Skip to main content
Springer logoLink to Springer
. 2018 Sep 12;2018(1):239. doi: 10.1186/s13660-018-1828-2

Monotonicity properties and bounds for the complete p-elliptic integrals

Ti-Ren Huang 1, Shen-Yang Tan 2, Xiao-Yan Ma 1, Yu-Ming Chu 3,
PMCID: PMC6154081  PMID: 30839616

Abstract

We generalize several monotonicity and convexity properties as well as sharp inequalities for the complete elliptic integrals to the complete p-elliptic integrals.

Keywords: Complete elliptic integral, Complete p-elliptic integral, Gaussian hypergeometric function, Monotonicity, Convexity

Introduction

Let p>1 and 0θ1. Then the function sinp1(θ) and the number πp are defined by

sinp1(θ)=0θ1(1tp)1/pdt 1.1

and

πp2=sinp1(1)=011(1tp)1/pdt=πpsin(π/p)=1pB(1/p,11/p), 1.2

respectively, where B is the classical beta function. The inverse function of sinp1(θ) defined on [0,πp/2] is said to be the generalized sine function and denoted by sinp. From (1.1) and (1.2) we clearly see that sin2(θ)=sin(θ) and π2=π. The generalized sine function sinp(θ) and πp appeared in the eigenvalue problem of one-dimensional p-Laplacian

(|u|p2u)=λ|u|p2u,u(0)=u(1)=0.

Indeed, the eigenvalues are given by λn=(p1)(nπp)p and the corresponding eigenfunction to λn is u(x)=sinp(nπnx) for each n=1,2,3, . In the same way one can define the generalized cosine and tangent functions and their inverse functions [13].

Let x(1,1), and a, b and c be the real numbers with c0,1,2, . Then the Gaussian hypergeometric function F(a,b;c;x) [411] is defined by

F(a,b;c;x)=n=0(a,n)(b,n)(c,n)xnn!, 1.3

where (a,n) denotes the shifted factorial function (a,n)=a(a+1)(a+n1), n=1,2, , and (a,0)=1 for a0. The well-known complete elliptic integrals K(r) and E(r) [1215] of the first and second kinds are respectively defined by

K(r)=π2F(12,12;1;r2)=0π/2dθ1r2sin2θ=01dt(1t2)(1r2t2)

and

E(r)=π2F(12,12;1;r2)=0π/21r2sin2θdθ=011r2t21t2dt.

Let p(1,) and r[0,1). Then the complete p-elliptic integrals Kp(r) and Ep(r) [16, 17] of the first and second kinds are respectively defined by

Kp(r)=0πp/2dθ(1rpsinppθ)11/p=01dt(1tp)1/p(1rptp)11/p 1.4

and

Ep(r)=0πp/2(1rpsinppθ)1/pdθ=01(1rptp1tp)1/pdt. 1.5

From (1.4) and (1.5) we clearly see that the complete p-elliptic integrals Kp(r) and Ep(r) respectively reduce to the complete elliptic integrals K(r) and E(r) if p=2. Recently, the complete p-elliptic integrals Kp(r) and Ep(r) and their special cases K(r) and E(r) have attracted the attention of many mathematicians [1830].

Takeuchi [31] generalized several well-known theorems for the complete elliptic integrals K(r) and E(r), such as Legendre’s formula, Gaussian’s AGM approximation formulas for π, differential equations, and other similar results of the theory of complete elliptic integrals to the complete p-elliptic integrals Kp(r) and Ep(r), and proved that

Kp(r)=πp2F(1p,11p;1;rp), 1.6
Ep(r)=πp2F(1p,1p;1;rp). 1.7

Anderson, Qiu, and Vamanamurthy [32] discussed the monotonicity and convexity properties of the function

rf(r)=E(r)r2K(r)r2r2E(r)r2K(r)

and proved that the double inequality

π4<f(r)<π4+(4ππ4)r 1.8

holds for all r(0,1). Both inequalities given in (1.8) are sharp as r0, while the second inequality is also sharp as r1. Here and in what follows, we denote r=(1rp)1/p, Kp(r)=Kp(r), and Ep(r)=Ep(r).

Alzer and Richards [33] proved that the function

rΔ(r)=E(r)r2K(r)r2E(r)r2K(r)r2

is strictly increasing and convex from (0,1) onto (π/41,1π/4), and the double inequality

π41+αr<Δ(r)<π41+βr 1.9

holds for all r(0,1) with the best constant α=0 and β=2π/2.

Inequalities (1.8) and (1.9) have been generalized to the generalized elliptic integrals by Huang et al. in [34].

The main purpose of the article is to generalize inequalities (1.8) and (1.9) to the complete p-elliptic integrals. We discuss the monotonicity and convexity properties of the functions

rfp(r)=Ep(r)rpKp(r)rprpEp(r)rpKp(r), 1.10
rgp(r)=Ep(r)rpKp(r)rpEp(r)rpKp(r)rp, 1.11

and present their corresponding sharp inequalities.

Lemmas

In order to prove our main results, we need several formulas and lemmas, which we present in this section.

The following formulas for the hypergeometric function and complete p-elliptic integrals can be found in the literature [5, 1.20(10), (1.16), 1.19(4), (1.48)]], [18], and [35, Equation (26)]:

F(a,b;a+b+1;x)=(1x)F(a+1,b+1;a+b+1;x), 2.1
dF(a,b;c;x)dx=abcF(a+1,b+1;c+1;x), 2.2
F(a,b;c;1)=Γ(c)Γ(cab)Γ(ca)Γ(cb)(c>a+b), 2.3
F(a,b;c;x)log(1x)B(a,b)(x1,c=a+b), 2.4
(σρ)F(α,ρ;σ+1;z)=σF(α,ρ;σ;z)ρF(α,ρ+1;σ+1;z), 2.5
dKp(r)dr=Ep(r)rpKa(r)rrp,dEa(r)dr=Ep(r)Kp(r)r, 2.6

where Γ(x) is the classical gamma function.

Lemma 2.1

Let p(1,). Then the function

rfp1(r)=Ep(r)rpKp(r)rp 2.7

is strictly increasing and convex from (0,1) onto ((p1)πp/(2p),1).

Proof

It follows from (1.3), (1.6), and (1.7) that

Ep(r)rpKp(r)=πp2[F(1p,1p,1;rp)(1rp)F(1p,11p;1;rp)]=πp2[n=0(1p,n)(1p,n)(n!)2rpn(1rp)n=0(1p,n)(11p,n)(n!)2rpn]=πp2[n=0(1p,n)(1p,n)(1p,n)(11p,n)(n!)2rpn+n=0(1p,n)(11p,n)(n!)2rp(n+1)]=πp2n=1n2(1p,n1)(11p,n1)n(1p,n)(11p,n1)(n!)2rpn=πp2n=1n(1p,n1)(11p,n1)(11p)(n!)2rpn=πprp2(11p)n=01n+1anrpn,

where an=(1/p,n)(11/p,n)(n!)2. Therefore,

fp1(r)=Ep(r)rpKp(r)rp=πp2(11p)n=01n+1anrpn 2.8

and fp1(r) is strictly increasing and convex on (0,1) due to 11/p>0.

From (1.5), (1.6), (2.4), (2.7), and (2.8) we clearly see that

Ep(1)=1,limr1rpKp(r)=0,fp1(0+)=(p1)πp2p,fp1(1)=1.

 □

Lemma 2.2

(see [18, Lemma 2.3])

Let IR be an interval and f,g:I(0,) be two positive real-valued functions. Then the product fg is convex on I if both f and g are convex and increasing (decreasing) on I.

Lemma 2.3

Let p>1. Then the function

rJ(r)=(1rp)(Ep(r)(1+rp)Kp(r))r2p1 2.9

is strictly increasing from (0,1) onto (,0).

Proof

Let

f1(r)=(1rp)[F(1p,1p;1;rp)(1+rp)F(1p,11p;1;rp)]. 2.10

Then it follows from (1.3), (1.6), (1.7), (2.9), and (2.10) that

J(r)=πp2r2p1f1(r), 2.11
f1(r)=(1rp)[n=0(1p,n)(1p,n)(n!)2rpn(1+rp)n=0(1p,n)(11p,n)(n!)2rpn]f1(r)=(1rp)[n=0(1p,n)(1p,n)(1p,n)(11p,n)(n!)2rpnn=0(1p,n)(11p,n)(n!)2rp(n+1)]f1(r)=(1rp)n=1n2(1p,n1)(11p,n1)n(1p,n)(11p,n1)(n!)2rpnf1(r)=(1rp)n=1(1p,n1)(11p,n1)((11p)n2n2)(n!)2rpnf1(r)=n=1(1p,n1)(11p,n1)((11p)n2n2)(n!)2rpnf1(r)=n=2(1p,n2)(11p,n2)((11p)(n1)2(n1)2)((n1)!)2rpnf1(r)=(11p)rpf1(r)=+n=2(1p,n2)(11p,n2)[2n(n+1p32)+1p32p21p+2](n!)2rpn. 2.12

Equations (2.11) and (2.12) lead to

J(r)=πp2{1+pprp1+n=2(1p,n2)(11p,n2)[2n(n+1p32)+1p32p21p+2](n!)2rp(n2)+1}. 2.13

It is easy to verify that

2n(n+1p32)+1p32p21p+2>0 2.14

for p>1 and n2.

Therefore, the monotonicity of J(r) on the interval (0,1) follows easily from (2.13) and (2.14).

From (2.3), (2.4), (2.10), (2.11), and (2.13) we clearly see that J(0+)= and

limr1F(1p,1p;1;rp)=1Γ(11/p)Γ(1+1/p),limr1(1rp)F(1p,11p;1;rp)=0,J(1)=0.

 □

Lemma 2.4

(see [5, Theorem 1.25])

Let a,bR with a<b, f,g:[a,b]R be continuous on [a,b] and be differentiable on (a,b) such that g(x)0 on (a,b). If f(x)/g(x) is increasing (decreasing) on (a,b), then so are the functions

f(x)f(a)g(x)g(a),f(x)f(b)g(x)g(b).

If f(x)/g(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Main results

Theorem 3.1

Let p>1 and fp(r) be defined by (1.10). Then fp(r) is strictly increasing and convex from (0,1) onto ((p1)πp/(2p),2p/[(p1)πp]), and the double inequality

(p1)πp2p+αr<fp(r)<(p1)πp2p+βr 3.1

holds for all r(0,1) if and only if α0 and β2p/[(p1)πp](p1)πp/(2p). Moreover, both inequalities in (3.1) are sharp as r0, while the second inequality is sharp as r1.

Proof

Let fp1(r) be defined by (2.7). Then fp(r) can be rewritten as

fp(r)=Ep(r)rpKp(r)rprpEp(r)rpKp(r)=fp1(r)1fp1(r). 3.2

From Lemma 2.1 we know that both the functions fp1(r) and 1/fp1(r) are positive and strictly increasing on (0,1), hence fp(r) is also strictly increasing on (0,1).

Next, we prove that 1/fa1(r) is convex on (0,1). It follows from (2.6) and (2.7) that

ddr(1fp1(r))=prp1(Ep(r)rpKp(r))(p1)r2p1Kp(r)(Ep(r)rpKp(r))2=p(Ep(r)rpKp(r))(p1)rpKp(r)(Ep(r)rpKp(r))2rp1=g1(r)g2(r), 3.3

where

g1(r)=p(Ep(r)rpKp(r))+(1p)rpKp(r),g2(r)=(Ep(r)rpKp(r))2rp1,g1(r)g2(r)=r2p1(1rp)(Ep(r)(1+rp)Kp(r))=1J(r), 3.4

where J(r) is defined by (2.9).

From (1.3), (1.6), (1.7), and Lemma 2.1 we clearly see that

g1(0+)=g2(0+)=0. 3.5

Equations (3.3)–(3.5) and Lemmas 2.3 and 2.4 lead to the conclusion that the function ddr(1/fp1(r)) is strictly decreasing on (0,1), which implies that the function ddr(1/fp1(r)) is strictly increasing on (0,1) and 1/fa1(r) is convex on (0,1).

Therefore, fp(r) is convex on (0,1) follows from Lemmas 2.1 and 2.2 together with (3.2) and the convexity of 1/fa1(r).

The limit values

fp(0+)=(p1)πp2p,fp(1)=2p(p1)πp 3.6

follow easily from Lemma 2.1 and (3.2).

It follows from (2.8) and (3.2) that

limr0+dfp(r)dr=limr0+n=0ann+1(1rp)nn=1pnann+1rpn1+rp1n=0ann+1rpnn=1pnann+1(1rp)n1[n=0ann+1(1rp)n]2=0. 3.7

Therefore, inequality (3.1) holds for all r(0,1) if and only if α0, and β2p/[(p1)πp]((p1)πp/(2p) follows easily from (3.6) and (3.7) together with the monotonicity and convexity of fp(r) on (0,1). From (3.6) we clearly see that both inequalities in (3.1) are sharp as r0 and the second inequality is sharp as r1. □

Theorem 3.2

Let p2 and gp(r) be defined in (1.11). Then gp(r) is strictly increasing and convex from (0,1) onto ((p1)πp/(2p)1,1(p1)πp/(2p)), and the double inequality

(p1)πp2p1+αr<gp(r)<(p1)πp2p1+βr 3.8

holds for all r(0,1) if and only if α0 and β2(p1)πp/p. Moreover, both inequalities in (3.8) are sharp as r0, while the second inequality is sharp as r1.

Proof

Let

Mp(r)=πp2rp[F(1p,1p;1;rp)rpF(1p,11p;1;rp)].

Then from (1.3), (1.6), (1.7), and (1.11) we get

Mp(r)=πp(p1)2pF(11p,1p;2;rp), 3.9
gp(r)=Mp(r)Mp(r)=πp(p1)2p[F(11p,1p;2;rp)F(11p,1p;2;1rp)]. 3.10

It follows from (2.1), (2.2), (2.5), and (3.10) that

dgp(r)dr=(p1)2πp4p2rp1[F(21p,1+1p;3;rp)+F(21p,1+1p;3;1rp)],dgp(r)dr|r=0=0, 3.11
d2gp(r)dr2=(p1)3πp4p2rp2[F(21p,1+1p;3;rp)+F(21p,1+1p;3;1rp)+πp(p1)2(1+p)(2p1)12p3r2p2×(F(31p,2+1p;4;rp)F(31p,2+1p;4;1rp))], 3.12
F(31p,2+1p;4;1rp)=1rpF(21p,1+1p;4;1rp), 3.13
(21p)F(21p,1+1p;4;1rp)=3F(21p,1+1p;3;1rp)(1+1p)F(21p,2+1p;4;1rp). 3.14

Equations (1.3) and (3.12)–(3.14) lead to

4p2(p1)2πprp2gp(r)=(p1)F(21p,1+1p;3;rp)+(p1)F(21p,1+1p;3;1rp)+(2p1)(p+1)3prpF(31p,2+1p;4;rp)rp(2p1)(p+1)3pF(31p,2+1p;4;1rp)=(p1)F(21p,1+1p;3;rp)+(p1)F(21p,1+1p;3;1rp)+(2p1)(p+1)3prpF(31p,2+1p;4;rp)(2p1)(p+1)3pF(21p,1+1p;4;1rp)=(p1)F(21p,1+1p;3;rp)+(2p1)(p+1)3prpF(31p,2+1p;4;rp)+(p1)F(21p,1+1p;3;1rp)(2p1)F(21p,1+1p;3;1rp)+(2p1)23pF(31p,1+1p;4;1rp)=(p1)F(21p,1+1p;3;rp)+(2p1)(p+1)3prpF(31p,2+1p;4;rp)pF(21p,1+1p;3;1rp)+(2p1)23pF(1+1p,31p;4;1rp)>p1pF(21p,1+1p;3;1rp)+(2p1)23pF(1+1p,31p;4;1rp)=p1pn=0(1+1p,n)(21p,n)(3,n)(1rp)nn!+(2p1)23pn=0(1+1p,n)(31p,n)(4,n)(1rp)nn!=n=0(1+1p,n)(21p,n)(3,n+1)[(p1)n+p+1p4](1rp)nn!n=01(1+1p,n)(21p,n)(3,n+1)[(p1)n+p+1p4](1rp)nn!=20p436p3p2+6p112p3>0 3.15

for p2.

Therefore, the monotonicity and convexity for gp(r) on the interval (0,1) follow from (3.11) and (3.15).

It follows from (1.2), (1.3), (2.3), (3.9), and (3.10) that

Mp(0+)=(p1)πp2p,Mp(1)=1,gp(0+)=(p1)πp2p1,gp(1)=1(p1)πp2p. 3.16

Therefore, the desired results in Theorem 3.2 follow easily from (3.11) and (3.16) together with the monotonicity and convexity of gp(r) on the interval (0,1). □

Remark 3.3

Let p=2. Then we clearly see that inequalities (3.1) and (3.8) reduce to inequalities (1.8) and (1.9), respectively.

Corollary 3.4

Let p2, gp(r) be defined by (1.11) and

Lp(x,y)=gp(xy)gp(x)gp(y). 3.17

Then the double inequality

(p1)πp2p1<Lp(x,y)<1(p1)πp2p

holds for all x,y(0,1).

Proof

It follows from (3.17) and the proof of Theorem 3.2 that

xLp(x,y)=ygp(xy)gp(x), 3.18
2xyLp(x,y)=gp(xy)+xygp(xy)>0 3.19

for all x,y(0,1).

From (3.17)–(3.19) we get

xLp(x,y)<xLp(x,y)|y=1=0,gp(1)=Lp(1,y)<Lp(x,y)<Lp(0,y)=gp(y). 3.20

Therefore, Corollary 3.4 follows easily from Theorem 3.2 and (3.20). □

Methods

The main purpose of the article is to generalize inequalities (1.8) and (1.9) for the complete elliptic integrals to the complete p-elliptic integrals. To achieve this goal we discuss the monotonicity and convexity properties for the functions given by (1.10) and (1.11) by use of the analytical properties of the Gaussian hypergeometric function and the well-known monotone form of l’Hôpital’s rule given in [5, Theorem 1.25].

Results and discussion

In the article, we present the monotonicity and convexity properties and provide the sharp bounds for the functions

rfp(r)=Ep(r)rpKp(r)rprpEp(r)rpKp(r)

and

rgp(r)=Ep(r)rpKp(r)rpEp(r)rpKp(r)rp

on the interval (0,1).

The obtained results are the generalization of the well-known results on the classical complete elliptic integrals given in [32, 33].

Conclusion

In this paper, we generalize the monotonicity, convexity, and bounds for the functions involving the complete elliptic integrals to the complete p-elliptic integrals. The given idea may stimulate further research in the theory of generalized elliptic integrals.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Funding

The research was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11701176, 11401531), the Science Foundation of Zhejiang Sci-Tech University (Grant No. 14062093-Y), the Natural Science Foundation of Zhejiang Province (Grant No. LQ17A010010), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 17KJD110004).

Competing interests

The authors declare that they have no competing interests.

Footnotes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Ti-Ren Huang, Email: huangtiren@163.com.

Shen-Yang Tan, Email: ystys@163.com.

Xiao-Yan Ma, Email: mxy@zstu.edu.cn.

Yu-Ming Chu, Email: chuyuming2005@126.com.

References

  • 1.Bushell P.J., Edmunds D.E. Remarks on generalized trigonometric functions. Rocky Mt. J. Math. 2012;42(1):25–57. doi: 10.1216/RMJ-2012-42-1-25. [DOI] [Google Scholar]
  • 2.Edmunds D.E., Gurka P., Lang J. Properties of generalized trigonometric functions. J. Approx. Theory. 2012;164(1):47–56. doi: 10.1016/j.jat.2011.09.004. [DOI] [Google Scholar]
  • 3.Edmunds D.E., Gurka P., Lang J. Basis properties of generalized trigonometric functions. J. Math. Anal. Appl. 2014;420(2):1680–1692. doi: 10.1016/j.jmaa.2014.06.015. [DOI] [Google Scholar]
  • 4.Abramowitz M., Stegun I.A. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. New York: Dover; 1965. [Google Scholar]
  • 5.Anderson G.D., Vamanamurthy M.K., Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps. New York: Wiley; 1997. [Google Scholar]
  • 6.Byrd P.F., Friedman M.D. Handbook of Elliptic Integrals for Engineers and Scientists. New York: Springer; 1971. [Google Scholar]
  • 7.Wang M.-K., Chu Y.-M. Landen inequalities for a class of hypergeometric functions with applications. Math. Inequal. Appl. 2018;21(2):521–537. [Google Scholar]
  • 8.Wang M.-K., Chu Y.-M., Song Y.-Q. Asymptotical formulas for Gaussian and generalized hypergeometric functions. Appl. Math. Comput. 2016;276:44–60. [Google Scholar]
  • 9.Wang M.-K., Li Y.-M., Chu Y.-M. Inequalities and infinite product formula for Ramanujan generalized modular equation function. Ramanujan J. 2018;46(1):189–200. doi: 10.1007/s11139-017-9888-3. [DOI] [Google Scholar]
  • 10.Wang M.-K., Qiu S.-L., Chu Y.-M. Infinite series formula for Hübner upper bounds function with applications to Hersch–Pfluger distortion function. Math. Inequal. Appl. 2018;21(3):629–648. [Google Scholar]
  • 11.Yang Z.-H., Chu Y.-M. A monotonicity property involving the generalized elliptic integral of the first kind. Math. Inequal. Appl. 2017;20(3):729–735. [Google Scholar]
  • 12.Chu Y.-M., Qiu Y.-F., Wang M.-K. Hölder mean inequalities for the complete elliptic integrals. Integral Transforms Spec. Funct. 2012;23(7):521–527. doi: 10.1080/10652469.2011.609482. [DOI] [Google Scholar]
  • 13.Chu Y.-M., Wang M.-K., Qiu S.-L., Qiu Y.-F. Sharp generalized Seiffert mean bounds for Toader mean. Abstr. Appl. Anal. 2011;2011:605259. [Google Scholar]
  • 14.Qian W.-M., Chu Y.-M. Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J. Inequal. Appl. 2017;2017:274. doi: 10.1186/s13660-017-1550-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Yang Z.-H., Qian W.-M., Chu Y.-M., Zhang W. On approximating the arithmetic–geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 2018;462(2):1714–1726. doi: 10.1016/j.jmaa.2018.03.005. [DOI] [Google Scholar]
  • 16.Borwein J.M., Borwein P.B. Pi and the AGM. New York: Wiley; 1987. [Google Scholar]
  • 17.Liu Z.-Q., Zhang X.-H. On a function involving the complete p-elliptic integrals. Pure Math. 2018;8(4):325–332. doi: 10.12677/PM.2018.84043. [DOI] [Google Scholar]
  • 18.Anderson G.D., Qiu S.-L., Vamanamurthy M.K., Vuroinen M. Generalized elliptic integrals and modular equations. Pac. J. Math. 2000;192(1):1–37. doi: 10.2140/pjm.2000.192.1. [DOI] [Google Scholar]
  • 19.Bhayo B.A., Vuorinen M. On generalized complete elliptic integrals and modular functions. Proc. Edinb. Math. Soc. (2) 2012;55(3):591–611. doi: 10.1017/S0013091511000356. [DOI] [Google Scholar]
  • 20.Chu Y.-M., Wang M.-K. Optimal Lehmer mean bounds for the Toader mean. Results Math. 2012;61(3–4):223–229. doi: 10.1007/s00025-010-0090-9. [DOI] [Google Scholar]
  • 21.Chu Y.-M., Wang M.-K., Qiu S.-L. Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 2012;122(1):41–51. doi: 10.1007/s12044-012-0062-y. [DOI] [Google Scholar]
  • 22.Heikkala V., Lindén H., Vamanamurthy M.K., Vuorinen M. Generalized elliptic integrals and the Legendre M-function. J. Math. Anal. Appl. 2008;338(1):223–243. doi: 10.1016/j.jmaa.2007.05.020. [DOI] [Google Scholar]
  • 23.Kamiya T., Takeuchi S. Complete (p,q)-elliptic integrals with application to a family of means. J. Class. Anal. 2017;10(1):15–25. [Google Scholar]
  • 24.Neuman E. Inequalities and bounds for generalized complete elliptic integrals. J. Math. Anal. Appl. 2011;373(1):203–213. doi: 10.1016/j.jmaa.2010.06.060. [DOI] [Google Scholar]
  • 25.Takeuchi S. Complete p-elliptic integrals and a computation formula of πp for p=1. Ramanujan J. 2018;46(2):309–321. doi: 10.1007/s11139-018-9993-y. [DOI] [Google Scholar]
  • 26.Wang M.-K., Chu Y.-M., Qiu Y.-F., Qiu S.-L. An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 2011;24(6):887–890. doi: 10.1016/j.aml.2010.12.044. [DOI] [Google Scholar]
  • 27.Wang G.-D., Zhang X.-H., Chu Y.-M. A power mean inequality involving the complete elliptic integrals. Rocky Mt. J. Math. 2014;44(5):1661–1667. doi: 10.1216/RMJ-2014-44-5-1661. [DOI] [Google Scholar]
  • 28.Watanabe K. Planar p-cures and related generalized complete elliptic integrals. Kodai Math. J. 2014;37(2):453–474. doi: 10.2996/kmj/1404393898. [DOI] [Google Scholar]
  • 29.Yang Z.-H., Zhang W., Chu Y.-M. Sharp Gautsch inequality for parameter 0<p<1. Math. Inequal. Appl. 2017;20(4):1107–1120. [Google Scholar]
  • 30.Zhang X.-H. Monotonicity and functional inequalities for the complete p-elliptic integrals. J. Math. Anal. Appl. 2017;453(2):942–953. doi: 10.1016/j.jmaa.2017.04.025. [DOI] [Google Scholar]
  • 31.Takeuchi S. A new form of the generalized complete elliptic integrals. Kodai Math. J. 2016;39(1):202–226. doi: 10.2996/kmj/1458651700. [DOI] [Google Scholar]
  • 32.Anderson G.D., Qiu S.-L., Vamanamurthy M.K. Elliptic integrals inequalities, with applications. Constr. Approx. 1998;14(2):195–207. doi: 10.1007/s003659900070. [DOI] [Google Scholar]
  • 33.Alzer H., Richards K. A note on a function involving complete elliptic integrals: monotonicity, convexity, inequalities. Anal. Math. 2015;41(3):133–139. doi: 10.1007/s10476-015-0201-7. [DOI] [Google Scholar]
  • 34.Huang T.-R., Tan S.-Y., Zhang X.-H. Monotonicity, convexity, and inequalities for the generalized elliptic integrals. J. Inequal. Appl. 2017;2017:278. doi: 10.1186/s13660-017-1556-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Prudnikov A.P., Brychkov Yu.A., Marichev O.I. Integrals and Series. New York: Gordon & Breach; 1990. [Google Scholar]

Articles from Journal of Inequalities and Applications are provided here courtesy of Springer

RESOURCES