Skip to main content
Springer logoLink to Springer
. 2018 Sep 21;2018(1):251. doi: 10.1186/s13660-018-1848-y

Quadratic transformation inequalities for Gaussian hypergeometric function

Tie-Hong Zhao 1, Miao-Kun Wang 2, Wen Zhang 3, Yu-Ming Chu 2,
PMCID: PMC6154059  PMID: 30839657

Abstract

In the article, we present several quadratic transformation inequalities for Gaussian hypergeometric function and find the analogs of duplication inequalities for the generalized Grötzsch ring function.

Keywords: Hypergeometric function, Quadratic transformation, Generalized Grötzsch ring function, Duplication inequality

Introduction

The Gaussian hypergeometric function F12(a,b;c;x) with real parameters a,b, and c (c0,1,2,) is defined by [1, 4, 24, 41]

F(a,b;c;x)=2F1(a,b;c;x)=n=0(a,n)(b,n)(c,n)xnn!

for x(1,1), where (a,n)=a(a+1)(a+2)(a+n1) for n=1,2,, and (a,0)=1 for a0. The function F(a,b;c;x) is called zero-balanced if c=a+b. The asymptotical behavior for F(a,b;c;x) as x1 is as follows (see [4, Theorems 1.19 and 1.48])

{F(a,b;c;1)=Γ(c)Γ(cab)/[Γ(ca)Γ(cb)],a+b<c,B(a,b)F(a,b;c;z)+log(1z)=R(a,b)+O((1z)log(1z)),a+b=c,F(a,b;c;z)=(1z)cabF(ca,cb;c;z),a+b>c, 1.1

where Γ(x)=0tx1etdt [10, 25, 43, 44, 47] and B(p,q)=[Γ(p)Γ(q)]/[Γ(p+q)] are the classical gamma and beta functions, respectively, and

R(a,b)=ψ(a)ψ(b)2γ,R(14,34)=log64, 1.2

ψ(z)=Γ(z)/Γ(z)), and γ=limn(k=1n1/klogn)=0.577 is the Euler–Mascheroni constant [21, 50].

As is well known, making use of the hypergeometric function, Branges proved the famous Bieberbach conjecture in 1984. Since then, F(a,b;c;x) and its special cases and generalizations have attracted attention of many researchers, and was studied deeply in various fields [2, 5, 9, 1118, 20, 22, 23, 26, 30, 31, 3537, 40, 45, 46, 48]. A lot of geometrical and analytic properties, and inequalities of the Gaussian hypergeometric function have been obtained [3, 68, 19, 29, 32, 34, 38, 49].

Recently, in order to investigate the Ramanujan’s generalized modular equation in number theory, Landen inequalities, Ramanujan cubic transformation inequalities, and several other quadratic transformation inequalities for zero-balanced hypergeometric function have been proved in [27, 28, 32, 39, 42]. For instance, using the quadratic transformation formula [24, (15.8.15), (15.8.21)]

F(14,34;1;8r(1+r)(1+3r)2)=1+3rF(14,34;1;r2), 1.3

Wang and Chu [32] found the maximal regions of the (a,b)-plane in the first quadrant such that inequality

F(a,b;a+b;8r(1+r)(1+3r)2)1+3rF(a,b;a+b;r2) 1.4

or its reversed inequality

F(a,b;a+b;8r(1+r)(1+3r)2)1+3rF(a,b;a+b;r2) 1.5

holds for each r(0,1). Moreover, very recently in [33], some Landen-type inequalities for a class of Gaussian hypergeometric function F12(a,b;(a+b+1)/2;x)(a,b>0), which can be viewed as a generalization of Landen identities of the complete elliptic integrals of the first kind

F(12,12;1;4r(1+r)2)=(1+r)F(12,12;1;r2),

have also been proved. As an application, the analogs of duplication inequalities for the generalized Grötzsch ring function with two parameters [33]

μa,b(r)=B(a,b)2F(a,b;(a+b+1)/2;1r2)F(a,b;(a+b+1)/2;r2),r(0,1), 1.6

have been derived. In fact, the authors have proved

Theorem 1.1

For (a,b){(a,b)|a,b>0,aba+b10/9,a+b2}, let x=x(r)=2r/(1+r), then the Landen-type inequality

(xx)(a+b1)/2F(a,b;a+b+12;x2)>(1+r)(rr)(a+b1)/2F(a,b;a+b+12;r2) 1.7

holds for all r(0,1).

Theorem 1.2

For (a,b){(a,b)|a,b>0,aba+b10/9,a+b2}, define the function g on (0,1) by

g(r)=2μa,b(2r1+r)μa,b(r).

Then g is strictly increasing from (0,1) onto (,0). In particular, the inequality

2μa,b(2r1+r)<μa,b(r)

holds for each r(0,1) with (a,b){(a,b)|a,b>0,aba+b10/9,a+b2}.

