Abstract
This review presents the phytochemical constituents of the genus Plectranthus reported up to 1999. Only a tetrameric derivative of caffeic acid was isolated from P. japonicus, but a group of long-chain alkylphenols, of possible taxonomic significance in the genus, was also isolated. As a genus of the subfamily Nepetoideae, Plectranthus is free from iridoid glycosides and rich in essential oil (i.e. > 0.5% volatile oil on a dry weight basis). Diterpenoids are the more common secondary metabolites in Plectranthus. The majority of them are highly modified abietanoids. This seems to be similar to the pattern of diterpenoids observed for Salvia, but no clerodane diterpenoids were found in Plectranthus.
Keywords: Plectranthus, Coleus, Labiatae, phytochemical constituents, abietane diterpenoids
Introduction
Labiatae is a large family that occurs worldwide and has species that are adapted to almost all habitats and altitudes. The genus Plectranthus L' He'r. belongs to subfamily Nepetoideae of tribe Ocimeae [1]. It comprises about eighty species worldwide, as indicated in this review. Taxonomically, Coleus Lour. is the closest to Plectranthus [2]. Coleus species are now generally accepted as belonging to either Plectranthus or to Solenostemon Thonn. (eds.) [3], and some confusion can arise distinguishing between Plectranthus and Coleus species [4,5]. In Plectranthus, the upper lip of the flower is unusually four-lobed and the large shoe-shaped lower lip is formed from a single lobe, while in Labiatae the upper lip often consisting of two lobes and the lower consisting of three [6].
Many Plectranthus species are plants of economic and medicinal interest. Several species may be grown as ornamentals, such as P. tenuiflorus in Saudi Arabia. The tubers of an unidentified Plectranthus species are eaten in Swaziland [7]. Livingstone potato tubers, P. esculentus is cultivated in tropical Africa for its edible tubers [8,9]. P. floribundus is cultivated in Nigeria for its edible tubers, also relished in Natal [10,11]. In Polynesia, the seed-oil of P. amboinicus is applied to the ear for treatment of acute edematous otitis acuta [12]. The leaf extract of P. tenuiflorus is also used in Saudi Arabia to treat ear infections [13]. The leaves of P. asirensis are used as an antiseptic dressing for wounds in Saudi Arabia [13]. The leaves of P. caninus are chewed in Africa to relieve toothache [14]. In East Africa the leaves of P. elegans are used as a vermicide [14]. P. vettiverioides is prescribed in Indian ayurvedic medicine as a remedy for vomiting and nausea [15]. The East African medicinal plant P. barbatus is used as a remedy for stomachache and as a purgative. It is also resistant to insect attack, and an aphid antifeedant diterpene has been isolated from it [16].
The chemistry of Plectranthus is still not well known. This is the first review of chemical constituents of Plectranthus species. The main phytochemical constituents of the genus Plectranthus are diterpenoids, essential oils and phenolics.
Diterpenoids
About 140 diterpenoids were identified from the colored leaf-glands of Plectranthus species. The majority of them are highly modified abietanoids, in addition to some phyllocladanes (structures D140-D146), ent-kaurenes (structures D147-D154) and a seco-kaurene (structure D155). The abietanoids, in turn, could be classified, according to structure variation, into royleanones (structures D1-D37), spirocoleons (structures D38-D66), vinylogous quinones (also named extended quinines, structures D67-D76), quinone methides (structures D77-D93), acylhydroquinones (structures D94-D117), (4→3) abeo-acylhydroquinones (structures D118, D119), phenolic abietanoids (structures D120-D122), 1,4-phenanthraquinones (structures D123-D127), dimeric abietanoids (structures D128-D136) and seco-abietanoids (structures D137-D139). Distribution of these diterpenoids and other constituents in species of Plectranthus are shown in Table 1. The names of these diterpenoids are listed in Table 2.
Table 1.
Alphabetical list of Plectranthus species and compounds isolated from them.
