Skip to main content
Data in Brief logoLink to Data in Brief
. 2018 Sep 17;20:1810–1815. doi: 10.1016/j.dib.2018.09.032

Dataset on the current state of air pollution in Bussau-Guinea Bussau: A diagnostic approach

ME Emetere a,c,, ML Akinyemi a, T Oladimeji b
PMCID: PMC6169430  PMID: 30294628

Abstract

Recent UN report shows that over 100,000 people die from air pollution. The general anthropoenic pollution from Sahara desert, fossil-fuel engines and bush-burning needs to be reduced to avoid natural accidents, regional climate change etc. A fifteen years dataset was obtained from the Multi-angle Imaging Spectro-Radiometer (MISR). The dataset generated from the primary dataset would assist to understand the state of air pollution over Bussau. It also serves as a reference to guide the choice of ground measuring equipments in the area. The aerosol constant and tunning constant over Bussau is 0.6694 and 0.1354 respectively. The maximum percentage aerosol loading is given as 14.8%.

Keywords: Air pollution, Aerosol, Bussau, Threats, Sustainability


Specifications table

Subject area Air Pollution
More specific subject area Aerosol loading and Retention
Type of data Table and figure
How data was acquired Multi-angle Imaging Spectro-Radiometer (MISR).
Data format Raw and analyzed
Experimental factors Aerosol Optical Depth
Experimental features Measurement at 550 nm
Data source location Bussau
Data accessibility Multi-angle Imaging Spectro-Radiometer

Value of the data

  • The data gives a good background for further study on aerosol loading.

  • The data provides technician necessary insight towards configurating sun-photometer over Bussau.

  • The data helps to quantify the extent of air pollution.

  • The data provides modeller necessary insight on aerosol loading and retention challenges over Bussau.

1. Data

The unique distribution of aerosols over the West African region in the last decade is evident in its diverse effects on life forms, regional meteorology [1] and the ozone layer. The satellite imagery of aerosols loading over West Africa from 2000 to 2015 show the implication of the impact of anthropogenic air pollution on human health, agricultural produce, thermal comfort and climate perturbations. Massive aerosols deposition into the atmosphere can contribute to the anthropogenic radiative forcing of climate [2], [3]. Moreover, the residence time of emitted aerosols show how significant the climatic influences of aerosols are most important in the immediate vicinity of the source regions [4], [5]. The current danger in most parts of West Africa is the non-availability of ground station to monitor aerosols properties and air pollution. Most research in the West African region is based on satellite observations.

The primary data was obtained from Multi-angle Imaging Spectro-Radiometer (MISR) i.e. found in Table 1. The tunning and atmospheric constants for fifteen was obtained using the West African regional scale dispersion model (WASDM) from the AOD dataset (Fig. 2, Fig. 3). The tunning and atmospheric constants are factors that determines the accuracy of ground instruments e.g. sun photometer [6], [7] and they are presented in Table 2. The secondary dataset i.e. aerosol loading was generated using the extended WASDM are presented in Table 3.

Table 1.

Statistical analysis of AOD over research site.

2000 2001 2002 2003 2004 2005 2006
Number of values 8 10 10 10 10 9 11
Minimum 0.26 0.25 0.29 0.1 0.23 0.23 0.28
Maximum 1.89 0.92 1.16 1.21 1.35 1.1 0.81
Mean 0.67 0.59 0.69 0.6 0.61 0.68 0.52
Standard error 0.18 0.08 0.11 0.11 0.11 0.09 0.06
Standard deviation 0.52 0.25 0.36 0.36 0.35 0.28 0.2
Coefficient of variation 0.77 0.43 0.52 0.6 0.57 0.41 0.38

2007 2008 2009 2010 2011 2012 2013

Number of values 10 8 11 10 11 10 10
Minimum 0.29 0.47 0.25 0.21 0.25 0.3 0.28
Maximum 1.38 1.26 1.17 0.82 0.93 1.44 1.01
Mean 0.64 0.85 0.64 0.5 0.58 0.59 0.58
Standard error 0.13 0.1 0.09 0.07 0.06 0.11 0.07
Standard deviation 0.4 0.28 0.28 0.21 0.2 0.36 0.21
Coefficient of variation 0.62 0.33 0.45 0.41 0.34 0.6 0.36

Fig. 2.

Fig. 2

AOD pattern for Bussau 2000–2013.

Fig. 3.

Fig. 3

AOD for new model and MISR (Bussau, 2000–2013).

Table 2.

Atmospheric constants over Bussua.

Location a1 a2 n1 n2 α Β
Bussau 0.6135 0.6694 0.1354 0.347 π4 π4

Table 3.

Aerosol loading over Bussua.

Month 2000 2001 2002 2003 2004
Jan 0,734765985 0,867898608 0,841672788 0,856936364 0,869979572
Feb 0,80061927 0,86106121 0,850215591 0,833213223 0,798162243
Mar 0,827337404 0,809448697 0,82978118 0,814640664 0,758743056
Apr 0,89151364 0,774691358 0,829408069 0,800100507 0,807725806
May 0,89151364 0,840826496 0,796684202 0,787968924 0,856541712
Jun 0,89151364 0,823492533 0,824463389 0,811697549 0,864515229
Jul 0,89151364 0,89151364 0,827337404 0,867173139 0,877992029
Aug 0,831692315 0,89151364 0,883890793 0,831997952 0,89151364
Sep 0,866823132 0,869126523 0,871091816 0,835806237 0,881344544
Oct 0,874451401 0,850792057 0,830873735 0,843068365 0,865140445
Nov 0,89151364 0,865036736 0,846072742 0,86848423 0,848068955
Dec 0,89151364 0,852435706 0,878141098 0,874086438 0,836935581

Month 2005 2006 2007 2008 2009

Jan 0,834177041 0,82836097 0,790230852 0,858029946 0,876456644
Feb 0,844627417 0,858662629 0,837228415 0,795550012 0,827574285
Mar 0,855945708 0,787314931 0,818206985 0,824463389 0,808941199
Apr 0,803922839 0,796054829 0,825363734 0,768009384 0,818877544
May 0,816405132 0,866126012 0,799803484 0,729674845 0,823654787
Jun 0,864094476 0,828282503 0,815325887 0,780408196 0,820099605
Jul 0,875087824 0,89151364 0,862813336 0,832150497 0,846475382
Aug 0,89151364 0,871907092 0,865963016 0,888964075 0,886629993
Sep 0,839973512 0,833816485 0,797562242 0,814812231 0,860838673
Oct 0,833011487 0,845938152 0,807993282 0,873660625 0,878141098
Nov 0,87177234 0,872441588 0,855103199 0,860950039 0,877501938
Dec 0,866973432 0,870779603 0,870631879 0,853245413 0,857874754

Month 2010 2011 2012 2013

Jan 0,839802114 0,862867282 0,861680155 0,817982841
Feb 0,870755018 0,856841843 0,807279162 0,848305643
Mar 0,748394685 0,848942503 0,705785374 0,871456164
Apr 0,76688054 0,785540241 0,793773947 0,853678054
May 0,728384275 0,813088767 0,745509595 0,820210232
Jun 0,759873159 0,76289584 0,837179661 0,80656232
Jul 0,616767219 0,718531231 0,89151364 0,89151364
Aug 0,862597063 0,89151364 0,861282966 0,819378621
Sep 0,877387621 0,888342508 0,89151364 0,802387938
Oct 0,875224606 0,830307971 0,876925784 0,89151364
Nov 0,866772933 0,87208606 0,870353517 0,874339508
Dec 0,873703433 0,863723734 0,881344544 0,89151364

2. Experimental design, materials and methods

Guinea Bissau is located on latitude 11°N to 12°N and longitude 14°W to 15°W. It is bounded within an approximate total area of 36,125 km2. Guinea Bissau geographical structure includes low coastal plain, Guinean mangroves and forest. Its climate is hot, dry, dusty harmattan haze in the dry season, and warm and humid in the wet season. Its wet season is from June to early October, and the dry season is from December to April. Bussua is located on longitude and latitude of −15.6° and 11.87° (Fig. 1).

Fig. 1.

Fig. 1

Geographical map of Bussau.

The West African regional scale dispersion model (WASDM) for calculating aerosol loading over a region:.

ψ(λ)=a12cos(n1πτ(λ)2x)cos(n1πτ(λ)2y)+an2cos(nnπτ(λ)2x)cos(nnπτ(λ)2y) (1)

a is atmospheric constant gotten from the fifteen years aerosol optical depth (AOD) dataset from MISR, n is the tunning constant, τ(λ) is the AOD of the area and ψ(λ) is the aerosol loading. The analysis of Eq. (1) was done using the C++ codes.

The value of the atmospheric and tuning constant for fifteen years was determine using Eq. (1) over fifteen years data (Fig. 1, Fig. 2). The statistical analysis of the AOD over the research area is shown in Table 1. The value atmospheric and tuning constant i.e. obtained from the comprehensive dataset is shown in Table 2 and the curve fitting technique is shown in Fig. 1, Fig. 2. The secondary dataset i.e. aerosol loading was generated using the extended WASDM (shown in Eq. (1)) are presented in Table 3. The percentage of the highest aerosol loading is shown in Table 4. It is calculated by finding the percentage increase between two consecutive years.

Table 4.

Percentage of increase of aerosols loading over Nouakchott.

Year 2001 2008 2009 2011
Percentage (%) 10.9 8.1 2.0 14.8

Acknowledgement

The authors appreciate Covenant University for partial sponsorship. The authors appreciate NASA for primary dataset. Emetere M.E. is a Senior Research Associate at University of Johannesburg.

Footnotes

Transparency document

Transparency data associated with this article can be found in the online version at 10.1016/j.dib.2018.09.032.

Contributor Information

M.E. Emetere, Email: moses.emetere@covenantuniversity.edu.ng.

M.L. Akinyemi, Email: marvel.akinyemi@covenantuniversity.edu.ng.

T. Oladimeji, Email: temitayo.fatoki@covenantuniversity.edu.ng.

Transparency document. Supplementary material

Supplementary material

mmc1.pdf (1.2MB, pdf)

.

References

  • 1.Nicholson Sharon E. The West African sahel: a review of recent studies on the rainfall regime and its interannual variability. ISRN Meteorol. 2013;2013(453521):1–32. [Google Scholar]
  • 2.Sun W.Y., Yang K.J.S., Lin N.H. Numerical simulations of asian dust-aerosols and regional impacts on weather and climate- Part II: prcm-dust model simulation. Aerosol Air Qual. Res. 2013;13:1641–1654. [Google Scholar]
  • 3.Charlson R.J., Langner J., Rodhe H., Leovy C.B., Warren S.G. perturbation of the Northern Hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus Ser. AB. 1991;43:152–163. [Google Scholar]
  • 4.Emetere M.E., Akinyemi M.L., Akinojo O. Parametric retrieval model for estimating aerosol size distribution via the AERONET, LAGOS station. Environ. Pollut. 2015;207(C):381–390. doi: 10.1016/j.envpol.2015.09.047. [DOI] [PubMed] [Google Scholar]
  • 5.Cao J.-J., Zhu C.-S., Tie X.-X., Geng F.-H., Xu H.-M., Ho S.S.H., Wang G.-H., Han Y.-M., Ho K.-F. Characteristics and sources of carbonaceous aerosols from Shanghai, China. Atmos. Chem. Phys. 2013;13:803–817. [Google Scholar]
  • 6.Emetere Moses E., Akinyemi M.L., Oladimeji T.E. Statistical examination of the aerosols loading over kano-nigeria: the satellite observation analysis. Sci. Rev. Eng. Environ. Sci. 2016;72:167–176. [Google Scholar]
  • 7.Schwartz S.E. The Whitehouse effect, shortwave radiative forcing of climate by anthropogenic aerosols: an overview. J. Aerosol Sci. 1996;27:359–382. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary material

mmc1.pdf (1.2MB, pdf)

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES