Skip to main content
Molecules logoLink to Molecules
. 2002 Feb 28;7(2):271–301. doi: 10.3390/70200271

Chemistry of the Genus Plectranthus

M Abdel-Mogib 1,*, HA Albar 1, SM Batterjee 1
PMCID: PMC6146532

Abstract

This review presents the phytochemical constituents of the genus Plectranthus reported up to 1999. Only a tetrameric derivative of caffeic acid was isolated from P. japonicus, but a group of long-chain alkylphenols, of possible taxonomic significance in the genus, was also isolated. As a genus of the subfamily Nepetoideae, Plectranthus is free from iridoid glycosides and rich in essential oil (i.e. > 0.5% volatile oil on a dry weight basis). Diterpenoids are the more common secondary metabolites in Plectranthus. The majority of them are highly modified abietanoids. This seems to be similar to the pattern of diterpenoids observed for Salvia, but no clerodane diterpenoids were found in Plectranthus.

Keywords: Plectranthus, Coleus, Labiatae, phytochemical constituents, abietane diterpenoids

Introduction

Labiatae is a large family that occurs worldwide and has species that are adapted to almost all habitats and altitudes. The genus Plectranthus L' He'r. belongs to subfamily Nepetoideae of tribe Ocimeae [1]. It comprises about eighty species worldwide, as indicated in this review. Taxonomically, Coleus Lour. is the closest to Plectranthus [2]. Coleus species are now generally accepted as belonging to either Plectranthus or to Solenostemon Thonn. (eds.) [3], and some confusion can arise distinguishing between Plectranthus and Coleus species [4,5]. In Plectranthus, the upper lip of the flower is unusually four-lobed and the large shoe-shaped lower lip is formed from a single lobe, while in Labiatae the upper lip often consisting of two lobes and the lower consisting of three [6].

Many Plectranthus species are plants of economic and medicinal interest. Several species may be grown as ornamentals, such as P. tenuiflorus in Saudi Arabia. The tubers of an unidentified Plectranthus species are eaten in Swaziland [7]. Livingstone potato tubers, P. esculentus is cultivated in tropical Africa for its edible tubers [8,9]. P. floribundus is cultivated in Nigeria for its edible tubers, also relished in Natal [10,11]. In Polynesia, the seed-oil of P. amboinicus is applied to the ear for treatment of acute edematous otitis acuta [12]. The leaf extract of P. tenuiflorus is also used in Saudi Arabia to treat ear infections [13]. The leaves of P. asirensis are used as an antiseptic dressing for wounds in Saudi Arabia [13]. The leaves of P. caninus are chewed in Africa to relieve toothache [14]. In East Africa the leaves of P. elegans are used as a vermicide [14]. P. vettiverioides is prescribed in Indian ayurvedic medicine as a remedy for vomiting and nausea [15]. The East African medicinal plant P. barbatus is used as a remedy for stomachache and as a purgative. It is also resistant to insect attack, and an aphid antifeedant diterpene has been isolated from it [16].

The chemistry of Plectranthus is still not well known. This is the first review of chemical constituents of Plectranthus species. The main phytochemical constituents of the genus Plectranthus are diterpenoids, essential oils and phenolics.

Diterpenoids

About 140 diterpenoids were identified from the colored leaf-glands of Plectranthus species. The majority of them are highly modified abietanoids, in addition to some phyllocladanes (structures D140-D146), ent-kaurenes (structures D147-D154) and a seco-kaurene (structure D155). The abietanoids, in turn, could be classified, according to structure variation, into royleanones (structures D1-D37), spirocoleons (structures D38-D66), vinylogous quinones (also named extended quinines, structures D67-D76), quinone methides (structures D77-D93), acylhydroquinones (structures D94-D117), (4→3) abeo-acylhydroquinones (structures D118, D119), phenolic abietanoids (structures D120-D122), 1,4-phenanthraquinones (structures D123-D127), dimeric abietanoids (structures D128-D136) and seco-abietanoids (structures D137-D139). Distribution of these diterpenoids and other constituents in species of Plectranthus are shown in Table 1. The names of these diterpenoids are listed in Table 2.

Table 1.

Alphabetical list of Plectranthus species and compounds isolated from them.

Plectranthus species Isolated chemical constituents References
Abyssinian P. sp. D1, D5, D9, D10, D12-D14, D21, D30 37
P. albidus L1-L8, L10-L12 28
P. aliciae ─── 62
P. alloplectus ─── 63
P. ambiguus D141-D146, flavonoid M10 33
P. amboinicus Essential oil 19
P. argentatus D4, D5, D8, D21, D25, D101, D102, D112 38
P. asirensis ─── 13
P. australis ─── 64
P. barbatus D29, D65, D75, D76, D115, D117 39
D65 16
P. burorum ─── 65
P. caninus D108, D109 40
D59-D64 86
P. ciliatus ─── 61
P. coesta D148 41
D147 42
P. coetsa ─── 66
P. coetsoides D147, D149-D154 43
P. coleoides Essential oil 25
P. cyrpiculoides ─── 67
P. defoliatus Essential oil 26
P. ecklonii D86, M12-M15 68
P. edulis D17, D18, D21, D22, D23, D24, D38-D48, D50, D55, D56, D66, D67, D69, D70, D94-D100, D106, D107, D118, D119, D137, D138 44
D118 45
P. elegans D93, D120 46
P. esculentus ─── 69
P. fasciculatos ─── 70
P. floribundus ─── 11
P. fruticosus Essential oil 20
P. gandicalyx ─── 65
P. garckeanus ─── 65
P. geradianus ─── 71
P. glandulosus Essential oil 23
P. glaucocalyx An antimicrobial diterpenoid 47
P. grandidentatus D68, D101, D102, D128-D134 48
D5, D11 49
P. gratus ─── 63
P. hadiensis ─── 67
P. hereroensis D9, D35, D36 50
D37 51
D9, D16 52
Sesquiterpene M1 30
P. hilliardiae ─── 61
P. incanus (= P. mollis) Essential oil 27, 79
Fatty acids 35
P. inflexus ─── 72
P. japonicus D155 53
Caffeic acid derivative 36
P. japonicus var. glaucocalyx ─── 77
P. kapatensis ─── 65
P. lanuginosus D17, D30-D34, D45, D47, D52-D54, D57, D58, D67, D71, D74, D88-D90, D100, D103, D110, D111 54
P. lucidus ─── 62
P. madagascariensis Essential oil 24
P. malvinus ─── 62
P. marrubioides Flavonoid M11 34
P. melissoides ─── 79
P. mollis (= P. incanus) ─── 79
P. mollis ─── 79
P. myrianthus D128 48
D2, D4, D96, D98, D101 87
P. neochilus ─── 73
P. nilgherricus D82, D83, D139, D140 88
P. oribiensis ─── 61
P. ornatus ─── 74
P. parviflorus D77, D82-D86 55
P. pentheri ─── 62
P. porpeodon ─── 65
P. pseudobarbatus ─── 65
P. puberulentus ─── 65
P. purpuratus D72, D73, D77, D79, D91, D92, D121, D122, D140 56
P. purpuratus subsp. montanus ─── 62
P. purpuratus subsp. tongaensis ─── 62
P. reflexus ─── 61
P. rugosus Essential oil 18
Triterpenoids M2-M6 & β-sitosterol 31, 32
Triterpenoids M7-M9, β-sitosterol & hexacosanol 85
P. saccatus subsp. pondoensis ─── 62
P. saccatus var. longitubus ─── 61
P. sanguineus D3, D4-D7, D9, D15, D21, D25, D26, D68, D99, D102, D128-D131, D139 57
P. schimperi ─── 65
P. sp. from the borders of Lake Kiwu, Rwanda D19-D21, D27-D29, D49, D51, D75, D76, D104, D105, D113-D116, D123-D127D123-D126 58
59
P. spectabilis ─── 63
P. stenophyllus ─── 75
P. stocksii ─── 79
P. strigosus D77, D78, D82-D87 60
P. sylvestris L9, L13-L18 29
P. tenuiflorus Essential oil 21,22
P. vestitus Essential oil 76
P. vettiveroides ─── 78
P. zatarhendi ─── 67
P. zatarhendi var. tomentosus ─── 67
P. zuluensis ─── 61

Table 2.

Names of diterpenoids encountered in Plectranthus species.

Diterp. Name of diterpenoid Diterp. Name of diterpenoid
D1 Royleanone D79 (11-Hydroxy-19-isovaleroyloxy-5,7,9(11),13-abietatetraen-12-one)
D2 6β, 7α-Dihydroxy-royleanone D80 Fuerstione
D3 7-O-Formylhorminone D81 3β-Acetoxyfuerstione
D4 6β-Hydroxy-7α-formyloxyroyleanone D82 Parviflorone C
D5 6β-Hydroxy-7α-acetoxyroyleanone D83 Parviflorone E
D6 6β-Hydroxyroyleanone D84 Parviflorone B
D7 5,6-Dihydrocoleone U D85 Parviflorone D
D8 6β-Formyloxy-7α-hydroxyroyleanone D86 Parviflorone F
D9 Horminone D87 Parviflorone G
D10 7α-Acetoxyroyleanone D88 Lanugone M
D11 6β-Hydroxy-7α-acyloxyroyleanone D89 Lanugone L
D12 Taxoquinone (= 7β-Hydroxyroyleanone) D90 Lanugone N
D13 7-Oxoroyleanone D91 6α,11-Dihydroxy-19-isovaleroyloxy-7, 9(11), 13-abietatrien-12-one
D14 8α,9α-Epoxy-7-oxoroyleanone D92 6α,11-Dihydroxy-19-senecioyloxy-7,9(11), 13-abietatrien-12-one
D15 6β,7α-Dihydroxy(allyl)royleanone D93 11-Hydroxy-12-oxo-7,9(11),13-abietatriene
D16 7α,12-Dihydroxy-17(15°16)-abeo-abieta-8,12,16-trien-11,14-dione D94 (2'ξ,3aR,10bR)-8-(2'-Acetoxy-1'-methyl-ethyl)-3,3a-dihydro-7,9,10-trihydroxy-3a, 10b-dimethyl-1H-phenanthro[10,1bc]-furan-4(2H),6(10bH)-dione
D17 Lanugone A D95 16-O-Acetylcoleon C
D18 (4bS,7R,8aR)-7-Formyloxy-4b,5,6,7,8,8a-hexahydro-3-hydroxy-4b,8,8-trimethyl-2-(2-propenyl)phenanthren-1,4-dione D96 Coleon U
D19 Plectranthone F D97 Coleon C
D20 Plectranthone G D98
D21 6β,7α-Dihydroxyroyleanone D99 16-O-Acetylcoleon D
D22 (4bS,7R,8aR,9S,10S)-7-Formyloxy-4b,5,6, 7,8,8a,9,10-octahydro-3,9,10-trihydroxy-4b, 8,8-trimethyl-2-(2-propenyl)-phenanthren-1,4-dione D100 (15S)-Coleon D
D23 (4bS,7R,8aS,9S,10S)-4b,5,6,7,8,8a,9,10-Octahydro-3,9,10-trihydroxy-4b,7-dimethyl-8-methyliden-2-(2-propenyl)-phenanthren-1,4-dione D101 Coleon V
D24 (2'ξ,4bS,7R,8aS,9S,10S)-4b,5,6,7,8,8a,9, 10-Octahydro-3,9,10-trihydroxy-2-(2'-hydroxypropyl)-4b,7-dimethyl-8-meth-ylidenphenanthren-1,4-dione D102 Coleon U
D25 Coleon-U-quinone D103 (15S)-Coleon C
D26 8α,9α-Epoxy-8,9-dihydrocoleon-U-quinone D104 (15S)-2α-Acetoxycoleon C
D27 Plectranthone H D105 (15S)-Coleon H
D28 Plectranthone I D106 (2'ξ,4aS,10aS)-1,2,3,4,4a,10a-Hexahydro-5,6,8-trihydroxy-7-(2'-hydroxypropyl)-1,1,4a-trimethylphenanthren-9,10-dione
D29 Plectranthone J D107 (2'ξ,4aR)-2,3,4,4a-Tetrahydro-5,6,8,10-tetrahydroxy-7-(2'-hydroxypropyl)-1,1,4a-trimethylphenanthren-9(1H)-one
D30 6,7-Didehydroroyleanone D108 Coleon T
D31 Lanugone B D109 Coleon S
D32 Lanugone C D110 Lanugone R
D33 Lanugone D D111 Lanugone S
D34 Lanugone E D112 5,6-Dihydrocoleon U
D35 3β-Acetoxy-6β,7α,12-trihydroxy-17-(15°16);18(4°3)-bisabeo-abieta-4(19), 8.12,16-tetraen-11,14-dione D113 (15S)-2α-Acetoxycoleon D
D36 16-Acetoxyhorminone D114 (15S)-Coleon I
D37 16-Acetoxy-7α,12-dihydroxy-8,12-abieta-dien-11,14-dione D115 Plectrinone B
D38 (2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-3',10'-Diacetoxy-4'b,5',6',7',8',8'a,9',10'-octa-hydro-9'-hydroxy-2,4'b,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione D116 (16S)-Plectrinone A
D39 (2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-3'- Acetoxy,10'-formyloxy-4'b,5',6',7',8',8'a,9',10'-octahydro-9'-hydroxy-2,4'b,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione D117 (16R)-Plectrinone A
D40 (2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-10'-Acetoxy-4'b,5',6',7',8',8'a,9',10'-octahydro-3',9'-dihydroxy-2,4'b,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione D118 Edulone A
D41 (2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-3'- Acetoxy-4'b,5',6',7',8',8'a,9',10'-octahydro-9',10'-dihydroxy-2,4'b,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione D119 (1'S,10bS)-7,9,10-Trihydroxy-8-(2'-hydroxy-1'-methylethyl)-3,10b-dimethyl-1H-benzo[g]cyclopenta[de][1]benzopyran-4(2H),6(10bH)-dione
D42 (2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-10'-Formyloxy-4'b,5',6',7',8',8'a,9',10'-octa-hydro-3',9'-dihydroxy-2,4'b,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione D120 7α,11-Dihydroxy-12-methoxy-8,11,13-abietatriene
D43 (2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-4'b,5', 6',7',8',8'a,9',10'-Octahydro-3',9',10'-tri-hydroxy-2,4'b,7'-trimethyl-8'-methyliden-spiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione D121 11,12-Dihydroxy-19-isovaleroyloxy-8,11,13-abietatrien-7-one
D44 (2R,2'S,3'R,4'bS,7'R,8'aR,9'S,10'S)-9-Acetoxy-7'-formyloxy-4'b,5',6',7',8',8'a, 9',10'-octahydro-3',10'-dihydroxy-2,4'b, 8',8'-tetramethylspiro[cyclopropan-1,2' (1'H)-phenanthren]-1',4'(3'H)-dione D122 11,12-Dihydroxy-19-senecioyloxy-8,11,13-abietatrien-7-one
D45 Lanugon G D123 Plectranthone B
D46 (2R,2'S,3'R,4'bS,7'R,8'aR,9'S)-7'-Formyl-oxy-4'b,5',6',7',8',8'a,9',10'-octahydro-3',9'-dihydroxy-2,4'b,8',8'-tetramethylspiro-[cyclopropan-1,2'(1'H)-phenanthren]-1',4' (3'H)-dione D124 Plectranthone A
D47 Lanugone F D125 Plectranthone C
D48 (2R,2'S,3'R,4'bS,7'R,8'aR,9'S,10'S)-7',10'-Bisformyloxy-4'b,5',6',7',8',8'a,9',10'-octa-hydro-3',9'-dihydroxy-2,4'b,8',8'-tetra-methylspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione D126 Plectranthone D
D49 Plectranthone K D127 Plectranthone E
D50 (2R,2'S,3'R,4'bS,7'ξ,8'aR,9'S,10'S)-7',10'-Diacetoxy-4'b,5',6',7',8',8'a,9',10'-octa-hydro-3',9'-dihydroxy-2,4'b,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione D128 Grandidone A
D51 Plectranthone L D129 7-Epigrandidone A
D52 Lanugone H D130 Grandidone B
D53 Lanugone I D131 7-Epigrandidone B
D54 Lanugone J D132 Grandidone D
D55 (2S,2'S,3'R,4'bS,7'R,8'aR,9'S,10'S)-7-Formyloxy-4'b,5',6',7',8',8'a,9',10'-octa-hydro-3',9'-diacetoxy-10'-hydroxy-2,4'b,8', 8'-tetramethylspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione D133 7-Epigrandidone D
D56 (2S,2'S,3'R,4'bS,7'R,8'aR,9'S,10'S)-7',10'-Bisformyloxy-4'b,5',6',7',8',8'a,9',10'-octa-hydro-3',9'-dihydroxy-2,4'b,8',8'-tetra-methylspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione D134 Grandidone C
D57 Lanugone K D135 Nilgherron A
D58 Lanugone K' D136 Nilgherron B
D59 Coleon R D137 (3R)-6,9-Dihydroxy-3,4-dimethyl-7-(1-methylethyl)-3-(2-propenyl)naphtho[2,3-b]- furan-2-(3H),5,8-trione
D60 Coleon M D138 (2'ξ,3R)-7-(2'-Acetoxy-1'-methylethyl)-6,9-dihydroxy-3,4-dimethyl-3-(2''-propenyl)-naphtho[2,3-b]furan-2-(3H),5,8-trione
D61 7,12-Diacetylcoleon J D139 Sanguinon A
D62 Coleon N D140 (16R)-17,19-Diacetoxy-16-hydroxy-13β-kauran-3-one
D63 Coleon Q D141 (16R)-2α-Senecioyloxy-3α-acetoxyphyllocladan-16,17-diol
D64 Coleon P D142 (16R)-2α-Senecioyloxy-3α,17-diacetoxy-16-hydroxyphyllocladane
D65 Plectrin D143 (16R)-2α-Isovaleroyloxy-3α-acetoxyphyllocladan-16,17-diol
D66 Coleon Z D144 (16R)-2α-Isovaleroyloxy-3α,17-diacetoxy-16-hydroxyphyllocladane
D67 (15S)-Lanugone O D145 (16R)-3α-Acetoxyphyllocladan-16,17-diol
D68 14-Hydroxytaxodione D146 (16R)-2α-Senecioyloxy-16,17-dihydroxyphyllocladan-3-one
D69 (4bS,8aS)-2-(2-Acetoxypropyl)-4b,5,6,7,8, 8a-hexahydro-1,4-dihydroxy-4b,8,8-tri-methylphenanthren-3,9-dione D147 Plecostonol (= coetsidin A)
D70 (2'ξ,4bS,8aS)-4b,5,6,7,8,8a-Hexahydro-1,4-dihydroxy-2-(2'-hydroxypropyl)-4b,8,8-trimethylphenanthren-3,9-dione D148 Coestinol
D71 Lanugone P D149 Coetsidin B
D72 19-Isovaleroyloxytaxodione D150 Coetsidin C
D73 19-Senecioyloxytaxodione D151 Coetsidin D
D74 Lanugone Q D152 Coetsidin E
D75 Coleon F D153 Coetsidin F
D76 (16S)-Coleon E D154 Coetsidin G
D77 Parviflorone A (= 11-hydroxy-19-senecioyl-oxy-5,7,9(11),13-abietatetraen-12-one) D155 Rabdosin B
D78 Parviflorone H

Diterpenoids isolated from Plectranthus

graphic file with name molecules-07-00271-i001.jpg

graphic file with name molecules-07-00271-i002.jpg

graphic file with name molecules-07-00271-i003.jpg

graphic file with name molecules-07-00271-i004.jpg

graphic file with name molecules-07-00271-i005.jpg

graphic file with name molecules-07-00271-i006.jpg

graphic file with name molecules-07-00271-i007.jpg

graphic file with name molecules-07-00271-i008.jpg

graphic file with name molecules-07-00271-i009.jpg

graphic file with name molecules-07-00271-i010.jpg

graphic file with name molecules-07-00271-i011.jpg

graphic file with name molecules-07-00271-i012.jpg

graphic file with name molecules-07-00271-i013.jpg

Essential oils

Plectranthus is one of the oil-rich genera belonging to the subfamily Nepetoideae [17]. Table 1 lists Plectranthus species that have been investigated for essential oils. The main constituents of essential oils of Plectranthus are mono- and sesquiterpenes. For example, constituents of essential oil of P. rugosus [18], as eluted from fused silica capillary column, are α-pinene, camphene, β-pinene, sabinene, 3‑carene, myrcene, α-phellandrene, α-terpinene, limonene, β-phellandrene, cis-β-ocimene, γ-terpinene, trans-β-ocimene, p-cymene, terpinolene, thujone, 1-nonen-3-ol, α-copane, β-bourbonene, β-cubebene, linalool, caryophyllene, terpinen-4-ol, humulene, γ-muurolene, germacrene D, piperitone epoxide, α‑muurolene, bicyclogermacrene, δ-cadinene, γ-cadinene, α-curcumene, caryophyllene oxide, T‑cadinol, torreyol and α-cadinol. On the same GC column (fused silica capillary), essential oil of P. amboinicus [19] was separated into α-pinene, camphene, 1-octen-3-ol, β-pinene, myrcene, α‑phellandrene, Δ-3-carene, α-terpinene, p-cymene, limonene, (Z)-β-ocimene, (E)-β-ocimene, α‑phelandrène, γ-terpinene, α-terpinolene, linalool, camphor, 1-terpinen-4-ol, α-terpineol, thymol, carvacrol, α-cubebene, β-cubebene, β-elemene, β-caryophyllene, α-bergamotene, (Z)- β-farnesene, α‑humulene, β-guaiene, (-)-α-selinene, β-bisabolene, δ-cadinene, caryophyllene oxide, δ-cadinol, α‑cadinol, farnesol, calamenol and (-)-4β-7β-aromadendrandiol. Also on fused silica capillary column, essential oil of P. fruticosus [20] gave α-thuyene, sabinene, γ-terpinene, β-bourbonene, linalool, terpinen-4-ol, sabinyl acetate, α-humulene, aromadendrene, α-cubebene, β-bisabolene, γ-cadinene, α‑elemene, trans-farnesol and trans-copaene.

Long-chain alkylphenols

A group of long-chain alkylphenols, of possible taxonomic significance in the genus, has been isolated [28,29]. Long-chain alkylphenols L1-L8, L10-L12 were isolated from P. albidus and showed a significant in vitro antioxidant activity [28]. Antioxidant activity guided fractionation of extracts of P. sylvestris [29] and HPLC separation yielded the oxygenated long-chain alkylcatechols L9, L13-L18.

Long-chain alkylphenols

graphic file with name molecules-07-00271-i014.jpg

graphic file with name molecules-07-00271-i015.jpg

Miscellaneous constituents

Only one aristolane sesquiterpene, namely 1(10)-aristolen-13-al (M1), was isolated from P. hereroensis [30]. Five triterpenoids, named plectranthoic acid (M2), acetylplectranthoic acid (M3), plectranthadiol (M4), plectranthoic acid A (M5) and plectranthoic acid B (M6), in addition to β‑sitosterol were isolated from P. rugosus [31,32]. From the same species Misra et al. [85] isolated the triterpenoids oleanolic acid (M7), ursolic acid (M8) and betulin (M9), in addition to β-sitosterol and hexacosanol.

Flavonoids seem to be rare in Plectranthus. Only two flavonoids were identified, 4',7-dimethoxy-5,6-dihydroxyflavone (M10) from P. ambiguus [33] and chrysosplenetin (M11) from P. marruboides [34]. From P. mollis (= P. incanus), Mahmoud et al. reported the isolation of vernolic and cyclopropenoid fatty acids [35]. From P. japonicus (= Rabdosia japonica), a tetrameric derivative of caffeic acid was isolated [36].

Miscellaneous constituents

graphic file with name molecules-07-00271-i016.jpg

graphic file with name molecules-07-00271-i017.jpg

graphic file with name molecules-07-00271-i018.jpg

Conclusions

Although the genus Plectranthus comprises many plants of medicinal and economic interest [80], its chemistry remains poorly known. Caffeic acid and its derivatives are of widespread occurrence in the Labiatae family and of particular attention as chemotaxonomic markers. Chlorogenic acid appears to be of almost universal occurrence within this family, whereas rosmarinic acid is restricted to the subfamily Nepetoideae [81]. Only a tetrameric derivative of caffeic acid was isolated from P. japonicus [36]. But a group of long-chain alkylphenols, of possible taxonomic significance in the genus, was isolated [28,29]. Generally, the subfamily Lamioideae is rich in iridoid glycosides, whereas they are absent from the Nepetoideae [82]. No iridoid glycosides were isolated from Plectranthus.

