Skip to main content
Biodiversity Data Journal logoLink to Biodiversity Data Journal
. 2018 Aug 28;(6):e21635. doi: 10.3897/BDJ.6.e21635

Composition and distribution of lice (Insecta: Phthiraptera) on Colombian and Peruvian birds: New data on louse-host association in the Neotropics

Juliana Soto-Patiño 1, Gustavo A Londoño 2, Kevin P Johnson 3, Jason D Weckstein 4, Jorge Enrique Avendaño 5, Therese A Catanach 4, Andrew D Sweet 3, Andrew T Cook 6, Jill E Jankowski 7, Julie Allen 8,
PMCID: PMC6160787  PMID: 30271250

Abstract Abstract

The diversity of permanent ectoparasites is likely underestimated due to the difficulty of collecting samples. Lice (Insecta: Phthiraptera) are permanent ectoparasites of birds and mammals; there are approximately 5,000 species described and many more undescribed, particularly in the Neotropics. We document the louse genera collected from birds sampled in Peru (2006–2007) and Colombia (2009–2016), from 22 localities across a variety of ecosystems, ranging from lowland tropical forest and Llanos to high elevation cloud forest. We identified 35 louse genera from a total of 210 bird species belonging to 37 avian families and 13 orders. These genera belong to two suborders and three families of lice: Amblycera, families Menoponidae (present on 131 bird species) and Ricinidae (39 bird species); and Ischnocera, family Philopteridae (119 bird species). We compared our bird-louse associations with data in Price et al. (2003) and recently published Neotropical studies. The majority of bird-louse associations (51.9%) were new, with most of these coming from Passeriformes, the most diverse avian order, with the most poorly known louse fauna. Finally, we found geographical variation in louse infestation and prevalence rates. With this study, we report the first comprehensive documentation of bird-louse associations for Colombia and substantially increase the known associations documented for Peru.

Keywords: Ectoparasites, Feather Lice, Tropical Forests

Introduction

Parasites are one of the most common forms of life on the planet (Price 1980). They have evolved repeatedly in every major clade (Poulin and Morand 2000). Although parasites are amongst the most diverse organisms in the world, few are well studied. Permanent ectoparasites are particularly difficult to study because they live their entire life cycle on hosts (Marshall 1981) and require capturing the host to sample them.

Lice (Insecta: Phthiraptera) are permanent parasites occurring on both birds and mammals. There are approximately 5,000 described species of lice, about 3,000 of which are known from birds (Price et al. 2003, Smith et al. 2011). The taxonomic diversity of lice is positively correlated with the taxonomic diversity of their hosts (Eichler 1942, Vas et al. 2012). Colombia and Peru harbor the richest avifaunas in the world (Jetz et al. 2012), with 1,878 and 1,852 bird species, respectively (Avendaño et al. 2017), and, correspondingly, the highest diversity of avian lice is thought to be found in these regions (e.g. Valim and Weckstein (2013)). Currently, however, there is limited knowledge of louse-host associations and louse diversity from these countries (e.g. Clayton et al. (1992) and the Neotropics in general (Clayton et al. (1992), Marini et al. (1996), Valim and Weckstein (2013). This is due in part to the poor representation of louse specimens in museum collections and the lack of louse specialists and field workers who sample parasites when collecting or handling birds. Therefore, the diversity of known louse species at regional scales is not on par with lists of avian host diversity from these countries. Our main objective is to provide novel information about the composition and distribution of lice on Colombian and Peruvian birds.

From large collections of louse specimens from birds in Peru, Clayton et al. (1992) and Clayton and Walther (2001) examined how host ecology and morphology influence louse diversity across a sample of 127 bird species. These two studies, amongst other taxonomic studies published using the same specimens e.g. Price and Clayton (1995), Price and Clayton (1989), provide most of the known louse-host associations from Peruvian birds. Much less information is available for Colombia, apart from the work of Melbourne A. Carriker (1879–1965), who collected mostly non-passerine birds and their associated lice and a study by Parra-Henao et al. (2011) where they identified lice from 18 bird species from the Cordillera Central near Medellín (Valle de Aburrá). Although this previous work provides an excellent starting point for understanding the diversity of lice in the Neotropics, the numbers of birds examined for lice is a small sample of the total avian diversity in this region.

In this study, we provide data from extensive sampling and description of louse-host associations from Colombia and Peru. Material was collected from 22 localities over nine years. From these samples, we identified 36 unique genera of lice and compared our results with those found in previous studies and with data compiled in the published checklist in Price et al. (2003). We found that over 50% of the louse-host associations were previously unreported and suggest that further data from these collections will be important to identify factors associated with louse diversity in the Neotropics. The data presented here provide the foundation for a long-term project sampling louse diversity across the Andes. This dataset will provide the basis for answering large-scale questions about patterns of diversity along elevational, habitat and host taxonomic gradients. The long-term project will include species level identification, taxonomic description and exploration of macro-ecological patterns along with archiving and storage of louse specimens.

Material and methods

Lice were collected at 22 localities in Peru (2006–2007) and Colombia (2009–2016) (Table 1). In Peru, samples were collected by GAL and JEJ at four stations from Andean foothill forest (800 m a.s.l.) to high elevation cloud forest (3,000 m a.s.l.) inside Manu National Park or its buffer zone along a contiguously forested altitudinal gradient (Fig. 1a). In Colombia, samples were collected by GAL, JEA and JSP at 18 sites across the country, which ranged in elevation and habitat from 100 m a.s.l. to 2,800 m a.s.l., including savannah and gallery forest, lowland tropical forest and humid premontane and montane cloud forest (Fig. 1b).

Table 1.

Sampling localities in Peru (2006–2007) and Colombia (2009–2016).

Country Department Locality Coordinates Elevation (m a.s.l) Habitat Collector (s)
Peru Cusco 1. Buenos Aires (Mun. Paucartambo) 13°9'S, 71°35'W 2480-2550 Highland cloud forest GAL-JEJ
Cusco 2. Tono (Mun. Patria) 12°57'S, 71°34'W 800-1100 Andean foothill forest GAL-JEJ
Cusco 3. Lodge Gallito de las rocas (Mun. San Pedro) 13°03'S, 71°32'W 1200-1500 Montane cloud forest GAL-JEJ
Cusco 4. Wayqecha Biological Station (Mun. Paucartambo) 13°10'S, 71°35'W 2600-3000 Highland cloud forest GAL-JEJ
Colombia Santander 5. El Rasgón Reserve (Mun. Piedecuesta) 07°02'N, 72°59'W 2200 Primary cloud forest and borders JEA
Antioquia 6. Remedios (Mun. Remedios) 06°54'N, 74°34'W 500 Lowland humid forest GAL
Santander 7. Salabuga farm (Mun. San Andrés) 06°45'N, 72°46'W 2650 Primary cloud forest and borders JEA
Santander 8. El Tablón farm (Mun. San Andrés) 06°43'N, 72°49'W 2770-2800 Primary cloud forest and borders JEA
Santander 9. La Rinconada farm (Mun. San Andrés) 06°43'N, 72°47'W 2880 Primary cloud forest and borders JEA
Risaralda 10. Montezuma, Tatama Nationla Park (Mun. Pueblo Rico) 05°13'N, 76°05'W 1200-2500 Forest types from foothills, to mid and high elevation cloud forests GAL
Casanare 11. El Porvernir farm (Mun. Aguazul) 05°13'N, 72°30'W 350-400 Secondary humid tropical forest JEA
Meta 12. Universidad de los Llanos (Mun. Villavicencio) 04°4'N, 73°35'W 400-440 Secondary humid tropical forest JEA
Meta 13. Mitimiti farm (Mun. Puerto Gaitán) 04°31'N, 71°48'W 141 Savannah, gallery forest JEA
Cundinamarca 14. San Antonio farm (Mun. Medina) 04°26'N, 73°24'W 570 Secondary humid tropical forest JEA
Meta 15. Manacacías farm (Mun. Puerto Gaitán) 04°10'N, 72°02'W 200-250 Savannah, gallery forest JEA
Valle del Cauca 16. La Minga farm (Mun. La Cumbre) 03°33'N, 76°35'W 2000 Cloud forest on top of the Western cordillera GAL
Valle del Cauca 17. Icesi University research station, Zygia, Farallones de Cali National Park (Mun. Cali) 03°27'N, 76°46'W 2400 High elevation cloud forest GAL
Valle del Cauca 18. Danubio (Mun. Cali) 03°24'N, 76°39'W 2200 High elevation cloud forest GAL-JSP
Guaviare 19. Laguna Grande (Mun. San José del Guaviare) 02°33'N, 72°39'W 400 Savannah, gallery forest JEA
Cauca 20. Mirabilis-Swarovski Reserve (Mun. El Tambo) 02°31'N, 76°59'W 2270 Primary humid montante forest JEA
Cauca 21. Tambito Reserve (Mun. El Tambo) 02°30'N, 76°59'W 1500 Primary premontane forest JEA
Nariño 22. El Pangán Reserve (Mun. Barbacoas) 01°21'N, 78°05'W 710 Primary humid tropical forest JEA

Maps of sampling localities.

Figure 1a.

Figure 1a.

Peru

Figure 1b.

Figure 1b.

Colombia

At each site, 10 to 20 netting stations were run and, at each station, 10 mist nets were opened for three days to capture birds. Each netting station was sampled twice during each 4 to 6 month field season. After removing birds from the nets, each individual host was placed in a clean cloth bag until processing for ectoparasites. We used three methods for collecting ectoparasites, detailed in Clayton and Drown (2001): 1) Post-mortem ruffling, 2) visual examiniation and, for the majority of samples 3) dust-ruffling. To dust-ruffle the birds, we applied ~1 ml of EverGreen pyrethrum dust (McLaughlin Gormley King Company, MN, USA) to captured birds and then ruffled feathers from all body regions except the head. Five minutes after we applied the powder, we ruffled each bird's feather tracts over a plastic sheet for 30 to 60 seconds to remove powder and ectoparasites. We transferred all powder and ectoparasites that fell on to the sheet to a 1.5ml Eppendorf tube filled with 96% ethyl alcohol and inserted a label with host metadata.

JEA also collected ectoparasite specimens using Clayton and Drown's (2001) post-mortem ruffling method for euthanised avian hosts. These hosts were collected and prepared as museum voucher specimens. To collect ectoparasites, JEA placed each euthanised host in a Ziploc bag with cotton soaked in ethyl acetate for 20 minutes. He then removed the bird from the bag and ruffled the plumage for 60 seconds over a white sheet of paper. Each specimen was returned to its Ziploc bag (with cotton soaked with ethyl acetate), ruffling the plumage two additional times, at intervals of 15 minutes. The ectoparasites were collected from the paper with a small brush and placed in a vial with 96% ethyl alcohol with a label including host specimen metadata. Bird voucher specimens were deposited in the bird collection of Instituto de Ciencias Naturales (ICN) of Universidad Nacional (Bogotá, Colombia) and the Museum of Natural History (MHNU) at Universidad de los Llanos (Villavicencio, Meta, Colombia). Lice were separated from the other ectoparasites, placed into individual vials and identified to genus using taxonomic keys Price et al. (2003). Host taxonomy followed the South American Classification Committee Remsen et al. (2017). Many louse species require microscopic examination of a slide-mounted specimen for species level identification. As this will be the focus of future work, these lice were only identified to genus. All specimens are stored at -80C for later DNA extraction and slide mounting at the Universidad Icesi, Cali Colombia. Vouchered, slide-mounted specimens will be made available at Universidad Icesi in Colombia and The Museum of Natural History at the University of Nevada, Reno in the U.S. The Colombian permit was approved by the ANLA by the Resolución 509 del 21 de mayo del 2014 and the Peruvian permit was approved by the Institutional Animal Care and Use Committee at the University of Florida (Protocol #: 201106068) and by permits from the government of Peru (0239-2013 MINAGRI-DGFFS/DGEFFS 2013).

We compared our findings with the world checklist of chewing lice in Price et al. (2003) and recently published taxonomic literature on Neotropical lice in Price et al. (2005), Price et al. (2008), Price and Dalgleish (2006), Sychra et al. (2007), Kounek et al. (2011a), Kounek et al. (2011b), Valim et al. (2011). Using these resources, for each host species in our study, we classified the louse fauna documented amongst our samples combined from both Colombia and Peru into one of four categories.

0) Not previously reported - avian species with no louse association data reported.

1) Same as reported - avian species for which our study found the same louse genera as reported.

2) Fewer than reported - avian species for which our study found fewer louse genera than reported

3) More than reported - avian species for which our study found more louse genera than reported

Results

In Colombia, we sampled 1,032 individual birds from 280 species. Just over half, 51.6% (532), of these birds were infected with ectoparasites (i.e. feather mites, ticks, parasitic flies, fleas and lice) and we found lice on 30% (310) of individual hosts from 138 avian species, 36 avian families and 13 avian orders (Table 2). In Peru, we found lice on 262 individual birds from 98 species, 19 families and 5 orders (Table 3). In both countries combined, we identified 35 louse genera on 210 bird species from 37 avian families and 13 avian orders. Lice documented in this study are from two suborders and three families: Suborder Amblycera (Menoponidae and Ricinidae); and suborder Ischnocera (Philopteridae).

Table 2.

Louse-host associations from birds captured in Colombia. N - number of birds examined, Ni - Number of infected birds. Superscripts A and I represent louse suborders Amblycera or Ischnocera and * indicates a previously unrecorded louse host association.

Bird taxa Louse genera N Ni
Tinamiformes
Tinamidae (1)
Crypturellus soui Strongylocotes sp. I 1 1
Galliformes
Odontophoridae (1)
Colinus cristatus Gonioides sp.I 2 2
Lipeurus sp.I
Oxylipeurus sp.I
Columbiformes
Columbidae (3)
Leptotila rufaxilla Columbicola sp.I 2 2
Physconelloides sp.I
Columbina talpacoti Columbicola sp.I 2 2
Physconelloides sp.I
Zentrygon frenata Campanulotes sp.I 1 1
Cuculiformes
Cuculidae (2)
Crotophaga ani Osborniella sp.A 1 1
Vernoniella sp.I
Piaya cayana Cuculoecus sp.I 1 1
Caprimulgiformes
Caprimulgidae (2)
Systellura longirostris Mulcticola sp.I,* 1 1
Nyctidromus albicollis Mulcticola sp.I 3 3
Apodiformes
Apodidae (1)
Chaetura meridionalis Eureum sp.A,* 1 1
Trochilidae (2)
Anthracothorax nigricollis Trochiliphagus sp.A 2 2
Thalurania colombica Myrsidea sp. A,* 1 1
Charadriiformes
Scolopacidae (1)
Gallinago paraguaiae Saemundssonia sp. I 1 1
Rhynonirmus sp.I,*
Jacanidae (1)
Jacana jacana Rallicola sp.I 1 1
Accipitriformes
Accipitridae (1)
Accipiter striatus Degeeriella sp.I 1 1
Coraciiformes
Alcedinidae (3)
Chloroceryle americana Alcedoffula sp. I 2 2
Chloroceryle inda Alcedoffula sp. I 2 2
Chloroceryle aenea Alcedoffula sp. I 3 2
Momotidae (2)
Momotus momota Philopterus sp. I 2 2
Momotus aequatorialis Brueelia s.l. I,* 4 1
Galbuliformes
Bucconidae (1)
Hypnelus ruficollis Picicola sp. I,* 3 3
Piciformes
Capitonidae (1)
Eubucco bourcierii Penenirmus sp.I 3 1
Ramphastidae (1)
Aulacorhynchus haematopygus Austrophilopterus sp.I 4 1
Picidae (6)
Picumnus squamulatus Penenirmus sp.I,* 1 1
Melanerpes formicivorus Penenirmus sp.I 1 1
Melanerpes rubricapillus Brueelia s.l. I,* 1 1
Picoides fumigatus Brueelia s.l. I,* 5 1
Colaptes rubiginosus Penenirmus sp. I,* 1 1
Dryocopus lineatus Picicola sp.I,* 1 1
Psittaciformes
Psittacidae (3)
Brotogeris cyanoptera Psittacobrosus sp.A 1 1
Forpus conspicillatus Psittacobrosus sp. A 1 1
Eupsittula pertinax Psittacobrosus sp. A 2 2
Paragoniocotes sp.I
Passeriformes
Thamnophilidae (3)
Dysithamnus puncticeps Ricinus sp.A,* 1 1
Myrmotherula schisticolor Ricinus sp.A,* 6 1
Formicivora grisea Myrsidea sp.A,* 1 1
Conopophagidae (1)
Conopophaga castaneiceps Formicaphagus sp.I,* 1 1
Grallaridae (1)
Grallaria alleni Picicola sp.I,* 1 1
Rhynocrhyptidae (1)
Scytalopus griseicollis Rallicola sp.I,* 3 1
Furnariidae (12)
Dendrocincla fuliginosa Rallicola sp.I 10 2
Ricinus sp.A,*
Glyphorhynchus spirurus Rallicola sp.I 23 1
Xiphorhynchus obsoletus Rallicola sp.I,* 2 2
Dendroplex picus Rallicola sp.I,* 3 2
Anabacerthia variegaticeps Philopterus sp.I,* 1 1
Syndactyla subalaris Rallicola sp. I,* 8 1
Myrsidea sp.A
Clibanornis rubiginosus Rallicola sp.I,* 2 2
Thripadectes ignobilis Rallicola sp.I,* 2 2
Thripadectes virgaticeps Rallicola sp.I,* 4 2
Myrsidea sp.A
Premnoplex brunnescens Rallicola sp.I 10 1
Myrsidea sp.A
Cranioleuca vulpina Rallicola sp.I,* 1 1
Myrsidea sp.A
Synallaxis unirufa Rallicola sp.I,* 2 1
Tyrannidae (13)
Elaenia flavogaster Myrsidea sp.A 1 1
Elaenia parvirostris Ricinus sp.A,* 1 1
Elaenia chiriquensis Menacanthus sp.A,* 1 1
Elaenia pallatangae Myrsidea sp.A,* 2 1
Mecocerculus leucophrys Menacanthus sp.A,* 2 1
Mionectes striaticollis Myrsidea sp.A, 28 12
Philopterus sp. I,*
Mionectes olivaceus Myrsidea sp.A 13 4
Philopterus sp.I,*
Mionectes oleagineus Myrsidea sp.A 18 2
Leptopogon amaurocephalus Philopterus sp.I,* 16 3
Atalotriccus pilaris Philopterus sp.I,* 1 1
Rhynchocyclus olivaceus Myrsidea sp.A 4 1
Platyrinchus coronatus Myrsidea sp.A,* 2 1
Myiarchus tyrannulus Philopterus sp.I,* 1 1
Cotingidae (3)
Pipreola riefferii Cotingacola sp.I 26 8
Philopterus sp. I,*
Myrsidea sp.A,*
Pipreola arcuata Pseudocophorus sp.I 1 1
Pipreola jucunda Ricinus sp.A,* 1 1
Pipridae (4)
Chloropipo flavicapilla Philopterus sp.I,* 7 2
Manacus manacus Ricinus sp.A 9 2
Philopterus sp.I
Pipra filicauda Ricinus sp.A,* 7 6
Philopterus sp.I,*
Myrsidea sp.A,*
Machaeropterus regulus Ricinus sp.A 21 3
Tytiridae (1)
Pachyramphus polychopterus Myrsidea sp.A,* 3 3
Ricinus sp.A
Corvidae (1)
Cyanocorax violaceus Brueelia s.l.I 1 1
Myrsidea sp.A
Hirundinidae (1)
Progne tapera Philopterus sp.I,* 2 2
Myrsidea sp.A
Troglodytidae (2)
Troglodytes aedon Penenirmus sp.I 6 2
Cyphorhinus thoracicus Penenirmus sp.I,* 8 1
Turdidae (10)
Myadestes ralloides Philopterus sp.I,* 29 15
Myrsidea sp.A,*
Catharus ustulatus Philopterus sp.I,* 10 4
Myrsidea sp.A
Entomodestes coracinus Brueelia s.l.I,* 8 4
Myrsidea sp.A
Myrsidea sp.A
Turdus leucops Brueelia s.l.I,* 13 2
Turdus leucomelas Myrsidea sp.A 4 4
Brueelia s.l.I
Turdus nudigenis Myrsidea sp.A 6 6
Brueelia s.l.I,+
Turdus ignobilis Myrsidea sp.A 1 1
Brueelia s.l.I,*
Turdus fuscater Myrsidea sp.A,* 2 1
Brueelia s.l.I,*
Turdus serranus Myrsidea sp.A,* 19 12
Brueelia s.l.I,*
Turdus albicollis Myrsidea sp.A,* 2 2
Brueelia s.l. I,*
Thraupidae (34)
Paroaria nigrogenis Myrsidea sp.A,* 1 1
Brueelia s.l.I,*
Schistochlamys melanopis Myrsidea sp.A 1 1
Hemispingus atropileus Myrsidea sp.A,* 2 1
Hemispingus frontalis Myrsidea sp.A,* 7 1
Ramphocelus carbo Myrsidea sp.A 15 15
Brueelia s.l.I,*
Ricinus sp.A
Ramphocelus flammigerus Myrsidea sp.A,* 3 2
Bangsia edwardsi Myrsidea sp.A,* 2 2
Bangsia aureocincta Philopterus sp.I,* 3 1
Myrsidea sp.A,*
Buthraupis montana Myrsidea sp.A,* 2 2
Chlorornis riefferii Myrsidea sp.A,* 3 1
Anisognathus somptuosus Myrsidea sp.A,* 10 6
Iridosornis rufivertex Myrsidea sp.A,* 1 1
Chlorochrysa phoenicotis Myrsidea sp.A,* 4 2
Thraupis palmarum Myrsidea sp.A 3 2
Ricinus sp.A
Thraupis cyanocephala Myrsidea sp.A 3 2
Brueelia s.l.I,*
Tangara heinei Myrsidea sp.A,* 4 2
Tangara cayana Myrsidea sp.A 9 9
Machaerilaemus sp.A,*
Tangara vitriolina Myrsidea sp.A,* 1 1
Tangara rufigula Myrsidea sp.A,* 3 3
Tangara nigroviridis Myrsidea sp.A,* 5 1
Tangara gyrola Myrsidea sp.A 1 1
Tangara arthus Myrsidea sp.A,* 8 1
Tangara icterocephala Myrsidea sp.A 3 3
Ricinus sp.A,*
Tersina viridis Menacanthus sp.A,* 1 1
Diglossa albilatera Myrsidea sp.A,* 14 2
Diglossa caerulescens Myrsidea sp.A,* 4 2
Philopterus sp.I
Catamblyrhynchus diadema Myrsidea sp.A,* 3 2
Haplospiza rustica Philopterus sp.I,* 2 1
Saltator maximus Myrsidea sp.A 2 2
Saltator coerulescens Myrsidea sp.A,* 1 1
Volatinia jacarina Myrsidea sp.A,* 2 2
Sporophila minuta Ricinus sp.A,* 1 1
Sporophila crassirostris Philopterus sp.I,* 1 1
Coereba flaveola Brueelia s.l.I,* 1 1
Emberizidae (6)
Oreothraupis arremonops Myrsidea sp.A,* 3 1
Chlorospingus flavigularis Myrsidea sp.A,* 3 2
Chlorospingus flavopectus Myrsidea sp.A 10 9
Ricinus sp. A,*
Philopterus sp. I,*
Penenirmus sp.I,*
Chlorospingus semifuscus Myrsidea sp.A,* 8 5
Philopterus sp.I,*
Brueelias.l.I,*
Arremonops conirostris Myrsidea sp.A 3 3
Arremon brunneinucha Myrsidea sp.A 18 8
Brueelia s.l. I
Cardinalidae (1)
Habia cristata Myrsidea sp.A,* 1 1
Brueelias.l.I,*
Parulidae (5)
Setophaga fusca Ricinus sp.A 2 1
Myiothlypis fulvicauda Menacanthus sp.A,* 1 1
Myiothlypis coronata Myrsidea sp.A,* 17 7
Brueelias.l.I,*
Basileuterus tristriatus Myrsidea sp.A,* 18 4
Menacanthus sp. A,*
Myrsidea sp.A
Myioborus miniatus Ricinus sp.A,* 7 2
Icteridae (4)
Psarocolius decumanus Myrsidea sp.A 1 1
Cacicus cela Myrsidea sp.A 1 1
Brueelia s.l. I
Cacicus chrysonotus Myrsidea sp.A,* 4 1
Brueelia s.l. I
Gymnomystax mexicanus Myrsidea sp.A,* 1 1
Fringillidae (3)
Euphonia chlorotica Myrsidea sp.A,* 1 1
Euphonia laniirostris Myrsidea sp.A 1 1
Chlorophonia pyrrhophrys Philopterus sp.I,* 1 1
Brueelias.l.I,*
TOTAL (138) 641 310

Table 3.

Host-louse associations from sites in Peru. Ni Number of birds infested. Superscripts A and I represent the suborders of lice Amblycera and Ischnocera, * represents new host-louse association reported in this study. +New genus reported for a host species with louse associations known (No) Number of host species representing each bird family.

Bird taxa Louse genera Ni
Columbiformes
Columbidae (1)
Geotrygon montana Columbicola sp.I 1
Apodiformes
Trochilidae (2)
Coeligena violifer Trochiloecetes sp.A, * 1
Thalurania furcata Trochiliphagus sp.A,* 1
Coraciiformes
Momotidae (1)
Baryphthengus martii Brueelia s.l.I 1
Piciformes
Capitonidae (1)
Eubucco versicolor Myrsidea sp.A, * 1
Passeriformes
Thamnophilidae (7)
Thamnophilus caerulescens Formicaphagus sp.I, * 1
Macharilaemus sp.A, *
Dysithamnus mentalis Formicaphagus sp.I, * 3
Myrsidea sp.A, *
Pyriglena leuconota Formicaphagus sp.I 1
Myrmoborus myotherinus Formicaphagus sp.I, * 1
Sciaphylax hemimelaena Ricinus sp.A, * 1
Rhegmatorhina melanosticta Ricinus sp.A, * 1
Myrsidea sp.A, *
Phlegopsis nigromaculata Myrsidea sp.A, * 1
Grallaridae (1)
Grallaricula flavirostris Myrsidea sp.A, * 1
Formicariidae (1)
Chamaeza campanisona Myrsidea sp.A, * 1
Furnariidae (15)
Dendrocincla fuliginosa Rallicola sp.I 1
Glyphorhynchus spirurus Myrsidea sp.A 3
Rallicola sp.I
Xiphocolaptes promeropirhynchus Rallicola sp.I, * 1
Xiphorhynchus triangularis Rallicola sp.I 2
Anabacerthia striaticollis Philopterus sp.I,* 3
Ricinus sp.A,*
Syndactyla ucayalae Myrsidea sp.A, * 1
Clibanornis rubiginosus Myrsidea sp.A, * 2
Rallicola sp.I
Thripadectes holostictus Furnariphilus sp.I, * 2
Myrsidea sp.A, *
Thripadectes melanorhynchus Myrsidea sp.A, * 5
Rallicola sp.I
Automolus ochrolaemus Myrsidea sp.A 2
Automolus subulatus Myrsidea sp.A, * 1
Rallicola sp.I
Premnoplex brunnescens Myrsidea sp.A 1
Margarornis squamiger Rallicola sp.I 1
Asthenes helleri Philopterus sp.I, * 2
Synallaxis azarae Furnariphilus sp.I, * 1
Tyrannidae (16)
Phylloscartes poecilotis Myrsidea sp.A, * 1
Phylloscartes ophtalmicus Philopterus sp.I, * 1
Myrsidea sp.A
Mionectes olivaceus Myrsidea sp.A 17
Mionectes striaticollis Myrsidea sp.A 26
Philopterus sp.I, *
Mionectes oleagineus Myrsidea sp.A 6
Leptopogon superciliaris Myrsidea sp.A, * 7
Philopterus sp.I
Myiotriccus ornatus Myrsidea sp.A, * 1
Lophotriccus pileatus Philopterus sp.I, * 1
Myiophobus inornatus Ricinus sp.A, * 1
Pyrrhomyias cinnamomeus Philopterus sp.I, * 1
Mitrephanes olivaceus Philopterus sp.I, * 1
Ochthoeca frontalis Philopterus sp.I, * 6
Myrsidea sp.A
Ochthoeca pulchella Philopterus sp.I, * 6
Myrsidea sp.A, *
Ochthoeca cinnamomeiventris Philopterus sp.I, * 1
Ochthoeca rufipectoralis Philopterus sp.I, * 2
Conopias cinchoneti Philopterus sp.I, * 1
Cotingidae (2)
Pipreola intermedia Myrsidea sp.A, * 2
Philopterus sp.I, *
Pipreola pulchra Myrsidea sp.A, * 1
Pipridae (4)
Chiroxiphia boliviana Myrsidea sp.A, * 6
Philopterus sp.I
Ricinus sp.A
Lepidothrix coeruleocapilla Myrsidea sp.A, * 8
Philopterus sp.I, *
Ricinus sp.A, *
Pipra fasciicauda Myrsidea sp.A, * 1
Philopterus sp.I, *
Machaeropterus pyrocephalus Philopterus sp.I, * 2
Ricinus sp.A
Troglodytidae (1)
Henicorhina leucophrys Myrsidea sp.A, * 1
Turdidae (6)
Myadestes ralloides Myrsidea sp.A, * 4
Philopterus sp.I, *
Brueelia s.l.I, *
Catharus ustulatus Myrsidea sp.A 5
Brueelia s.l.I
Entomodestes leucotis Myrsidea sp.A, * 4
Brueelia s.l.I
Sturnidoecus sp.I, *
Turdus leucops Myrsidea sp.A, * 1
Turdus fuscater Myrsidea sp.A, * 1
Philopterus sp.I
Turdus serranus Myrsidea sp.A, * 3
Menacanthus sp.A
Philopterus sp.I
Brueelia s.l.I, *
Ricinus sp.A
Thraupidae (25)
Hemispingus superciliaris Ricinus sp.A, * 1
Hemispingus melanotis Myrsidea sp.A, * 4
Ricinus sp.A
Trichothraupis melanops Myrsidea sp.A, * 3
Thlypopsis ruficeps Philopterus sp.I, * 2
Ricinus sp.A
Ramphocelus carbo Myrsidea sp.A 2
Buthraupis montana Myrsidea sp.A, * 1
Chlorornis riefferii Myrsidea sp.A, * 1
Iridosornis analis Myrsidea sp.A, *
Brueelia s.l.I, * 5
Iridosornis jelskii Myrsidea sp.A, *
Chlorochrysa calliparaea Myrsidea sp.A, * 1
Thraupis cyanocephala Myrsidea sp.A 1
Tangara cyanicollis Myrsidea sp.A, * 1
Brueelia s.l.I, * 2
Tangara punctata Myrsidea sp.A, *
Tangara nigroviridis Myrsidea sp.A, * 2
Tangara chilensis Myrsidea sp.A 2
Tangara gyrola Myrsidea sp.A 1
Tangara schrankii Myrsidea sp.A, * 1
Tangara arthus Myrsidea sp.A, * 2
Conirostrum albifrons Ricinus sp.A, * 2
Diglossa mystacalis Myrsidea sp.A, * 2
Diglossa brunneiventris Myrsidea sp.A, * 2
Diglossa glauca Myrsidea sp.A, * 1
Ricinus sp.A, * 1
Diglossa cyanea Myrsidea sp.A, *
Saltator maximus Brueelia s.l.I,+ 3
Coereba flaveola Myrsidea sp.A 1
Emberizidae (6)
Chlorospingus flavigularis Myrsidea sp.A, * 8
Chlorospingus parvirostris Myrsidea sp.A, * 2
Chlorospingus flavopectus Myrsidea sp.A 1
Arremon taciturnus Myrsidea sp.A 2
Arremon brunneinucha Brueelia s.l.I 1
Atlapetes melanolaemus Ricinus sp.A, * 4
Cardinalidae (1)
Piranga leucoptera Myrsidea sp.A, * 1
Parulidae (5)
Myiothlypis luteoviridis Myrsidea sp.A, * 5
Ricinus sp.A, *
Myiothlypis signata Myrsidea sp.A, * 3
Menacanthus sp.A, *
Picicola sp.I, *
Ricinus sp.A, *
Myiothlypis bivittata Myrsidea sp.A, * 5
Ricinus sp.A
Myiothlypis coronata Myrsidea sp.A, * 7
Brueelia s.l.I, *
Myioborus miniatus Myrsidea sp.A 6
Menacanthus sp.A, *
Ricinus sp.A, *
Icteridae (1)
Amblycercus holosericeus Philopterus sp.I, * 1
Fringillidae (2)
Euphonia mesochrysa Ricinus sp.A, * 1
Euphonia xanthogaster Myrsidea sp.A, * 7
TOTAL (98) 262

Suborder Amblycera

Menoponidae - Six menoponid louse genera were distributed on 131 bird species: Myrsidea Waterston 1915 (120 bird species), Menacanthus Neumann 1912 (8), PsittacobrosusCarriker 1954 (3), Machaerilaemus Harrison 1915 (2), EureumNitzsch 1818 (1) and Osborniella Thompson 1948 (1).

Ricinidae – Three ricinid louse genera were distributed on 39 bird species: Ricinus De Geer 1778 (36 bird species), Trochiliphagus Carriker 1960 (2) and Trochiloecetes Paine and Mann 1913 (1).

Suborder Ischnocera

Philopteridae – Twenty six philopterid genera were distributed on 119 bird species: PhilopterusNitzsch 1818 (42 bird species), BrueeliaKéler 1936 (30), Rallicola Johnston and Harrison 1911 (18), Penenirmus Clay and Meinertzhagen 1938a (7), Formicaphagus Carriker 1957 (5), Picicola Clay and Meinertzhagen 1938a (4), Alcedoffula Clay and Meinertzhagen 1939 (3), Columbicola Ewing 1929 (3), Furnariphilus Price and Clayton 1995 (2), MulcticolaClay and Meinertzhagen 1938b (2), Physconelloides Ewing 1927 (2), AustrophilopterusEwing 1929 (1), Campanulotes Kéler 1939 (1), Cotingacola Carriker 1956 (1) CuculoecusEwing 1936 (1), DegeeriellaNeumann 1906 (1), Goniodes Nitzsch 1818 (1), LipeurusNitzsch 1818 (1) Oxylipeurus Mjöberg 1910 (1), Paragoniocotes Cummings 1916 (1), PseudocophorusCarriker 1940 (1), Rhynonirmus Thompson 1935 (1), Strongylocotes Tachenberg 1882 (1), Saemundssonia Timmermann 1936 (1), SturnidoecusEichler 1944 (1) and Vernoniella Guimarães 1942 (1).

In total, including the two louse suborders, 131 bird species had one louse genus, 61 had two louse genera, 16 had three louse genera, 1 had four and 1 had five louse genera.

We compared our findings with the world checklist of chewing lice in Price et al. (2003) and more recent publications. We report new louse generic associations for 109 of 210 bird species (51.6% of the host species sampled; Tables 2 and 3). For 52 bird species (24.8% of the host species sampled), we found the same number of louse genera as previously reported and, in 29 bird species (13.8% of the host species sampled), we found fewer genera than previously reported. In addition, for 20 bird species (9.5% of the host species sampled), we found more louse genera than previously reported Fig. 2.

Figure 2.

Figure 2.

Bird-louse associations included in each category described in the methods above. The Y axis represents the number of bird species and the X axis indicates the categories in which bird species were grouped according to reported louse-bird associations.

Data resources

The dataset is the result of several trips to 22 localities to study Neotropical bird communities in Colombia and Peru Table 1. In this study, we report lice on a total of 572 individual hosts totalling 210 bird species from 37 avian families and 13 orders. We identified 35 louse genera from two suborders and three families: Suborder Amblycera (Menoponidae and Ricinidae); and suborder Ischnocera (Philopteridae) Suppl. material 1

Discussion

In the present study, we report the genera of lice collected from 210 bird species at 22 sites in Colombia and Peru. We compared the louse-host association found in our study with the known genera of lice from these species of birds. We used Price et al. (2003), the most complete published bird-louse association list, along with recent Neotropical host-louse faunistic and taxonomic publications to assess the novelty of the host-parasite associations documented by our study.

We report 109 novel host-louse generic associations. This was not unexpected as we sampled several lowland and Andean habitats which have previously had few studies of bird-louse associations.

The majority (87.1%) of these new records were from Passeriformes. Knowledge of lice from many Passeriformes is relatively poor compared to non-passerines Sychra et al. (2007) and thus the diversity and number of undescribed parasites from these hosts is likely high e.g. Valim and Weckstein (2013), as confirmed by recent taxonomic descriptions and new associations of lice from Neotropical birds in the families Tyrannidae Price et al. 2005, Thraupidae Price and Johnson 2009,Price et al. 2005, Price and Johnson 2009, Furnariidae Sychra et al. 2007, Parulidae Kounek et al. 2011a and Cardinalidae, Emberizidae and Fringillidae Kounek et al. 2011b. These studies are likely only the beginning of describing new species in these mega-diverse louse groups found on Neotropical passerine birds. For example, Valim and Weckstein (2013) point out that louse genera such as Myrsidea harbour large numbers of undescribed species. Our data show that the majority of Passeriformes sampled (64.5%) have Myrsidea and many of them are likely to be new species.

The distribution of lice is related to the distribution of their hosts Rózsa and Vas (2015) and many orders and families typically have parasites of distinctive louse faunas Smith (2001). Our data are consistent with generalised patterns across avian groups. For example, members of the Ricinidae are known to infect hummingbirds and small Passeriformes, whereas members of the Menoponidae are widely distributed across most avian families Rózsa and Vas (2015). Similarly, we found lice from the genus Ricinus on 36 species of Passeriformes from 11 host families. Myrsidea is a broadly distributed, mega-diverse genus Valim and Weckstein (2013), found mostly on Passeriformes and is considered to have a high degree of host-specificity Price and Dalgleish (2007). We also found that the louse genus Myrsidea, from the family Menoponidae, was distributed on 120 bird species, two of which were non-Passeriformes.

In Ischnocera, the family Philopteridae is widely distributed on birds Rózsa and Vas (2015). The various genera of Philopteridae are often specialised morphologically and behaviourally for living on a single microhabitat in the plumage (e.g. wing, head and/or body feathers) where lice can avoid host preening Johnson et al. (2012). This microhabitat specialisation may in part explain the host specificity and diversity of these lice. The three most common genera of Philopteridae found in our study were Philopterus, Brueelia and Rallicola. Of these, Philopterus was the most widely distributed genus in this family, occurring on a diverse array of passerine host families and a single non-passerine host species (42 bird species). Brueelia, the most speciose genus of lice in the family Philopteridae, infects avian hosts from many orders, including Coraciiformes, Passeriformes and Piciformes Valim and Weckstein (2011) Valim and Weckstein (2013) Gustafsson and Bush (2017). Similarly, we found Brueelia on 30 bird species, including two species of Coraciiformes, two species of Piciformes and 26 species of Passeriformes. Finally, the third most frequently collected genus was Rallicola, found on 18 bird species, including one host species in the order Charadriiformes and 17 host species in the order Passeriformes. Rallicola is one of the most speciose of ischnoceran louse genera and has been reported from the avian host orders Apterygiformes, Charadriiformes, Gruiformes and Passeriformes Price et al. (2003), Smith (2001).

Thirty percent of the Colombian birds sampled (138 host species) were infected with lice. In Peru, Clayton et al. (1992) found that 48% of birds examined (127 host species) were infected by lice, whereas in Brazil, Marini et al. (1996) and Oniki (1999) found that 20% of 313 individual birds (53 species) and 63% of 60 birds (38 species) had lice, respectively. Enout et al. (2012) found that 65% of 57 avian host species sampled were infected with lice. These studies suggest that louse prevalence may vary geographically. For example, for the flycatcher, Leptopogon amaurocephalus, in Brazil, Marini et al. (1996) and Oniki (1999), sampled two and one individual hosts respectively and all were infected with lice, whereas Enout et al. (2012) found two of three individuals sampled infected with lice. We found that in Remedios, Colombia, only 16.6% (n=12) of L. amaurocephalus individuals were infected. However, other host species had similar prevalence rates as reported in previous studies. For example, in Brazil, Oniki (1999) found that 67% of Turdus leucomelas sampled (n=3) were infected with lice and we found that all individuals of Turdus leucomelas sampled at two localities by us (n=4) were infected. However, a second Brazilian study conducted by Enout et al. (2012) found a 43% infestation rate (n=35) for the same bird species. It is difficult to determine the drivers behind variation in prevalence. It is possible that we are seeing an ecological pattern due to differences in humidity at the different sampling localities Moyer et al. (2002), Bush et al. (2009), host distributions or due to the different methods used by researchers to collect the lice. Additional work, examining sites where lice were collected with the same methodology, will help to address these issues.

Conclusions

This manuscript presents data on avian lice from 210 host species. We report and document significant new host-louse association records from poorly sampled yet diverse regions of the world. This information provides an important basis for future studies in the tropics and further enriches our knowledge of the parasite fauna associated with Neotropical birds.

Supplementary Material

Supplementary material 1

Lice from Colombian and Peruvian birds

Juliana Soto-Patiño, Gustavo A Londoño, Jorge Enrique Avendaño, Jill E Jankowski, Andrew T Cook and Julie Allen

Data type: Taxonomic

File: oo_159704.xlsx

bdj-06-e21635-s001.xlsx (68.6KB, xlsx)

Acknowledgements

This study was possible thanks to hundreds of volunteers that extracted birds and dusted them and to the private land owners in Colombia and Peru who both allowed us to work at their properties and provided housing and logistic support. We thank SERNAP for giving us permission to work in the buffer zone of Manu National Park in Peru and Parques Naturales de Colombia that allowed us to work in Colombia. This study was supported in part by scholarship fund “Colombia Biodiversa” of the Alejandro Angel Escobar Foundation to JSP, US National Science Foundation grants DEB-1503804 to JDW and DEB-1239788, DEB-1342604 to KPJ and DEB-1120682 to JEJ and GAL.

References

  1. Avendaño J. E, Bohórquez C. I, Rosselli L, Arzuza-Buelvas D, Estela F. A, Cuervo A. M, Stiles F. G, Renjifo L. M. Lista de chequeo de las aves de Colombia: una síntesis del estado de conocimiento desde Hilty & Brown (1986) Ornitología Colombiana. 2017;16:eA01. [Google Scholar]
  2. Bush Sarah E., Harbison Christopher W., Slager David L., Peterson A. Townsend, Price Roger D., Clayton Dale H. Geographic Variation in the Community Structure of Lice on Western Scrub-Jays. http://dx.doi.org/10.1645/ge-1591.1. Journal of Parasitology. 2009;95(1):10–13. doi: 10.1645/ge-1591.1. [DOI] [PubMed] [Google Scholar]
  3. Carriker Melbourne A. Studies in Neotropical Mallophaga - Part II. New genera and species. Lloydia. 1940:281–30.
  4. Carriker Melbourne A. Studies in Neotropical Mallophaga (XIII) - The Menoponidae of the Neotripical Psittacidae. Rev. Brasil. Entomol. 1954:145–173.
  5. Carriker Melbourne A. Estudios sobre Mallophaga Neotropicales (XIV) (Piojos de los Cotingidae) Rev. Acad. Colombiana Cienc. Exact., Fis. y Nat. 1956;9:365–380. [Google Scholar]
  6. Carriker Melbourne A. Studies in Neotropical Mallophaga, XVI: Bird Lice of the Suborder Ischnocera. http://dx.doi.org/10.5479/si.00963801.106-3375.409. Proceedings of the United States National Museum. 1957;106(3375):409–439. doi: 10.5479/si.00963801.106-3375.409. [DOI] [Google Scholar]
  7. Carriker Melbourne A. Studies in Neotropical Mallophaga, XVII: A New Family (Trochiliphagidae) and a New Genus of the Lice of Hummingbirds. http://dx.doi.org/10.5479/si.00963801.112-3438.307. Proceedings of the United States National Museum. 1960;112(3438):307–342. doi: 10.5479/si.00963801.112-3438.307. [DOI] [Google Scholar]
  8. Clay T, Meinertzhagen R. Two new genera of mallophaga. Entomologist. 1938;71:73–76. [Google Scholar]
  9. Clay T, Meinertzhagen R. New Genera and Species of Mallophaga. Entomologist. 1938:275–27.
  10. Clay T, Meinertzhagen R. New genera and species of Mallophaga. Entomologist. 1939;72:161–168. [Google Scholar]
  11. Clayton Dale H., Drown Devin M. Critical Evaluation of Five Methods for Quantifying Chewing Lice (Insecta: Phthiraptera) http://dx.doi.org/10.2307/3285290. The Journal of Parasitology. 2001;87(6):1291. doi: 10.2307/3285290. [DOI] [PubMed] [Google Scholar]
  12. Clayton D. H., Gregory R. D., Price R. D. Comparative Ecology of Neotropical Bird Lice (Insecta: Phthiraptera) http://dx.doi.org/10.2307/5631. The Journal of Animal Ecology. 1992;61(3):781. doi: 10.2307/5631. [DOI] [Google Scholar]
  13. Clayton D. H., Walther B. A. Influence of host ecology and morphology on the diversity of Neotropical bird lice. http://dx.doi.org/10.1034/j.1600-0706.2001.940308.x. Oikos. 2001;94(3):455–467. doi: 10.1034/j.1600-0706.2001.940308.x. [DOI] [Google Scholar]
  14. Cummings B. F. New species of lice. Ann. Mag. Nat. Hist. 1916;17:90–107. [Google Scholar]
  15. De Geer C. Mémories pour servir à l`historie naturelle des insectes aptères. Hesselber, Stockolm. [chewing lice in Vol. 7:69:82] 1778
  16. Eichler W. Die Entfaltungsregel und andere Gesetzmäßigkeiten in den parasitogenetischen Beziehungen der Mallophagen und anderer ständiger Parasiten zu ihren Wirten. Zool Anz. 1942;137:77–83. [Google Scholar]
  17. Eichler W. Notulae Mallophagologicae. XI. Acht neue Gattungen der Nirmi und Docophori. Stettiner Entomologische Zeitung. 1944;105:80–82. [Google Scholar]
  18. Enout Alexandre Magno Junqueira, Lobato Débora Nogueira Campos, Diniz Francisco Carvalho, Antonini Yasmine. Chewing lice (Insecta, Phthiraptera) and feather mites (Acari, Astigmata) associated with birds of the Cerrado in Central Brazil. http://dx.doi.org/10.1007/s00436-012-3016-5. Parasitology research. 2012;111(4):1731–42. doi: 10.1007/s00436-012-3016-5. [DOI] [PubMed] [Google Scholar]
  19. Ewing H. E. Descriptions of new genera and species of Mallophaga together with keys to some related genera of Menoponidae and Philopteridae. Journal of the Washington Academy of Sciences. 1927;17:86–96. [Google Scholar]
  20. Ewing Henry Ellsworth. A Manual of External Parasites. http://dx.doi.org/10.2307/3222065. Transactions of the American Microscopical Society. 1929;48(4):447. doi: 10.2307/3222065. [DOI] [Google Scholar]
  21. Ewing H. E. The Taxonomy of the Mallophagan Family Trichodectidae, with Special Reference to the New World Fauna. http://dx.doi.org/10.2307/3271530. The Journal of Parasitology. 1936;22(3):233. doi: 10.2307/3271530. [DOI] [Google Scholar]
  22. Guimarães L. Nota sobre genero Vernonia. Pap. Avul. Dept. Zool. 1942;II:11. [Google Scholar]
  23. Gustafsson Daniel R, Bush Sarah E. Morphological revision of the hyperdiverse Brueelia-complex (Insecta: Phthiraptera: Ischnocera: Philopteridae) with new taxa, checklists and generic key. http://dx.doi.org/10.11646/zootaxa.4313.1.1. Zootaxa. 2017;4313(1):1. doi: 10.11646/zootaxa.4313.1.1. [DOI] [Google Scholar]
  24. Harrison Launcelot. On a New Family and Five New Genera of Mallophaga. http://dx.doi.org/10.1017/s0031182000009793. Parasitology. 1915;7(04):383. doi: 10.1017/s0031182000009793. [DOI] [Google Scholar]
  25. Jetz W., Thomas G. H., Joy J. B., Hartmann K., Mooers A. O. The global diversity of birds in space and time. http://dx.doi.org/10.1038/nature11631. Nature. 2012;491(7424):444–448. doi: 10.1038/nature11631. [DOI] [PubMed] [Google Scholar]
  26. Johnson Kevin P, Shreve Scott M, Smith Vincent S. Repeated adaptive divergence of microhabitat specialization in avian feather lice. http://dx.doi.org/10.1186/1741-7007-10-52. BMC Biology. 2012;10(1):52. doi: 10.1186/1741-7007-10-52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Johnston T Harvey, Harrison Launcelot. Notes on some Mallophagan generic names. http://dx.doi.org/10.5962/bhl.part.21901. Proceedings of the Linnean Society of New South Wales. 1911;36:321–328. doi: 10.5962/bhl.part.21901. [DOI] [Google Scholar]
  28. Kéler S. von. Über einige Mallophagen aus Rossitten. Arbeiten über morphologische und taxonomische Entomologie aus Berlin-Dahlem. 1936;3:256–26. [Google Scholar]
  29. Kéler S. von. Baustoffe zu einer Monographie der Mallophagen II. Teil: Überfamilie Nirmoidea (1). Die Familien Trichophilopteridae, Goniodidae, Heptapsogastridae. Nova Acta Leopoldina. 1939:1–254.
  30. Kounek Filip, Sychra Oldrich, Capek Miroslav, Literak Ivan. Chewing Lice Of The Genus Myrsidea (Phthiraptera: Menoponidae) From New World Warblers (Passeriformes: Parulidae) From Costa Rica, With Descriptions Of Four New Species. http://dx.doi.org/10.5281/ZENODO.205057. Zootaxa. 2011;63:56–6. doi: 10.5281/ZENODO.205057. [DOI] [PubMed] [Google Scholar]
  31. Kounek Filip, Sychra Oldrich, Capek Miroslav, Lipkova Alexandra, Literak Ivan. Chewing Lice Of The Genus Myrsidea (Phthiraptera: Menoponidae) From The Cardinalidae, Emberizidae, Fringillidae And Thraupidae (Aves: Passeriformes) From Costa Rica, With Descriptions Of Four New Species. http://dx.doi.org/10.5281/ZENODO.278715. Zootaxa. 2011;3032:1–16. doi: 10.5281/ZENODO.278715. [DOI] [Google Scholar]
  32. Marini M. A, Reinert B. L, Bornschein M. R, Pinto J. C, Pichorim M. A. Ecological correlates of ectoparasitism on Atlantic Forest birds, Brazil. Ararajuba . 1996;4:93–102. [Google Scholar]
  33. Marshall A. G. The ecology of ectoparasitic insects. Academic Press; 1981. [Google Scholar]
  34. Mjöberg Eric. Studien über Mallophagen und Anopluren. http://dx.doi.org/10.5962/bhl.part.26907. Arkiv för zoologi / utgivet af K. Svenska vetenskaps-akademien. 1910;6:1–296. doi: 10.5962/bhl.part.26907. [DOI] [Google Scholar]
  35. Moyer Brett R., Drown Devin M., Clayton Dale H. Low humidity reduces ectoparasite pressure: implications for host life history evolution. http://dx.doi.org/10.1034/j.1600-0706.2002.970208.x. Oikos. 2002;97(2):223–228. doi: 10.1034/j.1600-0706.2002.970208.x. [DOI] [Google Scholar]
  36. Neumann G. Note sur les Mallophages. http://dx.doi.org/10.5962/bhl.part.18334. Bulletin de la Société zoologique de France. 1906;31:54–60. doi: 10.5962/bhl.part.18334. [DOI] [Google Scholar]
  37. Neumann L. Notes sur les Mallophages - II. Arch. Parasitol. 1912;15:353–384. [Google Scholar]
  38. Nitzsch C. L. Die familien und Gattungen der Thierinsekten (Insecta Epizoica); als Prodromus einer Naturgeschichte derselben. Magazin der Entomologie (Germar) 1818;3:261–316. [Google Scholar]
  39. Oniki Y. Avian parasites and notes on habits of lice from Mato Grosso, Brazil. Iheringia, Sér, Zool. 1999:183–19.
  40. Paine Jhon H, Mann William M. Mallophaga From Brazilian Birds. http://dx.doi.org/10.1155/1913/70596. Psyche: A Journal of Entomology. 1913;20(1):15–23. doi: 10.1155/1913/70596. [DOI] [Google Scholar]
  41. Parra-Henao G, Alarcón Pineda E. P, López Valencia G, Ramírez Monroy D. M, Jaramillo Crespo G. E. Detection of ectoparasites in wild birds evaluated in Medellin (Colombia) Revista Colombiana de Ciencias Pecuarias. 2011;24:29–37. [Google Scholar]
  42. Poulin Robert, Morand Serge. The Diversity of Parasites. http://dx.doi.org/10.1086/393500. The Quarterly Review of Biology. 2000;75(3):277–293. doi: 10.1086/393500. [DOI] [PubMed] [Google Scholar]
  43. Price P. W. Evolutionary Biology of Parasites. Vol. 15. Princeton University Press; 1980. [Google Scholar]
  44. Price Roger D., Clayton Dale H. Kaysius emersoni (Mallophaga: Menoponidae), a New Genus and New Species of Louse from the Wedge-Billed Woodcreeper (Passeriformes: Dendrocolaptidae) of Peru. http://dx.doi.org/10.1093/aesa/82.1.29. Annals of the Entomological Society of America. 1989;82(1):29–31. doi: 10.1093/aesa/82.1.29. [DOI] [Google Scholar]
  45. Price Roger D., Clayton Dale H. A new genus and three new species of chewing lice (Phthiraptera: Philopteridae) from Peruvian ovenbirds (Passeriformes: Furnariidae) http://www.phthiraptera.info/Publications/0045.pdf Proceedings of the Entomological Society of Washington. 1995;97:839–844. [Google Scholar]
  46. Price Roger D., Hellenthal Ronald A., Dalgleish Robert C. The genus Myrsidea Waterston (Phthiraptera: Menoponidae) from tyrant-flycatchers (Passeriformes: Tyrannidae), with descriptions of 13 new species. Zootaxa. 2005;1048:1–20. [Google Scholar]
  47. Price Roger D., Dalgleish Robert C. Myrsidea Waterston (Phthiraptera: Menoponidae) from tanagers (Passeriformes: Thraupidae), with descriptions of 18 new species. Zootaxa. 2006;1174:1–25. [Google Scholar]
  48. Price Roger D., Dalgleish Robert C. Myrsidea Waterston (Phthiraptera: Menoponidae) from the Emberizidae (Passeriformes), with descriptions of 13 new species. Zootaxa. 2007;1467:1–18. [Google Scholar]
  49. Price Roger D., Johnson Kevin P., Dalgleish Robert C. Five New Species Of Myrsidea Waterston (Phthiraptera: Menoponidae) From Saltators And Grosbeaks (Passeriformes: Cardinalidae) Zootaxa. 2008;1873:1–10. [Google Scholar]
  50. Price Roger D., Johnson Kevin P. Five New Species Of Myrsidea Waterston (Phthiraptera: Menoponidae) From Tanagers (Passeriformes: Thraupidae) In Panama. Zootaxa. 2009;2200:61–68. [Google Scholar]
  51. Price R. D, Hellenthal R. A, Palma R. L. World checklist of chewing lice with host associations and keys to families and genera. In: Price R. D, Hellenthal R. A, Palma R. L, Johnson K. P, Clayton D. H, editors. The Chewing Lice: World Checklist and Biological Overview. Illinois Natural History Survey Special Publication 24; 2003. x+501 [Google Scholar]
  52. Remsen J. V, Areta J. I., Cadena C. D., Claramunt S., Jaramillo A., Pacheco J. F., Pérez-Emán J, Robbins M. B, Stiles F. G., Stotz D. F., Zimmer K. J. A classification of the bird species of South America. American Ornithologists' Union. http://www.museum.lsu.edu/~Remsen/SACCBaseline.htm. [2017-02-21T00:00:00+02:00];
  53. Rózsa Lajos, Vas Zoltán. Host correlates of diversification in avian lice. In: Morand S, Krasnov B. R, Littlewood D. T.J, editors. Parasite Diversity and Diversification: Evolutionary Ecology Meets Phylogenetic. Cambridge University Press; 2015. [DOI] [Google Scholar]
  54. Smith V. S. Avian louse phylogeny (Phthiraptera: Ischnocera): A cladistic study based on morphology. Zoological Journal of the Linnean Society. 2001;132:81 – 144–81 – 144. [Google Scholar]
  55. Smith V. S., Ford T., Johnson K. P., Johnson P. C. D., Yoshizawa K., Light J. E. Multiple lineages of lice pass through the K-Pg boundary. http://dx.doi.org/10.1098/rsbl.2011.0105. Biology Letters. 2011;7(5):782–785. doi: 10.1098/rsbl.2011.0105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Sychra OldRich, Literák Ivan, Capek Miroslav, Havlícek Martin. Chewing Lice (Phthiraptera) From Ovenbirds, Leaftossers and Woodcreepers (Passeriformes: Furnariidae: Furnariinae, Sclerurinae, Dendrocolaptinae) from Costa Rica, With Descriptions of Four New Species of the GeneraRallicolaandMyrsidea. http://dx.doi.org/10.18475/cjos.v43i1.a11. Caribbean Journal of Science. 2007;43(1):117–126. doi: 10.18475/cjos.v43i1.a11. [DOI] [Google Scholar]
  57. Tachenberg O. Die Mallophagen mit besonderer Berücksichtigung der von Dr. Meyer gesammelten Arten. Nova Acta Ksl. Leop. -Carol. -Deut. Akad. Naturforscher. 1882;1:48–58. [Google Scholar]
  58. Thompson Gordon B. New Genera of Mallophaga. I. http://dx.doi.org/10.1017/s0031182000015171. Parasitology. 1935;27:281–287. doi: 10.1017/s0031182000015171. [DOI] [Google Scholar]
  59. Thompson Gordon B. III.—Records and descriptions of Mallophaga from Jamaican birds.—Part I. http://dx.doi.org/10.1080/00222934808653887. Journal of Natural History Series 12. 1948;1(1):48–58. doi: 10.1080/00222934808653887. [DOI] [Google Scholar]
  60. Timmermann V. G. Saemundssonia nov. gen., ein neues Mallophagengenus, aufgestellt filr Philopterus gonothorax (Giebel) und verwandte Arten. Zool. Anz. 1936;114:97–100. [Google Scholar]
  61. Valim Michel P., Weckstein Jason D. Two new species of Brueelia Kéler, 1936 (Ischnocera, Philopteridae) parasitic on Neotopical trogons (Aves, Trogoniformes) Zookeys. 2011;128:1–13. doi: 10.3897/zookeys.128.1583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Valim Michel P., Price Roger D., Johnson Kevin P. New host records and descriptions of five new species of Myrsidea Waterston, 1915 (Phthiraptera: Menoponidae) from passerine birds (Aves: Passeriformes) Zootaxa. 2011;3097:1–19. [Google Scholar]
  63. Valim Michel P., Weckstein Jason D. A drop in the bucket of the megadiverse chewing louse genus Myrsidea (Phthiraptera, Amblycera, Menoponidae): ten new species from Amazonian Brazil. http://dx.doi.org/10.14411/fp.2013.040. Folia Parasitologica. 2013;60(5):377–400. doi: 10.14411/fp.2013.040. [DOI] [PubMed] [Google Scholar]
  64. Vas Zoltán, Csorba Gábor, Rózsa Lajos. Evolutionary co-variation of host and parasite diversity—the first test of Eichler’s rule using parasitic lice (Insecta: Phthiraptera) http://dx.doi.org/10.1007/s00436-012-2850-9. Parasitology Research. 2012;111(1):393–401. doi: 10.1007/s00436-012-2850-9. [DOI] [PubMed] [Google Scholar]
  65. Waterston J. On two new species of Mallophaga (Menoponidae): Menacanthus balfouri n. sp. and Myrsidea victrix n. sp. from Colombia. http://dx.doi.org/10.5962/bhl.part.7786. The Entomologist's monthly magazine. 1915;51:12–16. doi: 10.5962/bhl.part.7786. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary material 1

Lice from Colombian and Peruvian birds

Juliana Soto-Patiño, Gustavo A Londoño, Jorge Enrique Avendaño, Jill E Jankowski, Andrew T Cook and Julie Allen

Data type: Taxonomic

File: oo_159704.xlsx

bdj-06-e21635-s001.xlsx (68.6KB, xlsx)

Articles from Biodiversity Data Journal are provided here courtesy of Pensoft Publishers

RESOURCES