplastic lymphoma kinase; TKIs: tyrosine kinase inhibitors; ND: non date. | |||||||||
Fan[14] | 1 | F | 63 | Asian | Non | cT2N0M0 | 19del | ND | ND |
Sweis[15] | 4 | 2M, 2F | Median 58.5 | Caucasian | 2Non, 2Yes | Ⅳ | 1 23 polymorphism 1 L861Q, 1 19del, 1L858R | 2ed ALK TKI 1 crozitinib, 1 Erlotinib | 3PD |
Kuo[16] | 1 | F | 72 | Asian | Non | Ⅳ | 19del | 1Gefinib | PR |
Popat[17] | 1 | F | 65 | Caucasian | Non | Ⅲ | 19del | 1Erlotinib | CR |
Tiseo[7] | 1 | M | 48 | Caucasian | Non | Ⅳ | 19del | 1Erlotinib | PD |
Chiari[18] | 1 | F | 67 | Caucasian | Non | Ⅳ | L858R | 1Gefinib | PR |
Miyanaga[19] | 1 | F | 55 | Asian | Non | Ⅳ | 19del | 1Gefinib | PD |
Chen[20] | 1 | M | 56 | Asian | Yes | Ⅳ | 19del | 1Erlotinib | SD |
Tanaka[21] | 1 | M | 39 | Asian | Yes | Ⅳ | L858R | 1Erlotinib | PD |
Santelmo[22] | 1 | F | 52 | Caucasian | Yes | Ⅲ | 19del | 1Gefinib | PR |
Lee[11] | 4 | 1F | 73 | Asian | Yes | 1Ⅳ, 1Ⅲ, 1Ⅱ, 1Ⅰ | 2 19del, 1 L858R, 1 L718P | 1Gefinib | PD |
Zhou[23] | 1 | F | 47 | Asian | Non | Ⅳ | 19del | 1Gefinib | PD |
Baldi[24] | 1 | M | 68 | Caucasian | Non | Ⅳ | L858R | 1Erlotinib | SD |
Zhao[25] | 1 | F | 48 | Asian | Non | Ⅳ | L861Q | 1Erlotinib | SD |
Won[13] | 14 | 6M, 8F | Median 55.5 | Asian | 12Non, 2Yes | 11Ⅳ, 3Ⅰ | 10 19del, 2L858R, 1L861Q, 1E866K | 2Gefinib, 2Ceritinib, 4Crozitinib | 5PR, 2SD, 1PD |
Caliez[26] | 2 | 2F | 62, 45 | Caucasian | 1Non, 1Yes | 1Ⅳ, 1Ⅲ | 2 19del | 1Erlotinib, 1Afitinib | SD |
Schmid[27] | 5 | 3M, 2F | Median 60 | Caucasian | 2Yes, 3No | Ⅳ | 3 19del, 1 L858R, 1 exon20ins | 1Crozitinib, 1Alectinib, 3EGFR TKI | 2PD, 3PR |
Ulivi[28] | 6 | 5F, 1M | Median 68 | Caucasian | 3No, 2Yes | Ⅳ | 19del | 5Gefinib | 1CR, 3PR, 2PD |
Yang[12] | 13 | 8F, 5M | Median 59 | Asian | 12Non, 1Yes | 11Ⅳ, 2Ⅲ | 7 19del, 4 l858R, 1k757R; 1Exon20 | 3Gefinib, 5Erlotinib, 2Afitinib | 8PR, 1SD, 1PC |
Thumallapally[29] | 1 | M | 72 | Caucasian | Yes | Ⅳ | L858R | 1Crozitinib | PD |
Sasaki[3] | 6 | 5F, 1M | Median 62 | Asian | 5 Non, 1 Yes | 5Ⅳ, 1Ⅲ | 3G719X, 1L858R, 1 19del, 1R803W | 2Gefinib, 2Crozitinib, 1Erlotinib | 1PR, 2SD, 1PD |
66例患者中,以女性患者为主,男女比例为1:2,否认吸烟史患者占72.7%(48/66),亚裔患者占65%(43/66),Ⅳ期患者占78.8%(52/66),除1例为鳞腺癌外其余65例患者均为腺癌。中位年龄60岁(37岁-73岁)。由此可见,双突变患者多见于女性、亚裔、不吸烟、Ⅳ期的肺腺癌。
EGFR突变类型方面,19外显子缺失38例(57.6%, 38/66),L858R 14例(21.2%, 14/66),其他少见突变类型共14例(21.2%, 14/66)。双突变患者EGFR突变依旧以常见19外显子缺失和L858R为主,但是与EGFR突变患者比较,双突变中L858R突变发生率相对偏低为21.1%,而少见突变比例较高达到21.2%。
3. EGFR和ALK双突变的治疗和预后
3.1. 双突变的靶向治疗
如表 1所示,一线EGFR-TKI治疗28例,接受吉非替尼治疗17例,厄洛替尼治疗9例、阿法替尼2例。疗效为完全缓解(complete response, CR)2例(7.1%, 2/28),PR 14例(50%, 14/28),客观有效率(object responsive rate, ORR)57.1%(16/28),稳定(stable disease, SD)4例(14.2%, 4/28),疾病进展(progressive disease, PD)8例(28.6%, 8/28),2例患者EGFR-TKI治疗肿瘤缩小后完全切除。一线ALK TKI治疗治疗13例,其中接受克唑替尼治疗10例,色瑞替尼治疗2例,艾乐替尼治疗1例。因肺栓塞,2周后死亡1例,失访1例,疗效为PR 7例(64%, 7/11),ORR 81.8%(8/11),SD 2例(18%, 2/11),PD 2例(18%, 2/11)。
双突变患者一线靶向治疗有效率为57.1%-64%,疾病控制率64%-82%,与单驱动基因EGFR突变或ALK重排接受TKIs治疗疗效略低,但仍高于一线化疗有效率要高[30]。Yang等[12]报道一代EGFR TKI治疗双突变患者10例,有效率为80%,中位PFS为11.2个月,1例患者一线给予克唑替尼治疗后PR,PFS为15.1个月。因此,双突变患者选择单药靶向治疗是合理的。从异质性角度两类靶向药物同时使用时合理的,但毒性增加、治疗成本提高,且目前没有两类靶向药物同时使用报道。有报道认为[6],一线靶向治疗药物的选择,可以参考检测技术、突变丰度以及EGFR和ALK的磷酸化水平。
3.2. 双突变的化学治疗
一线化疗患者11例,化疗方案均为含铂双药±贝伐珠单抗,未记录化疗疗效3例。疗效为PR 3例(37.5%, 3/8),SD 4例(33.3%, 3/9),PD 1例(12.5%, 1/8)。双突变患者化疗有效率与文献报道数据基本一致[30]。
3.3. 双突变的预后
Lou等[6]报道11例双突变、84例EGFR突变和23例ALK阳性患者中位生存时间分别为18.5个月、21.3个月和23.7个月(P=0.06),三组间统计上无差异,但是双突变患者生存期在数值上最短,且ALK阳性和双突变两组间生存时间比较有显著差异。肺癌突变联盟数据[10]也支持该结果,伴有2个以上基因改变的患者生存期短于无或1个基因改变患者。尽管双突变患者OS数值上短于EGFR或ALK单突变患者,但经过合理靶向治疗,其预后仍好于单纯接受化疗的患者。
4. 双突变的生物学机制
4.1. 双突变的分子假说
目前,有两种假说解释双突变:(1)肿瘤异质性,不同的肿瘤细胞携带的驱动基因不同,肿瘤由携带EGFR突变或ALK重排的两种癌细胞组成;(2)同一肿瘤细胞携带两种驱动基因,肿瘤由同时携带EGFR突变和ALK重排的一种癌细胞组成。
肿瘤异质性假说认为双突变是多克隆起源,这类患者不是特殊生物亚型,可能一开始体细胞突变的随意组合,单一靶向治疗只能对部分肿瘤细胞有效,EGFR或ALK TKIs联合治疗可能是肿瘤异质性更佳的治疗方法,但是目前仍没有联合治疗的文献报道,联合治疗的疗效无法评价。
同一肿瘤细胞双突变假说认为双突变位于同一个癌细胞,即单克隆起源。Tiseo[7]报道,在1例双突变患者,ALK FISH阳性和阴性细胞均能检测到EGFR突变,提示双突变可位于同一细胞或一个癌细胞可同时表达EGFR突变蛋白或ALK重排蛋白[12]。Cai等[31]报道使用激光微切割捕获技术,在肿瘤不同区域,既可以发现双突变癌区域,又发现EGFR突变或ALK重排区域,说明至少双突变可以存在于同一癌细胞上。在同一个肿瘤出现两个驱动基因,肿瘤发生和进展同时依赖于两个激酶、还是其中一个目前还不清楚。因此,弄清楚两个受体的激活状态对靶向治疗的选择十分关键,ALK或EGFR磷酸化的水平可能对治疗有帮助,Yang等[12]报道的2例ALK磷酸化水平高患者接受克唑替尼治疗PR,而2例ALK磷酸化水平低的患者克唑替尼治疗后1例PD、1例SD。
4.2. 双突变的耐药机制
目前双突变的耐药研究较少,仅限于个案报道[6],1例一线厄洛替尼治疗9个月,疗效PR,进展后厄洛替尼间插化疗治疗8个月,疗效SD。进展后,克唑替尼治疗2个月后再次进展。二次活检发现存在19外显子缺失和T790M点突变,ALK阴性,EGFR磷酸化水平高于ALK磷酸化水平,提示T790M点突变对厄洛替尼耐药,磷酸化水平EGFR高于ALK可能是克唑替尼耐药机制。另外1例厄洛替尼治疗13个月后无症状缓慢进展,继续厄洛替尼7个月,出现明显进展,两处新病灶一处出现T790M突变,一处转化为小细胞肺癌,两处新病灶ALK重排均消失。Lou等[6]报道5例EGFR TKI治疗后换用克唑替尼治疗后3例出现PD,1例SD,1例PR,显示EGFR TKI治疗进展后序贯使用ALK-TKI疗效并不理想,提示EGFR-TKI治疗进展后,并不是ALK重排的克隆细胞占有优势,需要二次活检明确耐药机制。
5. 结语与展望
EGFR和ALK基因双突变发生率1%左右,发生率可能与种族、检测技术、检测方法和肿瘤分期等因素相关。双突变患者多见于女性、东亚、不吸烟、Ⅳ期肺腺癌,EGFR少见突变发生率高。一线单药EGFR或ALK TKIs靶向治疗有效率约60%,一线可考虑选择靶向治疗,化疗可作为后线治疗的选择。双突变的预后可能较单驱动基因突变差,但通过合理靶向治疗后总生存能维持在18个月左右。对双突变的起源和耐药机制研究较少,单克隆起源或多克隆起源假说有待证实,靶向治疗耐药后二次活检对后续治疗选择十分重要。目前许多问题值得思考和研究,双突变患者下游分子通路激活程度、单药治疗还是联合治疗,进展后耐药机制等。这些问题需要更多临床和基础研究来回答,以便给患者提供合理的个体化药物治疗。
Funding Statement
本研究受国家自然科学基金资助项目(No.81572268)和天津市应用基础及前沿技术研究项目(No.17JCYBJC25500)资助
This paper was supported by the National Natural Science Foundation of China (No.81572268) and Tianjin Application Foundation and Frontier Technology Research Project (No.17JCYBJC25500)(both to Diansheng ZHONG)
References
- 1.Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–132. doi: 10.3322/caac.21338. [DOI] [PubMed] [Google Scholar]
- 2.Gainor JF, Varghese AM, Ou SH, et al. ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1, 683 patients with non-small cell lung cancer. Clin Cancer Res. 2013;19(15):4273–4281. doi: 10.1158/1078-0432.CCR-13-0318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Sasaki T, Koivunen J, Ogino A, et al. A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res. 2011;71(18):6051–6060. doi: 10.1158/0008-5472.CAN-11-1340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Koivunen JP, Mermel C, Zejnullahu K, et al. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res. 2008;14(13):4275–4283. doi: 10.1158/1078-0432.CCR-08-0168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Zhang X, Zhang S, Yang X, et al. Fusion of EML4 and ALK is associated with development of lung adenocarcinomas lacking EGFR and KRAS mutations and is correlated with ALK expression. Mol Cancer. 2010;9:188. doi: 10.1186/1476-4598-9-188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Lou NN, Zhang XC, Chen HJ, et al. Clinical outcomes of advanced non-small-cell lung cancer patients with EGFR mutation, ALK rearrangement and EGFR/ALK co-alterations. Oncotarget. 2016;7(40):65185–65195. doi: 10.18632/oncotarget.11218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Tiseo M, Gelsomino F, Boggiani D, et al. EGFR and EML4-ALK gene mutations in NSCLC: a case report of erlotinib-resistant patient with both concomitant mutations. Lung Cancer. 2011;71(2):241–243. doi: 10.1016/j.lungcan.2010.11.014. [DOI] [PubMed] [Google Scholar]
- 8.Skov BG, Hogdall E, Clementsen P, et al. The prevalence of EGFR mutations in non-small cell lung cancer in an unselected Caucasian population. APMIS. 2015;123(2):108–115. doi: 10.1111/apm.12328. [DOI] [PubMed] [Google Scholar]
- 9.Shi Y, Li J, Zhang S, et al. Molecular epidemiology of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology - mainland China subset analysis of the PIONEER study. PLoS One. 2015;10(11):e0143515. doi: 10.1371/journal.pone.0143515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Brega E, Brandao G. Non-small cell lung carcinoma biomarker testing: the pathologist's perspective. Front Oncol. 2014;4:182. doi: 10.3389/fonc.2014.00182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Lee JK, Kim TM, Koh Y, et al. Differential sensitivities to tyrosine kinase inhibitors in NSCLC harboring EGFR mutation and ALK translocation. Lung Cancer. 2012;77(2):460–463. doi: 10.1016/j.lungcan.2012.04.012. [DOI] [PubMed] [Google Scholar]
- 12.Yang JJ, Zhang XC, Su J, et al. Lung cancers with concomitant EGFR mutations and ALK rearrangements: diverse responses to EGFR-TKI and crizotinib in relation to diverse receptors phosphorylation. Clin Cancer Res. 2014;20(5):1383–1392. doi: 10.1158/1078-0432.CCR-13-0699. [DOI] [PubMed] [Google Scholar]
- 13.Won JK, Keam B, Koh J, et al. Concomitant ALK translocation and EGFR mutation in lung cancer: a comparison of direct sequencing and sensitive assays and the impact on responsiveness to tyrosine kinase inhibitor. Ann Oncol. 2015;26(2):348–354. doi: 10.1093/annonc/mdu530. [DOI] [PubMed] [Google Scholar]
- 14.Fan T, Song YJ, Liu XL. Adenocarcinoma of the lung with concomitant ALK fusion gene and EGFR gene mutation: A case report and literature review. Mol Clin Oncol. 2016;4(2):203–205. doi: 10.3892/mco.2015.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Sweis RF, Thomas S, Bank B, et al. Concurrent EGFR mutation and ALK translocation in non-small cell lung cancer. Cureus. 2016;8(2):e513. doi: 10.7759/cureus.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Kuo YW, Wu SG, Ho CC, et al. Good response to gefitinib in lung adenocarcinoma harboring coexisting EML4-ALK fusion gene and EGFR mutation. J Thorac Oncol. 2010;5(12):2039–2040. doi: 10.1097/JTO.0b013e3181f43274. [DOI] [PubMed] [Google Scholar]
- 17.Popat S, Vieira de Araujo A, Min T, et al. Lung adenocarcinoma with concurrent exon 19 EGFR mutation and ALK rearrangement responding to erlotinib. J Thorac Oncol. 2011;6(11):1962–1963. doi: 10.1097/JTO.0b013e31822eec5e. [DOI] [PubMed] [Google Scholar]
- 18.Chiari R, Duranti S, Ludovini V, et al. Long-term response to gefitinib and crizotinib in lung adenocarcinoma harboring both epidermal growth factor receptor mutation and EML4-ALK fusion gene. J Clin Oncol. 2014;32(9):e30–e32. doi: 10.1200/JCO.2012.47.7141. [DOI] [PubMed] [Google Scholar]
- 19.Miyanaga A, Shimizu K, Noro R, et al. Activity of EGFR-tyrosine kinase and ALK inhibitors for EML4-ALK-rearranged non-small-cell lung cancer harbored coexisting EGFR mutation. BMC Cancer. 2013;13:262. doi: 10.1186/1471-2407-13-262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Chen X, Zhang J, Hu Q, et al. A case of lung adenocarcinoma harboring exon 19 EGFR deletion and EML4-ALK fusion gene. Lung Cancer. 2013;81(2):308–310. doi: 10.1016/j.lungcan.2013.05.003. [DOI] [PubMed] [Google Scholar]
- 21.Tanaka H, Hayashi A, Morimoto T, et al. A case of lung adenocarcinoma harboring EGFR mutation and EML4-ALK fusion gene. BMC Cancer. 2012;12:558. doi: 10.1186/1471-2407-12-558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Santelmo C, Ravaioli A, Barzotti E, et al. Coexistence of EGFR mutation and ALK translocation in NSCLC: literature review and case report of response to gefitinib. Lung Cancer. 2013;81(2):294–296. doi: 10.1016/j.lungcan.2013.04.009. [DOI] [PubMed] [Google Scholar]
- 23.Zhou J, Zheng J, Zhao J, et al. Poor response to gefitinib in lung adenocarcinoma with concomitant epidermal growth factor receptor mutation and anaplastic lymphoma kinase rearrangement. Thorac Cancer. 2015;6(2):216–219. doi: 10.1111/1759-7714.12146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Baldi L, Mengoli MC, Bisagni A, et al. Concomitant EGFR mutation and ALK rearrangement in lung adenocarcinoma is more frequent than expected: report of a case and review of the literature with demonstration of genes alteration into the same tumor cells. Lung Cancer. 2014;86(2):291–295. doi: 10.1016/j.lungcan.2014.09.011. [DOI] [PubMed] [Google Scholar]
- 25.Zhao N, Zheng SY, Yang JJ, et al. Lung adenocarcinoma harboring concomitant EGFR mutation and EML4-ALK fusion that benefits from three kinds of tyrosine kinase inhibitors: a case report and literature review. Clin Lung Cancer. 2015;16(2):e5–e9. doi: 10.1016/j.cllc.2014.11.001. [DOI] [PubMed] [Google Scholar]
- 26.Caliez J, Monnet I, Pujals A, et al. Lung adenocarcinoma with concomitant EGFR mutation and ALK rearrangement. Rev Mal Respir. 2017;34(5):576–580. doi: 10.1016/j.rmr.2016.08.002. [DOI] [PubMed] [Google Scholar]
- 27.Schmid S, Gautschi O, Rothschild S, et al. Clinical outcome of ALK-positive non-small cell lung cancer (NSCLC) patients with de novo EGFR or KRAS co-mutations receiving tyrosine kinase inhibitors (TKIs) J Thorac Oncol. 2017;12(4):681–688. doi: 10.1016/j.jtho.2016.12.003. [DOI] [PubMed] [Google Scholar]
- 28.Ulivi P, Chiadini E, Dazzi C, et al. Nonsquamous, non-small-cell lung cancer patients who carry a double mutation of EGFR, EML4-ALK or KRAS: frequency, clinical-pathological characteristics, and response to therapy. Clin Lung Cancer. 2016;17(5):384–390. doi: 10.1016/j.cllc.2015.11.004. [DOI] [PubMed] [Google Scholar]
- 29.Thumallapally N, Yu H, Farhan M, et al. Concomitant presence of EGFR and ALK fusion gene mutation in adenocarcinoma of lung: a case report and review of the literature. J Pharm Pract. 2018;31(2):244–248. doi: 10.1177/0897190017704751. [DOI] [PubMed] [Google Scholar]
- 30.Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947–957. doi: 10.1056/NEJMoa0810699. [DOI] [PubMed] [Google Scholar]
- 31.Cai W, Lin D, Wu C, et al. Intratumoral heterogeneity of ALK-rearranged and ALK/EGFR coaltered lung adenocarcinoma. J Clin Oncol. 2015;33(32):3701–3709. doi: 10.1200/JCO.2014.58.8293. [DOI] [PMC free article] [PubMed] [Google Scholar]