| Plectranthus species | Isolated chemical constituents | References |
|---|---|---|
| Abyssinian P. sp. | D1, D5, D9, D10, D12-D14, D21, D30 | 37 |
| P. albidus | L1-L8, L10-L12 | 28 |
| P. aliciae | ─── | 62 |
| P. alloplectus | ─── | 63 |
| P. ambiguus | D141-D146, flavonoid M10 | 33 |
| P. amboinicus | Essential oil | 19 |
| P. argentatus | D4, D5, D8, D21, D25, D101, D102, D112 | 38 |
| P. asirensis | ─── | 13 |
| P. australis | ─── | 64 |
| P. barbatus | D29, D65, D75, D76, D115, D117 | 39 |
| D65 | 16 | |
| P. burorum | ─── | 65 |
| P. caninus | D108, D109 | 40 |
| D59-D64 | 86 | |
| P. ciliatus | ─── | 61 |
| P. coesta | D148 | 41 |
| D147 | 42 | |
| P. coetsa | ─── | 66 |
| P. coetsoides | D147, D149-D154 | 43 |
| P. coleoides | Essential oil | 25 |
| P. cyrpiculoides | ─── | 67 |
| P. defoliatus | Essential oil | 26 |
| P. ecklonii | D86, M12-M15 | 68 |
| P. edulis | D17, D18, D21, D22, D23, D24, D38-D48, D50, D55, D56, D66, D67, D69, D70, D94-D100, D106, D107, D118, D119, D137, D138 | 44 |
| D118 | 45 | |
| P. elegans | D93, D120 | 46 |
| P. esculentus | ─── | 69 |
| P. fasciculatos | ─── | 70 |
| P. floribundus | ─── | 11 |
| P. fruticosus | Essential oil | 20 |
| P. gandicalyx | ─── | 65 |
| P. garckeanus | ─── | 65 |
| P. geradianus | ─── | 71 |
| P. glandulosus | Essential oil | 23 |
| P. glaucocalyx | An antimicrobial diterpenoid | 47 |
| P. grandidentatus | D68, D101, D102, D128-D134 | 48 |
| D5, D11 | 49 | |
| P. gratus | ─── | 63 |
| P. hadiensis | ─── | 67 |
| P. hereroensis | D9, D35, D36 | 50 |
| D37 | 51 | |
| D9, D16 | 52 | |
| Sesquiterpene M1 | 30 | |
| P. hilliardiae | ─── | 61 |
| P. incanus (= P. mollis) | Essential oil | 27, 79 |
| Fatty acids | 35 | |
| P. inflexus | ─── | 72 |
| P. japonicus | D155 | 53 |
| Caffeic acid derivative | 36 | |
| P. japonicus var. glaucocalyx | ─── | 77 |
| P. kapatensis | ─── | 65 |
| P. lanuginosus | D17, D30-D34, D45, D47, D52-D54, D57, D58, D67, D71, D74, D88-D90, D100, D103, D110, D111 | 54 |
| P. lucidus | ─── | 62 |
| P. madagascariensis | Essential oil | 24 |
| P. malvinus | ─── | 62 |
| P. marrubioides | Flavonoid M11 | 34 |
| P. melissoides | ─── | 79 |
| P. mollis (= P. incanus) | ─── | 79 |
| P. mollis | ─── | 79 |
| P. myrianthus | D128 | 48 |
| D2, D4, D96, D98, D101 | 87 | |
| P. neochilus | ─── | 73 |
| P. nilgherricus | D82, D83, D139, D140 | 88 |
| P. oribiensis | ─── | 61 |
| P. ornatus | ─── | 74 |
| P. parviflorus | D77, D82-D86 | 55 |
| P. pentheri | ─── | 62 |
| P. porpeodon | ─── | 65 |
| P. pseudobarbatus | ─── | 65 |
| P. puberulentus | ─── | 65 |
| P. purpuratus | D72, D73, D77, D79, D91, D92, D121, D122, D140 | 56 |
| P. purpuratus subsp. montanus | ─── | 62 |
| P. purpuratus subsp. tongaensis | ─── | 62 |
| P. reflexus | ─── | 61 |
| P. rugosus | Essential oil | 18 |
| Triterpenoids M2-M6 & β-sitosterol | 31, 32 | |
| Triterpenoids M7-M9, β-sitosterol & hexacosanol | 85 | |
| P. saccatus subsp. pondoensis | ─── | 62 |
| P. saccatus var. longitubus | ─── | 61 |
| P. sanguineus | D3, D4-D7, D9, D15, D21, D25, D26, D68, D99, D102, D128-D131, D139 | 57 |
| P. schimperi | ─── | 65 |
| P. sp. from the borders of Lake Kiwu, Rwanda | D19-D21, D27-D29, D49, D51, D75, D76, D104, D105, D113-D116, D123-D127D123-D126 | 58 |
| 59 | ||
| P. spectabilis | ─── | 63 |
| P. stenophyllus | ─── | 75 |
| P. stocksii | ─── | 79 |
| P. strigosus | D77, D78, D82-D87 | 60 |
| P. sylvestris | L9, L13-L18 | 29 |
| P. tenuiflorus | Essential oil | 21,22 |
| P. vestitus | Essential oil | 76 |
| P. vettiveroides | ─── | 78 |
| P. zatarhendi | ─── | 67 |
| P. zatarhendi var. tomentosus | ─── | 67 |
| P. zuluensis | ─── | 61 |
Table 2.
Names of diterpenoids encountered in Plectranthus species.
| Diterp. | Name of diterpenoid | Diterp. | Name of diterpenoid |
|---|---|---|---|
| D1 | Royleanone | D79 | (11-Hydroxy-19-isovaleroyloxy-5,7,9(11),13-abietatetraen-12-one) |
| D2 | 6β, 7α-Dihydroxy-royleanone | D80 | Fuerstione |
| D3 | 7-O-Formylhorminone | D81 | 3β-Acetoxyfuerstione |
| D4 | 6β-Hydroxy-7α-formyloxyroyleanone | D82 | Parviflorone C |
| D5 | 6β-Hydroxy-7α-acetoxyroyleanone | D83 | Parviflorone E |
| D6 | 6β-Hydroxyroyleanone | D84 | Parviflorone B |
| D7 | 5,6-Dihydrocoleone U | D85 | Parviflorone D |
| D8 | 6β-Formyloxy-7α-hydroxyroyleanone | D86 | Parviflorone F |
| D9 | Horminone | D87 | Parviflorone G |
| D10 | 7α-Acetoxyroyleanone | D88 | Lanugone M |
| D11 | 6β-Hydroxy-7α-acyloxyroyleanone | D89 | Lanugone L |
| D12 | Taxoquinone (= 7β-Hydroxyroyleanone) | D90 | Lanugone N |
| D13 | 7-Oxoroyleanone | D91 | 6α,11-Dihydroxy-19-isovaleroyloxy-7, 9(11), 13-abietatrien-12-one |
| D14 | 8α,9α-Epoxy-7-oxoroyleanone | D92 | 6α,11-Dihydroxy-19-senecioyloxy-7,9(11), 13-abietatrien-12-one |
| D15 | 6β,7α-Dihydroxy(allyl)royleanone | D93 | 11-Hydroxy-12-oxo-7,9(11),13-abietatriene |
| D16 | 7α,12-Dihydroxy-17(15°16)-abeo-abieta-8,12,16-trien-11,14-dione | D94 | (2'ξ,3aR,10bR)-8-(2'-Acetoxy-1'-methyl-ethyl)-3,3a-dihydro-7,9,10-trihydroxy-3a, 10b-dimethyl-1H-phenanthro[10,1bc]-furan-4(2H),6(10bH)-dione |
| D17 | Lanugone A | D95 | 16-O-Acetylcoleon C |
| D18 | (4bS,7R,8aR)-7-Formyloxy-4b,5,6,7,8,8a-hexahydro-3-hydroxy-4b,8,8-trimethyl-2-(2-propenyl)phenanthren-1,4-dione | D96 | Coleon U |
| D19 | Plectranthone F | D97 | Coleon C |
| D20 | Plectranthone G | D98 | |
| D21 | 6β,7α-Dihydroxyroyleanone | D99 | 16-O-Acetylcoleon D |
| D22 | (4bS,7R,8aR,9S,10S)-7-Formyloxy-4b,5,6, 7,8,8a,9,10-octahydro-3,9,10-trihydroxy-4b, 8,8-trimethyl-2-(2-propenyl)-phenanthren-1,4-dione | D100 | (15S)-Coleon D |
| D23 | (4bS,7R,8aS,9S,10S)-4b,5,6,7,8,8a,9,10-Octahydro-3,9,10-trihydroxy-4b,7-dimethyl-8-methyliden-2-(2-propenyl)-phenanthren-1,4-dione | D101 | Coleon V |
| D24 | (2'ξ,4bS,7R,8aS,9S,10S)-4b,5,6,7,8,8a,9, 10-Octahydro-3,9,10-trihydroxy-2-(2'-hydroxypropyl)-4b,7-dimethyl-8-meth-ylidenphenanthren-1,4-dione | D102 | Coleon U |
| D25 | Coleon-U-quinone | D103 | (15S)-Coleon C |
| D26 | 8α,9α-Epoxy-8,9-dihydrocoleon-U-quinone | D104 | (15S)-2α-Acetoxycoleon C |
| D27 | Plectranthone H | D105 | (15S)-Coleon H |
| D28 | Plectranthone I | D106 | (2'ξ,4aS,10aS)-1,2,3,4,4a,10a-Hexahydro-5,6,8-trihydroxy-7-(2'-hydroxypropyl)-1,1,4a-trimethylphenanthren-9,10-dione |
| D29 | Plectranthone J | D107 | (2'ξ,4aR)-2,3,4,4a-Tetrahydro-5,6,8,10-tetrahydroxy-7-(2'-hydroxypropyl)-1,1,4a-trimethylphenanthren-9(1H)-one |
| D30 | 6,7-Didehydroroyleanone | D108 | Coleon T |
| D31 | Lanugone B | D109 | Coleon S |
| D32 | Lanugone C | D110 | Lanugone R |
| D33 | Lanugone D | D111 | Lanugone S |
| D34 | Lanugone E | D112 | 5,6-Dihydrocoleon U |
| D35 | 3β-Acetoxy-6β,7α,12-trihydroxy-17-(15°16);18(4°3)-bisabeo-abieta-4(19), 8.12,16-tetraen-11,14-dione | D113 | (15S)-2α-Acetoxycoleon D |
| D36 | 16-Acetoxyhorminone | D114 | (15S)-Coleon I |
| D37 | 16-Acetoxy-7α,12-dihydroxy-8,12-abieta-dien-11,14-dione | D115 | Plectrinone B |
| D38 | (2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-3',10'-Diacetoxy-4'b,5',6',7',8',8'a,9',10'-octa-hydro-9'-hydroxy-2,4'b,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione | D116 | (16S)-Plectrinone A |
| D39 | (2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-3'- Acetoxy,10'-formyloxy-4'b,5',6',7',8',8'a,9',10'-octahydro-9'-hydroxy-2,4'b,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione | D117 | (16R)-Plectrinone A |
| D40 | (2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-10'-Acetoxy-4'b,5',6',7',8',8'a,9',10'-octahydro-3',9'-dihydroxy-2,4'b,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione | D118 | Edulone A |
| D41 | (2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-3'- Acetoxy-4'b,5',6',7',8',8'a,9',10'-octahydro-9',10'-dihydroxy-2,4'b,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione | D119 | (1'S,10bS)-7,9,10-Trihydroxy-8-(2'-hydroxy-1'-methylethyl)-3,10b-dimethyl-1H-benzo[g]cyclopenta[de][1]benzopyran-4(2H),6(10bH)-dione |
| D42 | (2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-10'-Formyloxy-4'b,5',6',7',8',8'a,9',10'-octa-hydro-3',9'-dihydroxy-2,4'b,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione | D120 | 7α,11-Dihydroxy-12-methoxy-8,11,13-abietatriene |
| D43 | (2R,2'S,3'R,4'bS,7'R,8'aS,9'S,10'S)-4'b,5', 6',7',8',8'a,9',10'-Octahydro-3',9',10'-tri-hydroxy-2,4'b,7'-trimethyl-8'-methyliden-spiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione | D121 | 11,12-Dihydroxy-19-isovaleroyloxy-8,11,13-abietatrien-7-one |
| D44 | (2R,2'S,3'R,4'bS,7'R,8'aR,9'S,10'S)-9-Acetoxy-7'-formyloxy-4'b,5',6',7',8',8'a, 9',10'-octahydro-3',10'-dihydroxy-2,4'b, 8',8'-tetramethylspiro[cyclopropan-1,2' (1'H)-phenanthren]-1',4'(3'H)-dione | D122 | 11,12-Dihydroxy-19-senecioyloxy-8,11,13-abietatrien-7-one |
| D45 | Lanugon G | D123 | Plectranthone B |
| D46 | (2R,2'S,3'R,4'bS,7'R,8'aR,9'S)-7'-Formyl-oxy-4'b,5',6',7',8',8'a,9',10'-octahydro-3',9'-dihydroxy-2,4'b,8',8'-tetramethylspiro-[cyclopropan-1,2'(1'H)-phenanthren]-1',4' (3'H)-dione | D124 | Plectranthone A |
| D47 | Lanugone F | D125 | Plectranthone C |
| D48 | (2R,2'S,3'R,4'bS,7'R,8'aR,9'S,10'S)-7',10'-Bisformyloxy-4'b,5',6',7',8',8'a,9',10'-octa-hydro-3',9'-dihydroxy-2,4'b,8',8'-tetra-methylspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione | D126 | Plectranthone D |
| D49 | Plectranthone K | D127 | Plectranthone E |
| D50 | (2R,2'S,3'R,4'bS,7'ξ,8'aR,9'S,10'S)-7',10'-Diacetoxy-4'b,5',6',7',8',8'a,9',10'-octa-hydro-3',9'-dihydroxy-2,4'b,7'-trimethyl-8'-methylidenspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione | D128 | Grandidone A |
| D51 | Plectranthone L | D129 | 7-Epigrandidone A |
| D52 | Lanugone H | D130 | Grandidone B |
| D53 | Lanugone I | D131 | 7-Epigrandidone B |
| D54 | Lanugone J | D132 | Grandidone D |
| D55 | (2S,2'S,3'R,4'bS,7'R,8'aR,9'S,10'S)-7-Formyloxy-4'b,5',6',7',8',8'a,9',10'-octa-hydro-3',9'-diacetoxy-10'-hydroxy-2,4'b,8', 8'-tetramethylspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione | D133 | 7-Epigrandidone D |
| D56 | (2S,2'S,3'R,4'bS,7'R,8'aR,9'S,10'S)-7',10'-Bisformyloxy-4'b,5',6',7',8',8'a,9',10'-octa-hydro-3',9'-dihydroxy-2,4'b,8',8'-tetra-methylspiro[cyclopropan-1,2'(1'H)-phenanthren]-1',4'(3'H)-dione | D134 | Grandidone C |
| D57 | Lanugone K | D135 | Nilgherron A |
| D58 | Lanugone K' | D136 | Nilgherron B |
| D59 | Coleon R | D137 | (3R)-6,9-Dihydroxy-3,4-dimethyl-7-(1-methylethyl)-3-(2-propenyl)naphtho[2,3-b]- furan-2-(3H),5,8-trione |
| D60 | Coleon M | D138 | (2'ξ,3R)-7-(2'-Acetoxy-1'-methylethyl)-6,9-dihydroxy-3,4-dimethyl-3-(2''-propenyl)-naphtho[2,3-b]furan-2-(3H),5,8-trione |
| D61 | 7,12-Diacetylcoleon J | D139 | Sanguinon A |
| D62 | Coleon N | D140 | (16R)-17,19-Diacetoxy-16-hydroxy-13β-kauran-3-one |
| D63 | Coleon Q | D141 | (16R)-2α-Senecioyloxy-3α-acetoxyphyllocladan-16,17-diol |
| D64 | Coleon P | D142 | (16R)-2α-Senecioyloxy-3α,17-diacetoxy-16-hydroxyphyllocladane |
| D65 | Plectrin | D143 | (16R)-2α-Isovaleroyloxy-3α-acetoxyphyllocladan-16,17-diol |
| D66 | Coleon Z | D144 | (16R)-2α-Isovaleroyloxy-3α,17-diacetoxy-16-hydroxyphyllocladane |
| D67 | (15S)-Lanugone O | D145 | (16R)-3α-Acetoxyphyllocladan-16,17-diol |
| D68 | 14-Hydroxytaxodione | D146 | (16R)-2α-Senecioyloxy-16,17-dihydroxyphyllocladan-3-one |
| D69 | (4bS,8aS)-2-(2-Acetoxypropyl)-4b,5,6,7,8, 8a-hexahydro-1,4-dihydroxy-4b,8,8-tri-methylphenanthren-3,9-dione | D147 | Plecostonol (= coetsidin A) |
| D70 | (2'ξ,4bS,8aS)-4b,5,6,7,8,8a-Hexahydro-1,4-dihydroxy-2-(2'-hydroxypropyl)-4b,8,8-trimethylphenanthren-3,9-dione | D148 | Coestinol |
| D71 | Lanugone P | D149 | Coetsidin B |
| D72 | 19-Isovaleroyloxytaxodione | D150 | Coetsidin C |
| D73 | 19-Senecioyloxytaxodione | D151 | Coetsidin D |
| D74 | Lanugone Q | D152 | Coetsidin E |
| D75 | Coleon F | D153 | Coetsidin F |
| D76 | (16S)-Coleon E | D154 | Coetsidin G |
| D77 | Parviflorone A (= 11-hydroxy-19-senecioyl-oxy-5,7,9(11),13-abietatetraen-12-one) | D155 | Rabdosin B |
| D78 | Parviflorone H |
Diterpenoids isolated from Plectranthus













Essential oils
Plectranthus is one of the oil-rich genera belonging to the subfamily Nepetoideae [17]. Table 1 lists Plectranthus species that have been investigated for essential oils. The main constituents of essential oils of Plectranthus are mono- and sesquiterpenes. For example, constituents of essential oil of P. rugosus [18], as eluted from fused silica capillary column, are α-pinene, camphene, β-pinene, sabinene, 3‑carene, myrcene, α-phellandrene, α-terpinene, limonene, β-phellandrene, cis-β-ocimene, γ-terpinene, trans-β-ocimene, p-cymene, terpinolene, thujone, 1-nonen-3-ol, α-copane, β-bourbonene, β-cubebene, linalool, caryophyllene, terpinen-4-ol, humulene, γ-muurolene, germacrene D, piperitone epoxide, α‑muurolene, bicyclogermacrene, δ-cadinene, γ-cadinene, α-curcumene, caryophyllene oxide, T‑cadinol, torreyol and α-cadinol. On the same GC column (fused silica capillary), essential oil of P. amboinicus [19] was separated into α-pinene, camphene, 1-octen-3-ol, β-pinene, myrcene, α‑phellandrene, Δ-3-carene, α-terpinene, p-cymene, limonene, (Z)-β-ocimene, (E)-β-ocimene, α‑phelandrène, γ-terpinene, α-terpinolene, linalool, camphor, 1-terpinen-4-ol, α-terpineol, thymol, carvacrol, α-cubebene, β-cubebene, β-elemene, β-caryophyllene, α-bergamotene, (Z)- β-farnesene, α‑humulene, β-guaiene, (-)-α-selinene, β-bisabolene, δ-cadinene, caryophyllene oxide, δ-cadinol, α‑cadinol, farnesol, calamenol and (-)-4β-7β-aromadendrandiol. Also on fused silica capillary column, essential oil of P. fruticosus [20] gave α-thuyene, sabinene, γ-terpinene, β-bourbonene, linalool, terpinen-4-ol, sabinyl acetate, α-humulene, aromadendrene, α-cubebene, β-bisabolene, γ-cadinene, α‑elemene, trans-farnesol and trans-copaene.
Long-chain alkylphenols
A group of long-chain alkylphenols, of possible taxonomic significance in the genus, has been isolated [28,29]. Long-chain alkylphenols L1-L8, L10-L12 were isolated from P. albidus and showed a significant in vitro antioxidant activity [28]. Antioxidant activity guided fractionation of extracts of P. sylvestris [29] and HPLC separation yielded the oxygenated long-chain alkylcatechols L9, L13-L18.
Long-chain alkylphenols


Miscellaneous constituents
Only one aristolane sesquiterpene, namely 1(10)-aristolen-13-al (M1), was isolated from P. hereroensis [30]. Five triterpenoids, named plectranthoic acid (M2), acetylplectranthoic acid (M3), plectranthadiol (M4), plectranthoic acid A (M5) and plectranthoic acid B (M6), in addition to β‑sitosterol were isolated from P. rugosus [31,32]. From the same species Misra et al. [85] isolated the triterpenoids oleanolic acid (M7), ursolic acid (M8) and betulin (M9), in addition to β-sitosterol and hexacosanol.
Flavonoids seem to be rare in Plectranthus. Only two flavonoids were identified, 4',7-dimethoxy-5,6-dihydroxyflavone (M10) from P. ambiguus [33] and chrysosplenetin (M11) from P. marruboides [34]. From P. mollis (= P. incanus), Mahmoud et al. reported the isolation of vernolic and cyclopropenoid fatty acids [35]. From P. japonicus (= Rabdosia japonica), a tetrameric derivative of caffeic acid was isolated [36].
Miscellaneous constituents



Conclusions
Although the genus Plectranthus comprises many plants of medicinal and economic interest [80], its chemistry remains poorly known. Caffeic acid and its derivatives are of widespread occurrence in the Labiatae family and of particular attention as chemotaxonomic markers. Chlorogenic acid appears to be of almost universal occurrence within this family, whereas rosmarinic acid is restricted to the subfamily Nepetoideae [81]. Only a tetrameric derivative of caffeic acid was isolated from P. japonicus [36]. But a group of long-chain alkylphenols, of possible taxonomic significance in the genus, was isolated [28,29]. Generally, the subfamily Lamioideae is rich in iridoid glycosides, whereas they are absent from the Nepetoideae [82]. No iridoid glycosides were isolated from Plectranthus.
Generally, Plectranthus species are essential-oil-rich (i.e. > 0.5% volatile oil on a dry weight basis), in agreement with the general situation that the Nepetoideae are oil-rich, whilst the Lamioideae are oil-poor [83].
Diterpenoids are the more common secondary metabolites in Plectranthus. The majority of them are highly modified abietanoids, in addition to some phyllocladanes and ent-kaurenes. It seems to be similar to the pattern of diterpenoids of Salvia [84], but no clerodane diterpenoids were found in Plectranthus.
Footnotes
Sample availability: Not applicable
References
- 1.Cantino P.D., Harley R.M., Wagstaff S.J. Genera of Labiatae: Status and Classification. In: Harley R.M., Reynolds T., editors. Advances in Labiate Science. Royal Botanic Gardens; Kew: 1992. p. 511. [Google Scholar]
- 2.Codd L.F. Munich. Bot. Staatssamml. Mitt. 1971;10:245. [Google Scholar]
- 3.Rudall P.J., Clark L. The Megagametophyte in Labiatae. In: Harley R.M., Reynolds T., editors. Advances in Labiate Science. Royal Botanic Gardens; Kew: 1992. p. 65. [Google Scholar]
- 4.Morton J.K. Novon. 1998;8:265. [Google Scholar]
- 5.Van Jaarsveld E.J., Edwards T.J. Bothalia. 1997;27:1. [Google Scholar]
- 6.Collenette S. Flowers of Saudi Arabia. Scorpion Publishing Ltd.; London: 1985. p. 266. [Google Scholar]
- 7.A-Ogle B. Mitt. Inst. Allg. Bot. Hamburg. 1990;23b:895. [Google Scholar]
- 8.Purseglove J.W. Tropical Crops. Dicotyledons. Longman Scientific & Technical; Burnt Mill: 1987. p. 719. [Google Scholar]
- 9.Temple V.J., Ojobe T.O., Onobun C.E. J. Sci. Food Agr. 1991;56:215. [Google Scholar]
- 10.Holland J.H. The Useful Plants of Nigeria. Bull. Misc. Inform. Kew Addit. 1915;9:527. Ser. [Google Scholar]
- 11.Perrot E. Matières Premières Usuelles du Règne Vègètal. Masson; Paris: 1944. pp. 1089–2343. Tome Second. [Google Scholar]
- 12.Zepernick B. Arzneipflanzen der Polynesier. 1972. p. 307. Dietrich Reimer, Berlin. [Google Scholar]
- 13.Abulfatih H.A. Medicinal Plants in Southwestern Saudi Arabia. Al Thaghr Press; Khamis: 1987. p. 162. [Google Scholar]
- 14.Kokwaro J.O. Medicinal Plants of East Africa. East African Literature Bureau; Kampala: 1976. p. 384. [Google Scholar]
- 15.Dash V.B., Kashyap V.L. Materia Medica of Ayurveda based on Ayurveda Saukhyan of Todarananda. Concept Publishing Company; New Delhi: 1987. p. 711. [Google Scholar]
- 16.Kubo I., Matsumoto T., Tori M., Asakawa Y. Chem. Lett. 1984;1513 [Google Scholar]
- 17.Cantino P., Sanders R. Syst. Bot. 1986;11:163. [Google Scholar]
- 18.Weyerstahl P., Kaul V.K., Meier N., Weirauch M., Marschall H. Planta Med. 1983;48:99. doi: 10.1055/s-2007-969897. [DOI] [PubMed] [Google Scholar]
- 19.Vera R., Mondon J.M., Pieribattesti J.C. Planta Med. 1993;59:182. doi: 10.1055/s-2006-959641. [DOI] [PubMed] [Google Scholar]
- 20.Fournier G., Paris M., Dumitresco S.M., Pages N., Boudene C. Planta Med. 1986:486. doi: 10.1055/s-2007-969261. [DOI] [PubMed] [Google Scholar]
- 21.Smith R.M., Bahaffi S.O., Albar H.A. J. Essent. Oil Res. 1996;8:447. doi: 10.1080/10412905.1996.9700663. [DOI] [Google Scholar]
- 22.Mwangi J.W., Lwande W., Hassanali A. Flav. Fragr. 1993;8:51. doi: 10.1002/ffj.2730080110. [DOI] [Google Scholar]
- 23.Zollo P.H.A., Biyiti L., Tchoumbougnang F., Menut C., Lamaty G., Bouchet P. Flav. Fragr. 1998;13:107. [Google Scholar]
- 24.Ascensao L., Figueiredo A.C., Barroso J.G., Pedro L.G., Schripsem J., Deans S.G., Scheffer J.C.J. International J. Plant Sci. 1998;159:31. doi: 10.1086/297518. [DOI] [Google Scholar]
- 25.Buchbauer G., Jirovetz L., Wasicky M., Nikiforov A. J. Essent. Oil Res. 1993;5:311. doi: 10.1080/10412905.1993.9698226. [DOI] [Google Scholar]
- 26.Hari L., Bukuru J., Pooter H.L., Demyttenaere J.R., Fierens H. J. Essent. Oil Res. 1996;8:87. doi: 10.1080/10412905.1996.9700563. [DOI] [Google Scholar]
- 27.Shah G.C., Bhandari R., Mathela C.S. J. Essent. Oil Res. 1992;4:57. doi: 10.1080/10412905.1992.9698010. [DOI] [Google Scholar]
- 28.Burgi C., Rüedi P. Helv. Chim. Acta. 1993;76:1890. doi: 10.1002/hlca.19930760508. [DOI] [Google Scholar]
- 29.Juch M., Rüedi P. Helv. Chim. Acta. 1997;80:436. doi: 10.1002/hlca.19970800209. [DOI] [Google Scholar]
- 30.Rodriguez B., Delatorre M.C., Simoes M.F., Bbatista O., Nascimento J., Duarte A., Mayer R. Phytochemistry. 1995;38:905. [Google Scholar]
- 31.Razdan T.K., Kachroo V., Harkar S., Koul G.L. Tetrahedron. 1982;38:991. [Google Scholar]
- 32.Razdan T.K., Kachroo V., Harkar S., Koul G.L., Dhar K.L. Phytochemistry. 1982;21:409. [Google Scholar]
- 33.Liu G., Rüedi P. Phytochemistry. 1996;41:1563. [Google Scholar]
- 34.Hensch M., Eugster C.H. Helv. Chim. Acta. 1972;55:1610. doi: 10.1002/hlca.19720550522. [DOI] [Google Scholar]
- 35.Mahmood C., Daulatabad J.D., Mirajkar A.M. J. Chem. Techn. Biotechn. 1989;45:143. [Google Scholar]
- 36.Agata I., Hatano T., Nishibe S., Okuda T. Phytochemistry. 1989;28:2447. [Google Scholar]
- 37.Rüedi P. Helv. Chim. Acta. 1984;67:1116. doi: 10.1002/hlca.19840670425. [DOI] [Google Scholar]
- 38.Adler A.C., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1984;67:1523. [Google Scholar]
- 39.Rüedi P. Helv. Chim. Acta. 1986;69:972. doi: 10.1002/hlca.19860690504. [DOI] [Google Scholar]
- 40.Arihara S., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1977;60:1443. doi: 10.1002/hlca.19770600436. [DOI] [PubMed] [Google Scholar]
- 41.Phadnis A.P., Patwardhan S.A., Gupta A.S. Indian J. Chem. B. 1987;26:15. [Google Scholar]
- 42.Phadnis A.P., Patwardhan S.A., Gupta A.S., Dhaneshwar N.N., Tavale S.S., Gururow T.N. J. Chem. Soc., Perkin Trans. I. 1986:655. [Google Scholar]
- 43.Huang H., Xu Y., Sun H. Phytochemistry. 1989;28:2753. [Google Scholar]
- 44.Künzle J.M., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1987;70:1911. doi: 10.1002/hlca.19870700726. [DOI] [Google Scholar]
- 45.Buchbauer G., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1978;61:1969. doi: 10.1002/hlca.19780610604. [DOI] [Google Scholar]
- 46.Dellar J.E., Cole M.D., Waterman P.G. Phytochemistry. 1996;41:735. doi: 10.1016/0031-9422(95)00694-x. [DOI] [PubMed] [Google Scholar]
- 47.Vichkanova S.A., Rubinchik M.A. Farmacol. Toksikol. 1966;29:605. CA. 1967, 66, 36350r. [PubMed] [Google Scholar]
- 48.Uchida M., Miyase T., Yoshizaki F., Bieri J.H., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1981;64:2227. doi: 10.1002/hlca.19810640729. [DOI] [Google Scholar]
- 49.Teixeira A.P., Batista O., Simoes M.F., Nascimento J., Duarte A., dela Torre M.C., Rodriguez B. Phytochemistry. 1997;44:325. [Google Scholar]
- 50.Batista O., Simoes M.F., Nascimento J., Riberio S., Duarte A., Rodriguez B., dela Torre M.C. Phytochemistry. 1996;41:571. doi: 10.1016/0031-9422(95)00646-x. [DOI] [PubMed] [Google Scholar]
- 51.Batista O., Simoes M.F., Duarte A., Valdeira M.L., dela Torre M.C., Rodriguez B. Phytochemistry. 1995;38:167. doi: 10.1016/0031-9422(94)00586-i. [DOI] [PubMed] [Google Scholar]
- 52.Batista O., Duarte A., Nascimento J., Simoes M.F., dela Torre M.C., Rodriguez B. J. Nat. Prod. 1994;57:858. doi: 10.1021/np50108a031. [DOI] [PubMed] [Google Scholar]
- 53.Wang M.T., Liu C.J., Li J.C. Phytochemistry. 1990;29:664. [Google Scholar]
- 54.Schmidt J.M., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1982;65:2136. doi: 10.1002/hlca.19820650721. [DOI] [Google Scholar]
- 55.Rüedi P., Eugster C.H. Helv. Chim. Acta. 1978;61:709. doi: 10.1002/hlca.19780610219. [DOI] [Google Scholar]
- 56.Katti S.B., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1982;65:2189. [Google Scholar]
- 57.Matloubi-Moghadam F., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1987;70:975. doi: 10.1002/hlca.19870700407. [DOI] [Google Scholar]
- 58.Adler A.C., Rüedi P., Prewo R., Bieri J.H., Eugster C.H. Helv. Chim. Acta. 1986;69:1395. [Google Scholar]
- 59.Adler A.C., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1984;67:1003. [Google Scholar]
- 60.Adler A.C., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1984;67:1531. [Google Scholar]
- 61.Potgieter C.J., Edwards T.J., Miller R.M., VanStaden J. Plant Syst. Evol. 1999;218:99. [Google Scholar]
- 62.VanJaarsveld E.J., Edwards T.J. Bothalia. 1997;27:1. [Google Scholar]
- 63.Forster P.I. Haseltonia. 1996:47. [Google Scholar]
- 64.Boudarga K., Dexheimer J. Agronomie. 1990;10:417. (France) [Google Scholar]
- 65.Morton J.K. Novon. 1998;8:265. [Google Scholar]
- 66.Sharma A.D., Munjal R.L. Indian J. Mycol. Plant Pathol. 1979;8:230. [Google Scholar]
- 67.Herppich W.B., Herppich M. Flora Morphol. Geobot. Oekophysiol. Jena. 1996;191:401. [Google Scholar]
- 68.Uchida M., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1980;63:225. doi: 10.1002/hlca.19800630122. [DOI] [Google Scholar]
- 69.Kyesmu P.M., Akueshi C.O. Nigerian J. Botany. 1989;2:1. [Google Scholar]
- 70.Forster P.I. Haseltonia. 1998. p. 14.
- 71.Singh A.K. Balwant. Vidyapeeth. J. Agric. Sci. Res. 1977;16:77. [Google Scholar]
- 72.Tanaka H. J. Jap. Bot. 1972;47:250. [Google Scholar]
- 73.Stirton C.H. Bothalia. 1977;12:229. [Google Scholar]
- 74.Ascensao L., Mota L., Castro M.D. Annals Bot. 1999;84:437. [Google Scholar]
- 75.Brummitt R.K., Seyani J.H. Kew Bull. London. 1987;42:687. [Google Scholar]
- 76.Thoppil J.E. Acta Pharm. 1997;47:213. [Google Scholar]
- 77.Zhang Y., Sha D., Sha M., Yuan C. Chung. Kuo. Chung. Yao. Tsa. Chih. 1991;16:679. [Google Scholar]
- 78.Singh N.P., Sharma B.D. J. Bombay Nat. Hist. Soc. Madras. 1982;79:712. [Google Scholar]
- 79.Shah V., Bhat S.V., Bajwa B.S., Dornauer H., de Souza N.J. Planta Med. 1980;39:183. [Google Scholar]
- 80.Rivera Nunez D., Obon de Castro C. The ethnobotany of old world Labiatae. In: Harley R.M., Reynolds T., editors. Advances in Labiate Sciences. Royal Botanic Gardens; Kew: 1992. p. 455. [Google Scholar]
- 81.von Litvienko V.I., Popova T.P., Simonjan A.V., Zoz I.G., Sokolov V.S. Planta Med. 1975;27:372. doi: 10.1055/s-0028-1097817. [DOI] [PubMed] [Google Scholar]
- 82.Kooiman P. Acta Bot. Neerl. 1972;21:417. [Google Scholar]
- 83.Cantino P.D., Sanders R.W. Syst. Bot. 1986;11:163. [Google Scholar]
- 84.Rodriguez-Hahn L., Esquivel B., Cardenas J., Ramamoorthy T.P. The distribution of diterpenoids in Salvia. In: Harley R.M., Reynolds T., editors. Advances in Labiate Sciences. Royal Botanic Gardens; Kew: 1992. p. 335. [Google Scholar]
- 85.Misra P.S., Misra G., Nigam S.K., Mitra C.R. Lloydia. 1971;34:265. [Google Scholar]
- 86.Arihara S., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1983;66:429. [Google Scholar]
- 87.Miyase T., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1977;60:2770. doi: 10.1002/hlca.19770600830. [DOI] [PubMed] [Google Scholar]
- 88.Miyase T., Rüedi P., Eugster C.H. Helv. Chim. Acta. 1977;60:2789. doi: 10.1002/hlca.19770600832. [DOI] [PubMed] [Google Scholar]
