Abstract
Recent UN report shows that over 100,000 people die from air pollution. The general anthropoenic pollution from Sahara desert, fossil-fuel engines and bush-burning needs to be reduced to avoid natural accidents, regional climate change etc. A fifteen years dataset was obtained from the Multi-angle Imaging Spectro-Radiometer (MISR). The dataset generated from the primary dataset would assist to understand the state of air pollution over Bussau. It also serves as a reference to guide the choice of ground measuring equipments in the area. The aerosol constant and tunning constant over Bussau is 0.6694 and 0.1354 respectively. The maximum percentage aerosol loading is given as 14.8%.
Keywords: Air pollution, Aerosol, Bussau, Threats, Sustainability
Specifications table
Subject area | Air Pollution |
More specific subject area | Aerosol loading and Retention |
Type of data | Table and figure |
How data was acquired | Multi-angle Imaging Spectro-Radiometer (MISR). |
Data format | Raw and analyzed |
Experimental factors | Aerosol Optical Depth |
Experimental features | Measurement at 550 nm |
Data source location | Bussau |
Data accessibility | Multi-angle Imaging Spectro-Radiometer |
Value of the data
-
•
The data gives a good background for further study on aerosol loading.
-
•
The data provides technician necessary insight towards configurating sun-photometer over Bussau.
-
•
The data helps to quantify the extent of air pollution.
-
•
The data provides modeller necessary insight on aerosol loading and retention challenges over Bussau.
1. Data
The unique distribution of aerosols over the West African region in the last decade is evident in its diverse effects on life forms, regional meteorology [1] and the ozone layer. The satellite imagery of aerosols loading over West Africa from 2000 to 2015 show the implication of the impact of anthropogenic air pollution on human health, agricultural produce, thermal comfort and climate perturbations. Massive aerosols deposition into the atmosphere can contribute to the anthropogenic radiative forcing of climate [2], [3]. Moreover, the residence time of emitted aerosols show how significant the climatic influences of aerosols are most important in the immediate vicinity of the source regions [4], [5]. The current danger in most parts of West Africa is the non-availability of ground station to monitor aerosols properties and air pollution. Most research in the West African region is based on satellite observations.
The primary data was obtained from Multi-angle Imaging Spectro-Radiometer (MISR) i.e. found in Table 1. The tunning and atmospheric constants for fifteen was obtained using the West African regional scale dispersion model (WASDM) from the AOD dataset (Fig. 2, Fig. 3). The tunning and atmospheric constants are factors that determines the accuracy of ground instruments e.g. sun photometer [6], [7] and they are presented in Table 2. The secondary dataset i.e. aerosol loading was generated using the extended WASDM are presented in Table 3.
Table 1.
Statistical analysis of AOD over research site.
2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | |
---|---|---|---|---|---|---|---|
Number of values | 8 | 10 | 10 | 10 | 10 | 9 | 11 |
Minimum | 0.26 | 0.25 | 0.29 | 0.1 | 0.23 | 0.23 | 0.28 |
Maximum | 1.89 | 0.92 | 1.16 | 1.21 | 1.35 | 1.1 | 0.81 |
Mean | 0.67 | 0.59 | 0.69 | 0.6 | 0.61 | 0.68 | 0.52 |
Standard error | 0.18 | 0.08 | 0.11 | 0.11 | 0.11 | 0.09 | 0.06 |
Standard deviation | 0.52 | 0.25 | 0.36 | 0.36 | 0.35 | 0.28 | 0.2 |
Coefficient of variation | 0.77 | 0.43 | 0.52 | 0.6 | 0.57 | 0.41 | 0.38 |
2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | |
Number of values | 10 | 8 | 11 | 10 | 11 | 10 | 10 |
Minimum | 0.29 | 0.47 | 0.25 | 0.21 | 0.25 | 0.3 | 0.28 |
Maximum | 1.38 | 1.26 | 1.17 | 0.82 | 0.93 | 1.44 | 1.01 |
Mean | 0.64 | 0.85 | 0.64 | 0.5 | 0.58 | 0.59 | 0.58 |
Standard error | 0.13 | 0.1 | 0.09 | 0.07 | 0.06 | 0.11 | 0.07 |
Standard deviation | 0.4 | 0.28 | 0.28 | 0.21 | 0.2 | 0.36 | 0.21 |
Coefficient of variation | 0.62 | 0.33 | 0.45 | 0.41 | 0.34 | 0.6 | 0.36 |
Fig. 2.
AOD pattern for Bussau 2000–2013.
Fig. 3.
AOD for new model and MISR (Bussau, 2000–2013).
Table 2.
Atmospheric constants over Bussua.
Location | Β | |||||
---|---|---|---|---|---|---|
Bussau | 0.6135 | 0.6694 | 0.1354 | 0.347 |
Table 3.
Aerosol loading over Bussua.
Month | 2000 | 2001 | 2002 | 2003 | 2004 |
---|---|---|---|---|---|
Jan | 0,734765985 | 0,867898608 | 0,841672788 | 0,856936364 | 0,869979572 |
Feb | 0,80061927 | 0,86106121 | 0,850215591 | 0,833213223 | 0,798162243 |
Mar | 0,827337404 | 0,809448697 | 0,82978118 | 0,814640664 | 0,758743056 |
Apr | 0,89151364 | 0,774691358 | 0,829408069 | 0,800100507 | 0,807725806 |
May | 0,89151364 | 0,840826496 | 0,796684202 | 0,787968924 | 0,856541712 |
Jun | 0,89151364 | 0,823492533 | 0,824463389 | 0,811697549 | 0,864515229 |
Jul | 0,89151364 | 0,89151364 | 0,827337404 | 0,867173139 | 0,877992029 |
Aug | 0,831692315 | 0,89151364 | 0,883890793 | 0,831997952 | 0,89151364 |
Sep | 0,866823132 | 0,869126523 | 0,871091816 | 0,835806237 | 0,881344544 |
Oct | 0,874451401 | 0,850792057 | 0,830873735 | 0,843068365 | 0,865140445 |
Nov | 0,89151364 | 0,865036736 | 0,846072742 | 0,86848423 | 0,848068955 |
Dec | 0,89151364 | 0,852435706 | 0,878141098 | 0,874086438 | 0,836935581 |
Month | 2005 | 2006 | 2007 | 2008 | 2009 |
Jan | 0,834177041 | 0,82836097 | 0,790230852 | 0,858029946 | 0,876456644 |
Feb | 0,844627417 | 0,858662629 | 0,837228415 | 0,795550012 | 0,827574285 |
Mar | 0,855945708 | 0,787314931 | 0,818206985 | 0,824463389 | 0,808941199 |
Apr | 0,803922839 | 0,796054829 | 0,825363734 | 0,768009384 | 0,818877544 |
May | 0,816405132 | 0,866126012 | 0,799803484 | 0,729674845 | 0,823654787 |
Jun | 0,864094476 | 0,828282503 | 0,815325887 | 0,780408196 | 0,820099605 |
Jul | 0,875087824 | 0,89151364 | 0,862813336 | 0,832150497 | 0,846475382 |
Aug | 0,89151364 | 0,871907092 | 0,865963016 | 0,888964075 | 0,886629993 |
Sep | 0,839973512 | 0,833816485 | 0,797562242 | 0,814812231 | 0,860838673 |
Oct | 0,833011487 | 0,845938152 | 0,807993282 | 0,873660625 | 0,878141098 |
Nov | 0,87177234 | 0,872441588 | 0,855103199 | 0,860950039 | 0,877501938 |
Dec | 0,866973432 | 0,870779603 | 0,870631879 | 0,853245413 | 0,857874754 |
Month | 2010 | 2011 | 2012 | 2013 | |
Jan | 0,839802114 | 0,862867282 | 0,861680155 | 0,817982841 | |
Feb | 0,870755018 | 0,856841843 | 0,807279162 | 0,848305643 | |
Mar | 0,748394685 | 0,848942503 | 0,705785374 | 0,871456164 | |
Apr | 0,76688054 | 0,785540241 | 0,793773947 | 0,853678054 | |
May | 0,728384275 | 0,813088767 | 0,745509595 | 0,820210232 | |
Jun | 0,759873159 | 0,76289584 | 0,837179661 | 0,80656232 | |
Jul | 0,616767219 | 0,718531231 | 0,89151364 | 0,89151364 | |
Aug | 0,862597063 | 0,89151364 | 0,861282966 | 0,819378621 | |
Sep | 0,877387621 | 0,888342508 | 0,89151364 | 0,802387938 | |
Oct | 0,875224606 | 0,830307971 | 0,876925784 | 0,89151364 | |
Nov | 0,866772933 | 0,87208606 | 0,870353517 | 0,874339508 | |
Dec | 0,873703433 | 0,863723734 | 0,881344544 | 0,89151364 |
2. Experimental design, materials and methods
Guinea Bissau is located on latitude 11°N to 12°N and longitude 14°W to 15°W. It is bounded within an approximate total area of 36,125 km2. Guinea Bissau geographical structure includes low coastal plain, Guinean mangroves and forest. Its climate is hot, dry, dusty harmattan haze in the dry season, and warm and humid in the wet season. Its wet season is from June to early October, and the dry season is from December to April. Bussua is located on longitude and latitude of −15.6° and 11.87° (Fig. 1).
Fig. 1.
Geographical map of Bussau.
The West African regional scale dispersion model (WASDM) for calculating aerosol loading over a region:.
(1) |
a is atmospheric constant gotten from the fifteen years aerosol optical depth (AOD) dataset from MISR, n is the tunning constant, τ(λ) is the AOD of the area and ψ(λ) is the aerosol loading. The analysis of Eq. (1) was done using the C++ codes.
The value of the atmospheric and tuning constant for fifteen years was determine using Eq. (1) over fifteen years data (Fig. 1, Fig. 2). The statistical analysis of the AOD over the research area is shown in Table 1. The value atmospheric and tuning constant i.e. obtained from the comprehensive dataset is shown in Table 2 and the curve fitting technique is shown in Fig. 1, Fig. 2. The secondary dataset i.e. aerosol loading was generated using the extended WASDM (shown in Eq. (1)) are presented in Table 3. The percentage of the highest aerosol loading is shown in Table 4. It is calculated by finding the percentage increase between two consecutive years.
Table 4.
Percentage of increase of aerosols loading over Nouakchott.
Year | ||||
---|---|---|---|---|
Percentage (%) | 10.9 | 8.1 | 2.0 | 14.8 |
Acknowledgement
The authors appreciate Covenant University for partial sponsorship. The authors appreciate NASA for primary dataset. Emetere M.E. is a Senior Research Associate at University of Johannesburg.
Footnotes
Transparency data associated with this article can be found in the online version at 10.1016/j.dib.2018.09.032.
Contributor Information
M.E. Emetere, Email: moses.emetere@covenantuniversity.edu.ng.
M.L. Akinyemi, Email: marvel.akinyemi@covenantuniversity.edu.ng.
T. Oladimeji, Email: temitayo.fatoki@covenantuniversity.edu.ng.
Transparency document. Supplementary material
Supplementary material
.
References
- 1.Nicholson Sharon E. The West African sahel: a review of recent studies on the rainfall regime and its interannual variability. ISRN Meteorol. 2013;2013(453521):1–32. [Google Scholar]
- 2.Sun W.Y., Yang K.J.S., Lin N.H. Numerical simulations of asian dust-aerosols and regional impacts on weather and climate- Part II: prcm-dust model simulation. Aerosol Air Qual. Res. 2013;13:1641–1654. [Google Scholar]
- 3.Charlson R.J., Langner J., Rodhe H., Leovy C.B., Warren S.G. perturbation of the Northern Hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus Ser. AB. 1991;43:152–163. [Google Scholar]
- 4.Emetere M.E., Akinyemi M.L., Akinojo O. Parametric retrieval model for estimating aerosol size distribution via the AERONET, LAGOS station. Environ. Pollut. 2015;207(C):381–390. doi: 10.1016/j.envpol.2015.09.047. [DOI] [PubMed] [Google Scholar]
- 5.Cao J.-J., Zhu C.-S., Tie X.-X., Geng F.-H., Xu H.-M., Ho S.S.H., Wang G.-H., Han Y.-M., Ho K.-F. Characteristics and sources of carbonaceous aerosols from Shanghai, China. Atmos. Chem. Phys. 2013;13:803–817. [Google Scholar]
- 6.Emetere Moses E., Akinyemi M.L., Oladimeji T.E. Statistical examination of the aerosols loading over kano-nigeria: the satellite observation analysis. Sci. Rev. Eng. Environ. Sci. 2016;72:167–176. [Google Scholar]
- 7.Schwartz S.E. The Whitehouse effect, shortwave radiative forcing of climate by anthropogenic aerosols: an overview. J. Aerosol Sci. 1996;27:359–382. [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Supplementary material