Generally, Plectranthus species are essential-oil-rich (i.e. > 0.5% volatile oil on a dry weight basis), in agreement with the general situation that the Nepetoideae are oil-rich, whilst the Lamioideae are oil-poor [83].

Diterpenoids are the more common secondary metabolites in Plectranthus. The majority of them are highly modified abietanoids, in addition to some phyllocladanes and ent-kaurenes. It seems to be similar to the pattern of diterpenoids of Salvia [84], but no clerodane diterpenoids were found in Plectranthus.

Footnotes

Sample availability: Not applicable

References

  • 1.Cantino P.D., Harley R.M., Wagstaff S.J. Genera of Labiatae: Status and Classification. In: Harley R.M., Reynolds T., editors. Advances in Labiate Science. Royal Botanic Gardens; Kew: 1992. p. 511. [Google Scholar]
  • 2.Codd L.F. Munich. Bot. Staatssamml. Mitt. 1971;10:245. [Google Scholar]
  • 3.Rudall P.J., Clark L. The Megagametophyte in Labiatae. In: Harley R.M., Reynolds T., editors. Advances in Labiate Science. Royal Botanic Gardens; Kew: 1992. p. 65. [Google Scholar]
  • 4.Morton J.K. Novon. 1998;8:265. [Google Scholar]
  • 5.Van Jaarsveld E.J., Edwards T.J. Bothalia. 1997;27:1. [Google Scholar]
  • 6.Collenette S. Flowers of Saudi Arabia. Scorpion Publishing Ltd.; London: 1985. p. 266. [Google Scholar]
  • 7.A-Ogle B. Mitt. Inst. Allg. Bot. Hamburg. 1990;23b:895. [Google Scholar]
  • 8.Purseglove J.W. Tropical Crops. Dicotyledons. Longman Scientific & Technical; Burnt Mill: 1987. p. 719. [Google Scholar]
  • 9.Temple V.J., Ojobe T.O., Onobun C.E. J. Sci. Food Agr. 1991;56:215. [Google Scholar]
  • 10.Holland J.H. The Useful Plants of Nigeria. Bull. Misc. Inform. Kew Addit. 1915;9:527. Ser. [Google Scholar]
  • 11.Perrot E. Matières Premières Usuelles du Règne Vègètal. Masson; Paris: 1944. pp. 1089–2343. Tome Second. [Google Scholar]
  • 12.Zepernick B. Arzneipflanzen der Polynesier. 1972. p. 307. Dietrich Reimer, Berlin. [Google Scholar]
  • 13.Abulfatih H.A. Medicinal Plants in Southwestern Saudi Arabia. Al Thaghr Press; Khamis: 1987. p. 162. [Google Scholar]
  • 14.Kokwaro J.O. Medicinal Plants of East Africa. East African Literature Bureau; Kampala: 1976. p. 384. [Google Scholar]
  • 15.Dash V.B., Kashyap V.L. Materia Medica of Ayurveda based on Ayurveda Saukhyan of Todarananda. Concept Publishing Company; New Delhi: 1987. p. 711. [Google Scholar]
  • 16.Kubo I., Matsumoto T., Tori M., Asakawa Y. Chem. Lett. 1984;1513 [Google Scholar]
  • 17.Cantino P., Sanders R. Syst. Bot. 1986;11:163. [Google Scholar]
  • 18.Weyerstahl P., Kaul V.K., Meier N., Weirauch M., Marschall H. Planta Med. 1983;48:99. doi: 10.1055/s-2007-969897. [DOI] [PubMed] [Google Scholar]
  • 19.Vera R., Mondon J.M., Pieribattesti J.C. Planta Med. 1993;59:182. doi: 10.1055/s-2006-959641. [DOI] [PubMed] [Google Scholar]
  • 20.Fournier G., Paris M., Dumitresco S.M., Pages N., Boudene C. Planta Med. 1986:486. doi: 10.1055/s-2007-969261. [DOI] [PubMed] [Google Scholar]
  • 21.Smith R.M., Bahaffi S.O., Albar H.A. J. Essent. Oil Res. 1996;8:447. doi: 10.1080/10412905.1996.9700663. [DOI] [Google Scholar]
  • 22.Mwangi J.W., Lwande W., Hassanali A. Flav. Fragr. 1993;8:51. doi: 10.1002/ffj.2730080110. [DOI] [Google Scholar]
  • 23.Zollo P.H.A., Biyiti L., Tchoumbougnang F., Menut C., Lamaty G., Bouchet P. Flav. Fragr. 1998;13:107. [Google Scholar]
  • 24.Ascensao L., Figueiredo A.C., Barroso J.G., Pedro L.G., Schripsem J., Deans S.G., Scheffer J.C.J. International J. Plant Sci. 1998;159:31. doi: 10.1086/297518. [DOI] [Google Scholar]
  • 25.Buchbauer G., Jirovetz L., Wasicky M., Nikiforov A. J. Essent. Oil Res. 1993;5:311. doi: 10.1080/10412905.1993.9698226. [DOI] [Google Scholar]