The purpose of this paper is to establish several quadratic transformation inequalities for Gaussian hypergeometric function F12(a,b;(a+b+1)/2;x) (a,b>0), such as inequalities (1.4), (1.5) and (1.7), and thereby prove the analogs of Theorem 1.2.

We recall some basic facts about μa,b(r) (see [33]). The limiting values of μa,b(r) at 0 and 1 are

μa,b(0+)=limr0+B(a,b)2F(a,b;a+b+12;1r2)={B(a,b)2H(a,b),a+b<1,+,a+b1, 1.8
μa,b(1)=limr1B(a,b)2F(a,b;a+b+12;r2)={B(a,b)2H(a,b),a+b<1,0,a+b1, 1.9

and the derivative formula of μa,b(r) is

dμa,b(r)dr=Γ(a+b+12)2Γ(a+b)1ra+bra+b+1F(a,b;(a+b+1)/2;r2)2. 1.10

Here and in what follows,

H(a,b)=B(a+b+12,1ab2)B(1+ba2,1+ab2).

Lemmas

In order to prove our main results, we need several lemmas, which we present in this section. Throughout this section, we denote

F(x)=F(a,b,a+b+12;x),G(x)=F(a+1,b+1;a+b+32;x) 2.1

for (a,b)(0,+)×(0,+){p,q} with p=(1/4,3/4) and q=(3/4,1/4), and

Fˆ(x)=(14,34;1;x),Gˆ(x)=F(54,74;2;x). 2.2

For the convenience of readers, we introduce some regions in {(a,b)R2|a>0,b>0} and refer to Fig. 1 for illustration:

Figure 1.

Figure 1

The regions Di for i=1,2,3,4, E1,E2 and their boundary curves

D1={(a,b)|a,b>0,a+b1,ab3(a+b+1)320},D2={(a,b)|a,b>0,a+b1,ab3(a+b+1)320},D3={(a,b)|a,b>0,a+b<1,ab3(a+b+1)32>0},D4={(a,b)|a,b>0,a+b>1,ab3(a+b+1)32<0},E1={(a,b)|a,b>0,a+b1,2ab+29(a+b)41320},E2={(a,b)|a,b>0,a+b1,2ab+29(a+b)41320}.

Obviously, i=14Di=(0,+)×(0,+) and DiDj= for ij{1,2,3,4} except that D1D2={p,q}. Moreover, D1E1 and D2E2.

Lemma 2.1

([42, Theorem 2.1])

Suppose that the power series f(x)=n=0anxn and g(x)=n=0bnxn have the radius of convergence r>0 with bn>0 for all n{0,1,2,}. Let h(x)=f(x)/g(x) and Hf,g=(f/g)gf, then the following statements hold true:

  1. If the non-constant sequence {an/bn}n=0 is increasing (decreasing) for all n>0, then h(x) is strictly increasing (decreasing) on (0,r);

  2. If the non-constant sequence {an/bn}n=0 is increasing (decreasing) for 0<nn0 and decreasing (increasing) for n>n0, then h(x) is strictly increasing (decreasing) on (0,r) if and only if Hf,g(r)()0. Moreover, if Hf,g(r)<(>)0, then there exists an x0(0,r) such that h(x) is strictly increasing (decreasing) on (0,x0) and strictly decreasing (increasing) on (x0,r).

Lemma 2.2

  1. The function η(x)=F(x)/Fˆ(x) is strictly decreasing on (0,1) if (a,b)D1{p,q} and strictly increasing on (0,1) if (a,b)D2{p,q}. Moreover, if (a,b)D3(or D4), then there exists δ0(0,1) such that η(x) is strictly increasing (decreasing) on (0,δ0) and strictly decreasing (increasing) on (δ0,1).

  2. The function η˜(x)=G(x)/Gˆ(x) is strictly decreasing on (0,1) if (a,b)E1{p,q} and strictly increasing on (0,1) if (a,b)E2{p,q}. In the remaining case, namely for x(0,+)×(0,+)(E1E2), η˜(x) is piecewise monotone on (0,1).

Proof

Suppose that

An=(a,n)(b,n)(a+b+12,n)n!,An=(14,n)(34,n)(1,n)n!,

then we have

η(x)=F(x)Fˆ(x)=n=0Anxnn=0Anxn. 2.3

It suffices to take into account the monotonicity of {An/An}n=0. By simple calculations, one has

An+1An+1AnAn=AnΔnAn(a+b+12)(14+n)(34+n), 2.4

where

Δn=(a+b12)n2+(ab+a+b21116)n+ab3(a+b+1)32. 2.5

We divide the proof into four cases.

Case 1 (a,b)D1{p,q}. Then it follows easily that a+b1, ab3(a+b+1)320 and ab+a+b21116<0. This, in conjunction with (2.4) and (2.5), implies that {An/An}n=0 is strictly decreasing for all n>0. Therefore, (2.3) and Lemma 2.1(1) lead to the conclusion that η(x) is strictly decreasing on (0,1).

Case 2 (a,b)D2{p,q}. Then a similar argument as in Case 1 yields Δn>0 and this implies that η(x) is strictly increasing on (0,1) from (2.3), (2.4) and Lemma 2.1(1).

Case 3 (a,b)D3. It follows from (2.4) and (2.5) that the sequence {An/An} is increasing for 0nn0 and decreasing for nn0 for some integer n0. Furthermore, making use of the derivative formula for Gaussian hypergeometric function

dF(a,b;c;x)dx=abcF(a+1,b+1;c+1;x),

and in conjunction with (1.1) and a+b<1, we obtain

HF,Fˆ(x)=32ab3(a+b+1)F(a+1,b+1;a+b+32;x)F(34,14;2;x)(1x)Fˆ(x)F(x)H(a,b)<0 2.6

as x1. Combing with (2.3), (2.6) and Lemma 2.1(2), we conclude that there exists an x1(0,1) such that η(x) is strictly increasing on (0,x1) and strictly decreasing on (x1,1).

Case 4 (a,b)D4. In this case, we follow a similar argument as in Case 3 and use the fact that

HF,Fˆ(x)=32ab3(a+b+1)(1x)F(a+1,b+1;a+b+32;x)F(34,14;2;x)Fˆ(x)F(x)=32ab3(a+b+1)(1x)1ab2[F(ba+12,ab+12;a+b+32;x)F(34,14;2;x)F(14,34;1;x)F(ba+12,ab+12;a+b+12;x)]+ 2.7

as x1 since a+b>1. Therefore, (2.3), (2.7) and Lemma 2.1(2) lead to the conclusion that there exists an x2(0,1) such that η(x) is strictly decreasing on (0,x2) and strictly increasing on (x2,1).

Let

Bn=(a+1,n)(b+1,n)(a+b+32,n)n!,Bn=(54,n)(74,n)(2,n)n!,

then we can write

η˜(x)=G(x)Gˆ(x)=n=0Bnxnn=0Bnxn. 2.8

Easy calculations lead to the conclusion that the monotonicity of {Bn/Bn}n=0 depends on the sign of

Δ˜n=(a+b12)n2+[ab+3(a+b)22716]n+2ab+29(a+b)4132. 2.9

Notice that

HG,Gˆ(x)=2(a+1)(b+1)(a+b+3)32F(a+2,b+2;a+b+52;x)35F(94,114;3;x)Gˆ(x)G(x)=(1x)1+a+b2ω(a,b;x), 2.10

where

ω(a,b;x)=64(a+1)(b+1)35(a+b+3)F(ba+12,ab+12;a+b+52;x)F(34,14;3;x)F(34,14;2;x)F(ba+12,ab+12;a+b+32;x). 2.11

It follows easily from (1.1) and (2.11) that

limx1ω(a,b;x)=64(a+1)(b+1)35(a+b+3)Γ(a+b+52)Γ(a+b+32)Γ(a+2)Γ(b+2)Γ(94)Γ(114)Γ(3)Γ(2)Γ(2)Γ(1)Γ(54)Γ(74)Γ(a+b+32)Γ(a+b+12)Γ(a+1)Γ(b+1)=(a+b12)Γ(a+b+32)Γ(a+b+12)Γ(a+1)Γ(b+1)={<0,a+b<1,>0,a+b>1. 2.12

Employing similar arguments mentioned in part (1), we obtain the desired assertions easily from (2.8)–(2.12). □

Lemma 2.3

Let D0={(a,b)|a,b>0,a+b7/4,aba+b31/28} and x=1x2 for 0<x<1, then the function

f(x)=(xx)a+b12F(a,b;a+b+12;x2)F(14,34;1;x2) 2.13

is strictly increasing on (0,1) if (a,b)D0.

Proof

Taking the derivative of f(x) yields

f(x)=(xx)a+b32xF(14,34;1;x2)2f1(x), 2.14

where

f1(x)=[a+b12(12x2)F(a,b;a+b+12;x2)+4aba+b+1x2x2F(a+1,b+1;a+b+32;x2)]F(14,34;1;x2)3x2x28F(a,b;a+b+12;x2)F(54,74;2;x2). 2.15

We clearly see from (1.1) that

x2F(54,74;2;x2)=F(14,34;2;x2)F(14,34;1;x2)

for 0<x<1. This implies, in conjunction with (2.15), that

f1(x)F(14,34;1;x2)f2(x), 2.16

where

f2(x)=[a+b12(a+b58)x2]F(a,b;a+b+12;x2)+4aba+b+1x2(1x2)F(a+1,b+1;a+b+32;x2).

It follows from the definition of hypergeometric function that

f2(x)=a+b12n=0(a,n)(b,n)(a+b+12,n)x2nn!(a+b58)n=0(a,n)(b,n)(a+b+12,n)x2n+2n!+4aba+b+1[n=0(a+1,n)(b+1,n)(a+b+32,n)x2n+2n!n=0(a+1,n)(b+1,n)(a+b+32,n)x2n+4n!]=a+b12+[ab(a+b1)a+b+1(a+b58)+4aba+b+1]x2+a+b12n=0(a,n+2)(b,n+2)(a+b+12,n+2)x2n+4(n+2)!(a+b58)n=0(a,n+1)(b,n+1)(a+b+12,n+1)x2n+4(n+1)!+2[n=0(a,n+2)(b,n+2)(a+b+12,n+2)x2n+4(n+1)!n=0(a,n+1)(b,n+1)(a+b+12,n+1)x2n+4n!]=a+b12[13x24(a+b+1)]+4ab(a+b1)4(ab)2+14(a+b+1)x2+n=0(a,n+1)(b,n+1)(a+b+12,n+2)Cn(n+2)!x2n+4, 2.17

where

Cn=a+b12(a+n+1)(b+n+1)(a+b58)(a+b+12+n+1)(n+2)+2(a+n+1)(b+n+1)(n+2)2(a+b+12+n+1)(n+1)(n+2)=(4a+4b78)n2+[32ab+5(a+b)2916]n+4ab(a+b+3)4(ab)2(3a+3b+5)8. 2.18

If (a,b)D0, namely, a+b7/4 and aba+b31/28, we can verify

  • (i)
    4ab(a+b1)4(ab)2+14(a+b3128)(a+b1)4(ab)2+1=17[112ab59(a+b)+38]537(a+b8653)2728,
  • (ii)
    32ab+5(a+b)2932(a+b3128)+5(a+b)29=377[7(a+b)451259]928,
  • (iii)
    4ab(a+b+3)4(ab)2(3a+3b+5)4(a+b3128)(a+b+3)4(ab)2(3a+3b+5)=167[7ab+2(a+b)8]167[7(a+b3128)+2(a+b)8]=367[4(a+b)7)]0.

This, in conjunction with (2.17) and (2.18), implies that f2(x)>0 for 0<x<1. Therefore, f(x) is strictly increasing on (0,1), which follows from (2.14) and (2.16) if (a,b)D0. □

Remark 2.4

The function f(x) defined in Lemma 2.3 is not monotone on (0,1) if two positive numbers a,b satisfy a+b<1, since limx0+f(x)=limx1f(x)=+ and Lemma 2.1(1) shows the monotonicity of f(x) on (0,1) if a+b=1. In the remaining case a+b>1, it follows from (2.15) that f1(0+)=(a+b1)/2>0. This, in conjunction with (2.14), implies that f(x) is strictly increasing on (0,x) for a sufficiently small x>0. This enables us to find a sufficient condition for a,b with a+b>1 such that f(x) is strictly increasing on (0,1) in Lemma 2.3.

The following corollary can be derived immediately from the monotonicity of f(x) in Lemma 2.3 and the quadratic transformation equality (1.3).

Corollary 2.5

Let x=x(r)=8r(1+r)/(1+3r), if (a,b)D0, then the inequality

(xx)a+b12F(a,b;a+b+12;x2)>1+3r(rr)a+b12F(a,b;a+b+12;r2) 2.19

holds for all r(0,1).

Main results

Theorem 3.1

The quadratic transformation inequality

F(a,b;a+b+12;8r(1+r)(1+3r)2)1+3rF(a,b;a+b+12;r2) 3.1

holds for all r(0,1) with a,b>0 if and only if (a,b)D1 and the reversed inequality

F(a,b;a+b+12;8r(1+r)(1+3r)2)1+3rF(a,b;a+b+12;r2) 3.2

takes place for all r(0,1) if and only if (a,b)D2, with equality only for (a,b)=p or q.

In the remaining case (a,b)D3D4, neither of the above inequalities holds for all r(0,1).

Proof

Suppose that x(r)=[8r(1+r)]/(1+3r)2, then we clearly see that x(r)>r2 for 0<r<1. It follows from Lemma 2.1(1) that η(x(r))<η(r2) for (a,b)D1{p,q} and η(x(r))>η(r2) for (a,b)D2{p,q}. This, in conjunction with the quadratic transformation formula (1.3), implies

F(x(r))<Fˆ(x(r))Fˆ(r2)F(r2)=1+3rF(r2)

for (a,b)D1{p,q}, and it degenerates to the quadratic transformation equality for (a,b)=p(orq). This completes the proof of (3.1).

Inequality (3.2) can be derived analogously, and the remaining case follows easily from Lemma 2.2(1). □

Theorem 3.2

We define the function

φ(r)=1+3rF(a,b,;a+b+12;r)F(a,b;a+b+12;8r(1+r)(1+3r)2)

for r(0,1) with a,b>0 and (a,b)p,q. Let L1={(a,b)|a+b=1,0<a<14 or 34<a<1} and L2={(a,b)|a+b=1,14<a<34}. Then the following statements hold true:

  1. If (a,b)L1(or L2), then φ(r) is strictly increasing (resp., decreasing) from (0,1) onto (0,[R(a,b)log64]/B(a,b)) (resp., ([R(a,b)log64]/B(a,b),0));

  2. If (a,b)D1L1, then φ(r) is strictly increasing from (0,1) onto (0,H(a,b));

  3. If (a,b)D2L2, then φ(r) is strictly decreasing from (0,1) onto (,0).

As a consequence, the inequality

F(a,b;a+b+12;8r(1+r)(1+3r)2)1+3rF(a,b,;a+b+12;r2)F(a,b;a+b+12;8r(1+r)(1+3r)2)+H(a,b) 3.3

holds for all r(0,1) if (a,b)D1L1, and the following inequality is valid for all r(0,1):

F(a,b;a+b+12;8r(1+r)(1+3r)2)()1+3rF(a,b,;a+b+12;r2)()F(a,b;a+b+12;8r(1+r)(1+3r)2)+R(a,b)log64B(a,b) 3.4

if (a,b)L1(resp., L2).

Proof

Let z=z(r)=[8r(1+r)]/(1+3r)2, then we clearly see that

dzdr=4(1r)r(1+3r)3=4(1z)r(1r)(1+3r). 3.5

Taking the derivative of φ(r) with respect to r and using (3.5) yields

r(1+3r)φ(r)=31+3r4F(r)+r(1+3r)32aba+b+1G(r)2aba+b+14(1z)1rG(z). 3.6

We substitute r for r in the quadratic transformation equality (1.3), then differentiate it with respect to r to obtain

4(1z)1rGˆ(z)=41+3rFˆ(r)+r(1+3r)3Gˆ(r),

in other words,

4(1z)1rGˆ(z)Gˆ(r)=41+3rFˆ(r)Gˆ(r)+r(1+3r)3. 3.7

If (a,b)D1{p,q}, then it follows from Lemma 2.2(2) that G(x)/Gˆ(x) is strictly decreasing on (0,1). This, in conjunction with z>r, implies that G(z)/Gˆ(z)<G(r)/Gˆ(r), that is,

G(z)<Gˆ(z)Gˆ(r)G(r). 3.8

Combing (3.6), (3.7) with the inequality (3.8), we clearly see that

r(1+3r)φ(r)=31+3r4F(r)+r(1+3r)32aba+b+1G(r)2aba+b+14(1z)1rG(z)>31+3r4F(r)+r(1+3r)32aba+b+1G(r)2aba+b+14(1z)1rGˆ(z)Gˆ(r)G(r)=31+3r4F(r)+r(1+3r)32aba+b+1G(r)2aba+b+1[41+3rFˆ(r)Gˆ(r)+r(1+3r)3]G(r)=41+3r[316F(r)2aba+b+1Fˆ(r)Gˆ(r)G(r)]=41+3rF(r)2Gˆ(r)(Fˆ(r)F(r)). 3.9

It follows from Lemma 2.2(1) that Fˆ(r)/F(r) is strictly increasing on (0,1) if (a,b)D1{p,q}. This, in conjunction with (3.9), implies that φ(r) is strictly increasing on (0,1) if (a,b)D1.

Analogously, if (a,b)D2{p,q}, then we obtain the following inequality:

G(z)>Gˆ(z)Gˆ(r)G(r).

By using a similar argument as above, we have

rφ(r)<4F2(r)Gˆ(r)(Fˆ(r)F(r))<0,

since F(r)/Fˆ(r) is strictly increasing on (0,1) if (a,b)D2{p,q} by Lemma 2.2(1). Hence, φ(r) is strictly decreasing on (0,1) if (a,b)D2.

Notice that φ(0+)=0 and

limr1φ(r)={H(a,b),a+b<1,R(a,b)log64B(a,b),a+b=1,,a+b>1. 3.10

Therefore, we obtain the desired assertion from (3.10). □

Theorem 3.3

If we define the function

ϕ(r)=2μa,b(8r(1+r)1+3r)μa,b(r),

for (a,b)D0, then ϕ(r) is strictly increasing from (0,1) onto (,0). As a consequence, the inequality

2μa,b(8r(1+r)1+3r)<μa,b(r)

holds for all r(0,1) if (a,b)D0.

Proof

Remark 2.4 enables us to consider the case for a+b>1. Note that ϕ(1)=0 and

limr0+ϕ(r)=limr0+B(a,b)2[2F(a,b;a+b+12;(1r1+3r)2)F(a,b;a+b12;1r2)]=B(a,b)limr0+[(8r(1+r)1+3r)1abF(ba+12,ab+12;a+b+12;(1r1+3r)2)12r1abF(ba+12,ab+12;a+b+12;1r2)]=12B(a+b+12,a+b12)limr0+[2(8r(1+r)1+3r)1abr1ab]=. 3.11

Let x=x(r)=8r(1+r)/(1+3r) and x=1x2. Then

dxdr=2(1r)r(1+r)(1+3r)2=x(1+3x)24x. 3.12

Taking the derivative of ϕ(r) and using (3.12) leads to

ϕ(r)=2Γ(a+b+12)2Γ(a+b)1xa+bxa+b+1F(a,b;a+b+12;x2)2x(1+3x)24x+Γ(a+b+12)2Γ(a+b)1ra+bra+b+1F(a,b;a+b+12;r2)2=Γ(a+b+12)2Γ(a+b)(1+3x)22(1+3r)xa+b+1xa+bF(a,b;a+b+12;x2)2×[(xx)a+b1F(a,b;a+b+12;x2)2(rr)a+b1F(a,b;a+b+12;r2)2(1+3r)]. 3.13

Therefore, the monotonicity of ϕ(r) follows immediately from (2.19) and (3.13). This, in conjunction with (3.11), gives rise to the desired result. □

Results and discussion

In the article, we establish several quadratic transformation inequalities for Gaussian hypergeometric function F12(a,b;(a+b+1)/2;x) (0<x<1). As applications, we provide the analogs of duplication inequalities for the generalized Grötzsch ring function

μa,b(r)=B(a,b)2F(a,b;(a+b+1)/2;1r2)F(a,b;(a+b+1)/2;r2)

introduced in [33].

Conclusion

We find several quadratic transformation inequalities for the Gaussian hypergeometric function and Grötzsch ring function. Our approach may have further applications in the theory of special functions.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Funding

This work was supported by the Natural Science Foundation of China (Grant Nos. 11701176, 11626101, 11601485), the Science and Technology Research Program of Zhejiang Educational Committee (Grant no. Y201635325).

Competing interests

The authors declare that they have no competing interests.

Footnotes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Tie-Hong Zhao, Email: tiehong.zhao@hznu.edu.cn.

Miao-Kun Wang, Email: wmk000@126.com.

Wen Zhang, Email: zhang.wen81@gmail.com.

Yu-Ming Chu, Email: chuyuming2005@126.com.

References

  • 1.Abramowitz M., Stegun I.A. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. New York: Dover; 1965. [Google Scholar]
  • 2.Anderson G.D., Qiu S.-L., Vamanamurthy M.K., Vuorinen M. Generalized elliptic integrals and modular equations. Pac. J. Math. 2000;192(1):1–37. doi: 10.2140/pjm.2000.192.1. [DOI] [Google Scholar]
  • 3.Anderson G.D., Vamanamurthy M.K., Vuorinen M. Hypergeometric functions and elliptic integrals. In: Srivastava H.M., Owa S., editors. Current Topics in Analytic Function Theory. Singapore: World Scientific; 1992. pp. 48–85. [Google Scholar]
  • 4.Anderson G.D., Vamanamurthy M.K., Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps. New York: John Wiley & Sons; 1997. [Google Scholar]
  • 5.Anderson G.D., Vamanamurthy M.K., Vuorinen M. Topics in special functions, in papers on analysis: a volume dedicated to Olli Martio on the occasion of his 60th birthday. Report. Univ. Jyväskylä. 2001;83:5–26. [Google Scholar]
  • 6.Anderson G.D., Vamanamurthy M.K., Vuorinen M. Topics in special functions II. Conform. Geom. Dyn. 2007;11:250–270. doi: 10.1090/S1088-4173-07-00168-3. [DOI] [Google Scholar]
  • 7.Barnard R.W., Pearce K., Richards K.C. An inequality involving the generalized hypergeometric function and the arc length of an ellipse. SIAM J. Math. Anal. 2000;31(3):693–699. doi: 10.1137/S0036141098341575. [DOI] [Google Scholar]
  • 8.Bhayo B.A., Vuorinen M. On generalized complete elliptic integrals and modular functions. Proc. Edinb. Math. Soc. (2) 2012;55(3):591–611. doi: 10.1017/S0013091511000356. [DOI] [Google Scholar]
  • 9.Borwein J.M., Borwein P.B. Pi and AGM. New York: Wiley; 1987. [Google Scholar]
  • 10.Chen C.-P., Qi F., Srivastava H.M. Some properties of functions related to the gamma and psi functions. Integral Transforms Spec. Funct. 2010;21(1–2):153–164. doi: 10.1080/10652460903064216. [DOI] [Google Scholar]
  • 11.Chu Y.-M., Qiu S.-L., Wang M.-K. Sharp inequalities involving the power mean and complete elliptic integral of the first kind. Rocky Mt. J. Math. 2013;43(3):1489–1496. doi: 10.1216/RMJ-2013-43-5-1489. [DOI] [Google Scholar]
  • 12.Chu Y.-M., Qiu Y.-F., Wang M.-K. Hölder mean inequalities for the complete elliptic integrals. Integral Transforms Spec. Funct. 2012;23(7):521–527. doi: 10.1080/10652469.2011.609482. [DOI] [Google Scholar]
  • 13.Chu Y.-M., Wang M.-K. Optimal Lehmer mean bounds for the Toader mean. Results Math. 2012;61(3–4):223–229. doi: 10.1007/s00025-010-0090-9. [DOI] [Google Scholar]
  • 14.Chu Y.-M., Wang M.-K., Jiang Y.-P., Qiu S.-L. Concavity of the complete elliptic integrals of the second kind with respect to Hölder mean. J. Math. Anal. Appl. 2012;395(2):637–642. doi: 10.1016/j.jmaa.2012.05.083. [DOI] [Google Scholar]
  • 15.Chu Y.-M., Wang M.-K., Ma X.-Y. Sharp bounds for Toader mean in terms of contraharmonic mean with applications. J. Math. Inequal. 2013;7(2):161–166. doi: 10.7153/jmi-07-15. [DOI] [Google Scholar]
  • 16.Chu Y.-M., Wang M.-K., Qiu S.-L. Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 2012;122(1):41–51. doi: 10.1007/s12044-012-0062-y. [DOI] [Google Scholar]
  • 17.Chu Y.-M., Wang M.-K., Qiu S.-L., Jiang Y.-P. Bounds for complete integrals of the second kind with applications. Comput. Math. Appl. 2012;63(7):1177–1184. doi: 10.1016/j.camwa.2011.12.038. [DOI] [Google Scholar]
  • 18.Chu Y.-M., Wang M.-K., Qiu S.-L., Qiu Y.-F. Sharp generalized Seiffert mean bounds for Toader mean. Abstr. Appl. Anal. 2011;2011:605259. doi: 10.1155/2011/605259. [DOI] [Google Scholar]
  • 19.Heikkala V., Vamanamurthy M.K., Vuorinen M. Generalized elliptic integrals. Comput. Methods Funct. Theory. 2009;9(1):75–109. doi: 10.1007/BF0332171. [DOI] [Google Scholar]
  • 20.Hua Y., Qi F. The best bounds for Toader mean in terms of the centroidal and arithmetic means. Filomat. 2014;28(4):775–780. doi: 10.2298/FIL1404775H. [DOI] [Google Scholar]
  • 21.Huang T.-R., Han B.-W., Ma X.-Y., Chu Y.-M. Optimal bounds for the generalized Euler–Mascheroni constant. J. Inequal. Appl. 2018;2018:118. doi: 10.1186/s13660-018-1711-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Jiang W.-D., Qi F. A double inequality for the combination of Toader mean and the arithmetic mean in terms of the contraharmonic mean. Publ. Inst. Math. 2016;99(113):237–242. doi: 10.2298/PIM141026009J. [DOI] [Google Scholar]
  • 23.Lehto O., Virtanen K.I. Quasiconformal Mappings in the Plane. 2. New York: Springer; 1973. [Google Scholar]
  • 24.Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. NIST Handbook of Mathematical Functions. Cambridge: Cambridge Univ. Press; 2010. [Google Scholar]
  • 25.Qi F. Bounds for the ratio of two gamma functions. J. Inequal. Appl. 2010;2010:493058. doi: 10.1155/2010/493058. [DOI] [Google Scholar]
  • 26.Qian W.-M., Chu Y.-M. Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J. Inequal. Appl. 2017;2017:274. doi: 10.1186/s13660-017-1550-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Qiu S.-L., Vuorinen M. Landen inequalities for hypergeometric functions. Nagoya Math. J. 1999;154:31–56. doi: 10.1017/S0027763000025290. [DOI] [Google Scholar]
  • 28.Simić S., Vuorinen M. Landen inequalities for zero-balanced hypergeometric functions. Abstr. Appl. Anal. 2012;2012:932061. doi: 10.1155/2012/932061. [DOI] [Google Scholar]
  • 29.Song Y.-Q., Zhou P.-G., Chu Y.-M. Inequalities for the Gaussian hypergeometric function. Sci. China Math. 2014;57(11):2369–2380. doi: 10.1007/s11425-014-4858-3. [DOI] [Google Scholar]
  • 30.Sugawa T., Wang L.-M. Spirallikeness of shifted hypergeometric functions. Ann. Acad. Sci. Fenn., Math. 2017;42(2):963–977. doi: 10.5186/aasfm.2017.4257. [DOI] [Google Scholar]
  • 31.Wang G.-D., Zhang X.-H., Chu Y.-M. A power mean inequality involving the complete elliptic integrals. Rocky Mt. J. Math. 2014;44(5):1661–1667. doi: 10.1216/RMJ-2014-44-5-1661. [DOI] [Google Scholar]
  • 32.Wang M.-K., Chu Y.-M. Refinements of transformation inequalities for zero-balanced hypergeometric functions. Acta Math. Sci. 2017;37B(3):607–622. doi: 10.1016/S0252-9602(17)30026-7. [DOI] [Google Scholar]
  • 33.Wang M.-K., Chu Y.-M. Landen inequalities for a class of hypergeometric functions with applications. Math. Inequal. Appl. 2018;21(2):521–537. doi: 10.7153/mia-2018-21-38. [DOI] [Google Scholar]
  • 34.Wang M.-K., Chu Y.-M., Jiang Y.-P. Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mt. J. Math. 2016;46(2):679–691. doi: 10.1216/RMJ-2016-46-2-679. [DOI] [Google Scholar]
  • 35.Wang M.-K., Chu Y.-M., Qiu S.-L. Some monotonicity properties of generalized elliptic integrals with applications. Math. Inequal. Appl. 2013;16(3):671–677. doi: 10.7153/mia-16-50. [DOI] [Google Scholar]
  • 36.Wang M.-K., Chu Y.-M., Qiu S.-L. Sharp bounds for generalized elliptic integrals of the first kind. J. Math. Anal. Appl. 2015;429(2):744–757. doi: 10.1016/j.jmaa.2015.04.035. [DOI] [Google Scholar]
  • 37.Wang M.-K., Chu Y.-M., Qiu Y.-F., Qiu S.-L. An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 2011;24(6):887–890. doi: 10.1016/j.aml.2010.12.044. [DOI] [Google Scholar]
  • 38.Wang M.-K., Chu Y.-M., Song Y.-Q. Asymptotical formulas for Gaussian and generalized hypergeometric functions. Appl. Math. Comput. 2016;276:44–60. doi: 10.1016/j.amc.2015.11.088. [DOI] [Google Scholar]
  • 39.Wang M.-K., Li Y.-M., Chu Y.-M. Inequalities and infinite product formula for Ramanujan generalized modular equation function. Ramanujan J. 2018;46(1):189–200. doi: 10.1007/s11139-017-9888-3. [DOI] [Google Scholar]
  • 40.Wang M.-K., Qiu S.-L., Chu Y.-M. Infinite series formula for Hübner upper bounds function with applications to Hersch–Pfluger distortion function. Math. Inequal. Appl. 2018;21(3):629–648. doi: 10.7153/mia-2018-21-46. [DOI] [Google Scholar]
  • 41.Yang Z.-H., Chu Y.-M. A monotonicity property involving the generalized elliptic integral of the first kind. Math. Inequal. Appl. 2017;20(3):729–735. doi: 10.7153/mia-20-46. [DOI] [Google Scholar]
  • 42.Yang Z.-H., Chu Y.-M., Wang M.-K. Monotonicity criterion for the quotient of power series with applications. J. Math. Anal. Appl. 2015;428(1):587–604. doi: 10.1016/j.jmaa.2015.03.043. [DOI] [Google Scholar]
  • 43.Yang Z.-H., Qian W.-M., Chu Y.-M. On rational bounds for the gamma function. J. Inequal. Appl. 2017;2017:210. doi: 10.1186/s13660-017-1484-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Yang Z.-H., Qian W.-M., Chu Y.-M., Zhang W. On approximating the error function. Math. Inequal. Appl. 2018;21(2):469–479. doi: 10.7153/mia-2018-2. [DOI] [Google Scholar]
  • 45.Yang Z.-H., Qian W.-M., Chu Y.-M., Zhang W. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 2018;462(2):1714–1726. doi: 10.1016/j.jmaa.2018.03.005. [DOI] [Google Scholar]
  • 46.Yang Z.-H., Tian J.F. A comparison theorem for two divided differences and applications to special functions. J. Math. Anal. Appl. 2018;464(1):580–595. doi: 10.1016/j.jmaa.2018.04.024. [DOI] [Google Scholar]
  • 47.Yang Z.-H., Zhang W., Chu Y.-M. Sharp Gautschi inequality for parameter 0<p<1 with applications. Math. Inequal. Appl. 2017;20(4):1107–1120. doi: 10.7153/mia-201720-71. [DOI] [Google Scholar]
  • 48.Yin L., Mi L.-F. Landen type inequality for generalized elliptic integrals. Adv. Stud. Contemp. Math. 2016;26(4):717–722. [Google Scholar]
  • 49.Zhang X.-H., Wang G.-D., Chu Y.-M. Convexity with respect to Hölder mean involving zero-balanced hypergeometric functions. J. Math. Anal. Appl. 2009;353(1):256–259. doi: 10.1016/j.jmaa.2008.11.068. [DOI] [Google Scholar]
  • 50.Zhao T.-H., Chu Y.-M., Wang H. Logarithmically complete monotonicity properties relating to the gamma function. Abstr. Appl. Anal. 2011;2011:896483. doi: 10.1155/2011/896483. [DOI] [Google Scholar]

Articles from Journal of Inequalities and Applications are provided here courtesy of Springer

RESOURCES