  • 26.Hari L., Bukuru J., Pooter H.L., Demyttenaere J.R., Fierens H. J. Essent. Oil Res. 1996;8:87. doi: 10.1080/10412905.1996.9700563. [DOI] [Google Scholar]
  • 27.Shah G.C., Bhandari R., Mathela C.S. J. Essent. Oil Res. 1992;4:57. doi: 10.1080/10412905.1992.9698010. [DOI] [Google Scholar]
  • 28.Burgi C., Rüedi P. Helv. Chim. Acta. 1993;76:1890. doi: 10.1002/hlca.19930760508. [DOI] [Google Scholar]
  • 29.Juch M., Rüedi P. Helv. Chim. Acta. 1997;80:436. doi: 10.1002/hlca.19970800209. [DOI] [Google Scholar]
  • 30.Rodriguez B., Delatorre M.C., Simoes M.F., Bbatista O., Nascimento J., Duarte A., Mayer R. Phytochemistry. 1995;38:905. [Google Scholar]
  • 31.Razdan T.K., Kachroo V., Harkar S., Koul G.L. Tetrahedron. 1982;38:991. [Google Scholar]
  • 32.Razdan T.K., Kachroo V., Harkar S., Koul G.L., Dhar K.L. Phytochemistry. 1982;21:409. [Google Scholar]
  • 33.Liu G., Rüedi P. Phytochemistry. 1996;41:1563. [Google Scholar]
  • 34.Hensch M., Eugster C.H. Helv. Chim. Acta. 1972;55:1610. doi: 10.1002/hlca.19720550522. [DOI] [Google Scholar]
  • 35.Mahmood C., Daulatabad J.D., Mirajkar A.M. J. Chem. Techn. Biotechn. 1989;45:143. [Google Scholar]
  • 36.Agata I., Hatano T., Nishibe S., Okuda T. Phytochemistry. 1989;28:2447. [Google Scholar]
  • 37.Rüedi P. Helv. Chim. Acta. 1984;67:1116. doi: 10.1002/hlca.19840670425. [DOI] [Google Scholar]
  • 38.Adler A.C., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1984;67:1523. [Google Scholar]
  • 39.Rüedi P. Helv. Chim. Acta. 1986;69:972. doi: 10.1002/hlca.19860690504. [DOI] [Google Scholar]
  • 40.Arihara S., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1977;60:1443. doi: 10.1002/hlca.19770600436. [DOI] [PubMed] [Google Scholar]
  • 41.Phadnis A.P., Patwardhan S.A., Gupta A.S. Indian J. Chem. B. 1987;26:15. [Google Scholar]
  • 42.Phadnis A.P., Patwardhan S.A., Gupta A.S., Dhaneshwar N.N., Tavale S.S., Gururow T.N. J. Chem. Soc., Perkin Trans. I. 1986:655. [Google Scholar]
  • 43.Huang H., Xu Y., Sun H. Phytochemistry. 1989;28:2753. [Google Scholar]
  • 44.Künzle J.M., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1987;70:1911. doi: 10.1002/hlca.19870700726. [DOI] [Google Scholar]
  • 45.Buchbauer G., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1978;61:1969. doi: 10.1002/hlca.19780610604. [DOI] [Google Scholar]
  • 46.Dellar J.E., Cole M.D., Waterman P.G. Phytochemistry. 1996;41:735. doi: 10.1016/0031-9422(95)00694-x. [DOI] [PubMed] [Google Scholar]
  • 47.Vichkanova S.A., Rubinchik M.A. Farmacol. Toksikol. 1966;29:605. CA. 1967, 66, 36350r. [PubMed] [Google Scholar]
  • 48.Uchida M., Miyase T., Yoshizaki F., Bieri J.H., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1981;64:2227. doi: 10.1002/hlca.19810640729. [DOI] [Google Scholar]
  • 49.Teixeira A.P., Batista O., Simoes M.F., Nascimento J., Duarte A., dela Torre M.C., Rodriguez B. Phytochemistry. 1997;44:325. [Google Scholar]
  • 50.Batista O., Simoes M.F., Nascimento J., Riberio S., Duarte A., Rodriguez B., dela Torre M.C. Phytochemistry. 1996;41:571. doi: 10.1016/0031-9422(95)00646-x. [DOI] [PubMed] [Google Scholar]
  • 51.Batista O., Simoes M.F., Duarte A., Valdeira M.L., dela Torre M.C., Rodriguez B. Phytochemistry. 1995;38:167. doi: 10.1016/0031-9422(94)00586-i. [DOI] [PubMed] [Google Scholar]
  • 52.Batista O., Duarte A., Nascimento J., Simoes M.F., dela Torre M.C., Rodriguez B. J. Nat. Prod. 1994;57:858. doi: 10.1021/np50108a031. [DOI] [PubMed] [Google Scholar]
  • 53.Wang M.T., Liu C.J., Li J.C. Phytochemistry. 1990;29:664. [Google Scholar]
  • 54.Schmidt J.M., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1982;65:2136. doi: 10.1002/hlca.19820650721. [DOI] [Google Scholar]
  • 55.Rüedi P., Eugster C.H. Helv. Chim. Acta. 1978;61:709. doi: 10.1002/hlca.19780610219. [DOI] [Google Scholar]
  • 56.Katti S.B., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1982;65:2189. [Google Scholar]
  • 57.Matloubi-Moghadam F., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1987;70:975. doi: 10.1002/hlca.19870700407. [DOI] [Google Scholar]
  • 58.Adler A.C., Rüedi P., Prewo R., Bieri J.H., Eugster C.H. Helv. Chim. Acta. 1986;69:1395. [Google Scholar]
  • 59.Adler A.C., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1984;67:1003. [Google Scholar]
  • 60.Adler A.C., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1984;67:1531. [Google Scholar]
  • 61.Potgieter C.J., Edwards T.J., Miller R.M., VanStaden J. Plant Syst. Evol. 1999;218:99. [Google Scholar]
  • 62.VanJaarsveld E.J., Edwards T.J. Bothalia. 1997;27:1. [Google Scholar]
  • 63.Forster P.I. Haseltonia. 1996:47. [Google Scholar]
  • 64.Boudarga K., Dexheimer J. Agronomie. 1990;10:417. (France) [Google Scholar]
  • 65.Morton J.K. Novon. 1998;8:265. [Google Scholar]
  • 66.Sharma A.D., Munjal R.L. Indian J. Mycol. Plant Pathol. 1979;8:230. [Google Scholar]
  • 67.Herppich W.B., Herppich M. Flora Morphol. Geobot. Oekophysiol. Jena. 1996;191:401. [Google Scholar]
  • 68.Uchida M., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1980;63:225. doi: 10.1002/hlca.19800630122. [DOI] [Google Scholar]
  • 69.Kyesmu P.M., Akueshi C.O. Nigerian J. Botany. 1989;2:1. [Google Scholar]
  • 70.Forster P.I. Haseltonia. 1998. p. 14.
  • 71.Singh A.K. Balwant. Vidyapeeth. J. Agric. Sci. Res. 1977;16:77. [Google Scholar]
  • 72.Tanaka H. J. Jap. Bot. 1972;47:250. [Google Scholar]
  • 73.Stirton C.H. Bothalia. 1977;12:229. [Google Scholar]
  • 74.Ascensao L., Mota L., Castro M.D. Annals Bot. 1999;84:437. [Google Scholar]
  • 75.Brummitt R.K., Seyani J.H. Kew Bull. London. 1987;42:687. [Google Scholar]
  • 76.Thoppil J.E. Acta Pharm. 1997;47:213. [Google Scholar]
  • 77.Zhang Y., Sha D., Sha M., Yuan C. Chung. Kuo. Chung. Yao. Tsa. Chih. 1991;16:679. [Google Scholar]
  • 78.Singh N.P., Sharma B.D. J. Bombay Nat. Hist. Soc. Madras. 1982;79:712. [Google Scholar]
  • 79.Shah V., Bhat S.V., Bajwa B.S., Dornauer H., de Souza N.J. Planta Med. 1980;39:183. [Google Scholar]
  • 80.Rivera Nunez D., Obon de Castro C. The ethnobotany of old world Labiatae. In: Harley R.M., Reynolds T., editors. Advances in Labiate Sciences. Royal Botanic Gardens; Kew: 1992. p. 455. [Google Scholar]
  • 81.von Litvienko V.I., Popova T.P., Simonjan A.V., Zoz I.G., Sokolov V.S. Planta Med. 1975;27:372. doi: 10.1055/s-0028-1097817. [DOI] [PubMed] [Google Scholar]
  • 82.Kooiman P. Acta Bot. Neerl. 1972;21:417. [Google Scholar]
  • 83.Cantino P.D., Sanders R.W. Syst. Bot. 1986;11:163. [Google Scholar]
  • 84.Rodriguez-Hahn L., Esquivel B., Cardenas J., Ramamoorthy T.P. The distribution of diterpenoids in Salvia. In: Harley R.M., Reynolds T., editors. Advances in Labiate Sciences. Royal Botanic Gardens; Kew: 1992. p. 335. [Google Scholar]
  • 85.Misra P.S., Misra G., Nigam S.K., Mitra C.R. Lloydia. 1971;34:265. [Google Scholar]
  • 86.Arihara S., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1983;66:429. [Google Scholar]
  • 87.Miyase T., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1977;60:2770. doi: 10.1002/hlca.19770600830. [DOI] [PubMed] [Google Scholar]
  • 88.Miyase T., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1977;60:2789. doi: 10.1002/hlca.19770600832. [DOI] [PubMed] [Google Scholar]

Articles from Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES