Skip to main content
Tissue Engineering and Regenerative Medicine logoLink to Tissue Engineering and Regenerative Medicine
. 2016 Oct 20;13(5):538–546. doi: 10.1007/s13770-016-0059-1

Alginate-hyaluronic acid-collagen composite hydrogel favorable for the culture of chondrocytes and their phenotype maintenance

Chinmaya Mahapatra 1,2, Guang-Zhen Jin 1,2, Hae-Won Kim 1,2,3,
PMCID: PMC6170835  PMID: 30603434

Abstract

Articular cartilage has limited regeneration capacity, thus significant challenge has been made to restore the functions. The development of hydrogels that can encapsulate and multiply cells, and then effectively maintain the chondrocyte phenotype is a meaningful strategy to this cartilage repair. In this study, we prepared alginate-hyaluronic acid based hydrogel with type I collagen being incorporated, namely Alg-HA-Col composite hydrogel. The incorporation of Col enhanced the chemical interaction of molecules, and the thermal stability and dynamic mechanical properties of the resultant hydrogels. The primary chondrocytes isolated from rat cartilage were cultured within the composite hydrogel and the cell viability recorded revealed active proliferation over a period of 21 days. The mRNA levels of chondrocyte phenotypes, including SOX9, collagen type II, and aggrecan, were significantly up-regulated when the cells were cultured within the Alg-HA-Col gel than those cultured within the Alg-HA. Furthermore, the secretion of sulphated glycosaminoglycan, a cartilage-specific matrix molecule, was recorded higher in the collagen-added composite hydrogel. Although more in-depth studies are required such as the in vivo functions, the currently-prepared Alg-HA-Col composite hydrogel is considered to provide favorable 3-dimensional matrix conditions for the cultivation of chondrocytes. Moreover, the cell-cultured constructs may be useful for the cartilage repair and tissue engineering.

Key Words: Chondrocytes, Alginate, Hyaluronic acid, Collagen type I, Cartilage regeneration

References

  • 1.Cuevas P, Burgos J, Baird A. Basic fibroblast growth factor (FGF) promotes cartilage repair in vivo. Biochem Biophys Res Commun. 1988;156:611–618. doi: 10.1016/S0006-291X(88)80887-8. [DOI] [PubMed] [Google Scholar]
  • 2.Brenner JM, Kunz M, Tse MY, Winterborn A, Bardana DD, Pang SC, et al. Development of large engineered cartilage constructs from a small population of cells. Biotechnol Prog. 2013;29:213–221. doi: 10.1002/btpr.1670. [DOI] [PubMed] [Google Scholar]
  • 3.Lach M, Trzeciak T, Richter M, Pawlicz J, Suchorska WM. Directed differentiation of induced pluripotent stem cells into chondrogenic lineages for articular cartilage treatment. J Tissue Eng. 2014;5:2041731414552701. doi: 10.1177/2041731414552701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Jin ES, Jeong JH, Min JK, Jeon SR, Choi KH. Implantation of adipose tissue-derived mesenchymal stem cells in degenerative intervertebral disc of rat:when is the most effective time during the degeneration period. Tissue Eng Regen Med. 2014;11:195–202. doi: 10.1007/s13770-014-0055-2. [DOI] [Google Scholar]
  • 5.Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889–895. doi: 10.1056/NEJM199410063311401. [DOI] [PubMed] [Google Scholar]
  • 6.Rahman RA, Radzi MAA, Sukri NM, Nazir N S M. Tissue engineering of articular cartilage:from bench to bed-side. Tissue Eng Regen Med. 2015;12:1–11. doi: 10.1007/s13770-014-9044-8. [DOI] [Google Scholar]
  • 7.Yang JW, Heo MS, Lee CH, Moon SW, Min BH, Choi BH, et al. The effect of the cell-derived extracellular matrix membrane on wound adhesions in rabbit strabismus surgery. Tissue Eng Regen Med. 2014;11:155–162. doi: 10.1007/s13770-013-1121-x. [DOI] [Google Scholar]
  • 8.Jin GZ, Kim JJ, Park JH, Seo SJ, Kim JH, Lee EJ, et al. Biphasic nanofibrous constructs with seeded cell layers for osteochondral repair. Tissue Eng Part C Methods. 2014;20:895–904. doi: 10.1089/ten.tec.2013.0521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Faikrua A W-a S, Oonkhanond B, Viyoch J. A thermosensitive chitosan/corn starch/ß-glycerol phosphate hydrogel containing TGF-ß1 promotes differentiation of MSCs into chondrocyte-like cells. Tissue Eng Regen Med. 2014;11:355–361. doi: 10.1007/s13770-014-0030-y. [DOI] [Google Scholar]
  • 10.Seo SJ, Mahapatra C, Singh RK, Knowles JC, Kim HW. Strategies for osteochondral repair:focus on scaffolds. J Tissue Eng. 2014;5:2041731414. doi: 10.1177/2041731414541850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Sun H, Liu Y, Jiang T, Liu X, He A, Li J, et al. Chondrogenic differentiation and three dimensional chondrogenesis of human adipose-derived stem cells induced by engineered cartilage-derived conditional media. Tissue Eng Regen Med. 2014;11:59–66. doi: 10.1007/s13770-013-1120-y. [DOI] [Google Scholar]
  • 12.Hoshiba T, Yamada T, Lu H, Kawazoe N, Chen G. Maintenance of cartilaginous gene expression on extracellular matrix derived from serially passaged chondrocytes during in vitro chondrocyte expansion. J Biomed Mater Res A. 2012;100:694–702. doi: 10.1002/jbm.a.34003. [DOI] [PubMed] [Google Scholar]
  • 13.Shetty AA, Kim SJ, Shetty V, Stelzeneder D, Shetty N, Bilagi P, et al. Autologous bone-marrow mesenchymal cell induced chondrogenesis:single-stage arthroscopic cartilage repair. Tissue Eng Regen Med. 2014;11:247–253. doi: 10.1007/s13770-014-0061-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Callahan LA, Ganios AM, Childers EP, Weiner SD, Becker ML. Primary human chondrocyte extracellular matrix formation and phenotype maintenance using RGD-derivatized PEGDM hydrogels possessing a continuous Young’s modulus gradient. Acta Biomater. 2013;9:6095–6104. doi: 10.1016/j.actbio.2012.12.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Caron MM, Emans PJ, Coolsen MM, Voss L, Surtel DA, Cremers A, et al. Redifferentiation of dedifferentiated human articular chondrocytes:comparison of 2D and 3D cultures. Osteoarthritis Cartilage. 2012;20:1170–1178. doi: 10.1016/j.joca.2012.06.016. [DOI] [PubMed] [Google Scholar]
  • 16.Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division:implications for cartilage tissue repair. Proc Natl Acad Sci U S A. 2002;99:9996–10001. doi: 10.1073/pnas.142309999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering:progress and challenges. Glob Cardiol Sci Pract. 2013;2013:316–342. doi: 10.5339/gcsp.2013.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Kontturi L J E, Muhonen V, Collin EC, Pandit AS, Kiviranta I, et al. An injectable, in situ forming type II collagen/hyaluronic acid hydrogel vehicle for chondrocyte delivery in cartilage tissue engineering. Drug Deliv Transl Res. 2014;4:149–158. doi: 10.1007/s13346-013-0188-1. [DOI] [PubMed] [Google Scholar]
  • 19.Sheehy EJ, Mesallati T, Vinardell T, Kelly DJ. Engineering cartilage or endochondral bone:a comparison of different naturally derived hydrogels. Acta Biomater. 2015;13:245–253. doi: 10.1016/j.actbio.2014.11.031. [DOI] [PubMed] [Google Scholar]
  • 20.Palazzolo G, Broguiere N, Cenciarelli O, Dermutz H, Zenobi-Wong M. Ultrasoft alginate hydrogels support long-term three-dimensional functional neuronal networks. Tissue Eng Part A. 2015;21:2177–2185. doi: 10.1089/ten.tea.2014.0518. [DOI] [PubMed] [Google Scholar]
  • 21.Hulmes DJ, Marsden ME, Strachan RK, Harvey RE, McInnes N, Gardner DL. Intra-articular hyaluronate in experimental rabbit osteoarthritis can prevent changes in cartilage proteoglycan content. Osteoarthritis Cartilage. 2004;12:232–238. doi: 10.1016/j.joca.2003.11.007. [DOI] [PubMed] [Google Scholar]
  • 22.Ishikawa M, Yoshioka K, Urano K, Tanaka Y, Hatanaka T, Nii A. Biocompatibility of cross-linked hyaluronate (Gel-200) for the treatment of knee osteoarthritis. Osteoarthritis Cartilage. 2014;22:1902–1909. doi: 10.1016/j.joca.2014.08.002. [DOI] [PubMed] [Google Scholar]
  • 23.Yu CJ, Ko CJ, Hsieh CH, Chien CT, Huang LH, Lee CW, et al. Proteomic analysis of osteoarthritic chondrocyte reveals the hyaluronic acid-regulated proteins involved in chondroprotective effect under oxidative stress. J Proteomics. 2014;99:40–53. doi: 10.1016/j.jprot.2014.01.016. [DOI] [PubMed] [Google Scholar]
  • 24.Baboolal TG, Mastbergen SC, Jones E, Calder SJ, Lafeber FP, McGonagle D. Synovial fluid hyaluronan mediates MSC attachment to cartilage, a potential novel mechanism contributing to cartilage repair in osteoarthritis using knee joint distraction. Ann Rheum Dis. 2016;75:908–915. doi: 10.1136/annrheumdis-2014-206847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Ishida O, Tanaka Y, Morimoto I, Takigawa M, Eto S. Chondrocytes are regulated by cellular adhesion through CD44 and hyaluronic acid pathway. J Bone Miner Res. 1997;12:1657–1663. doi: 10.1359/jbmr.1997.12.10.1657. [DOI] [PubMed] [Google Scholar]
  • 26.Akmal M, Singh A, Anand A, Kesani A, Aslam N, Goodship A, et al. The effects of hyaluronic acid on articular chondrocytes. J Bone Joint Surg Br. 2005;87:1143–1149. doi: 10.1302/0301-620X.87B8.15083. [DOI] [PubMed] [Google Scholar]
  • 27.Yoon DM, Curtiss S, Reddi AH, Fisher JP. Addition of hyaluronic acid to alginate embedded chondrocytes interferes with insulin-like growth factor-1 signaling in vitro and in vivo. Tissue Eng Part A. 2009;15:3449–3459. doi: 10.1089/ten.tea.2009.0069. [DOI] [PubMed] [Google Scholar]
  • 28.Yoshikawa K, Kitamura N, Kurokawa T, Gong JP, Nohara Y, Yasuda K. Hyaluronic acid affects the in vitro induction effects of synthetic PAMPS and PDMAAm hydrogels on chondrogenic differentiation of ATDC5 cells, depending on the level of concentration. BMC Musculoskelet Disord. 2013;14:56. doi: 10.1186/1471-2474-14-56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Coates EE, Riggin CN, Fisher JP. Matrix molecule influence on chondrocyte phenotype and proteoglycan 4 expression by alginate-embedded zonal chondrocytes and mesenchymal stem cells. J Orthop Res. 2012;30:1886–1897. doi: 10.1002/jor.22166. [DOI] [PubMed] [Google Scholar]
  • 30.Moshaverinia A, Xu X, Chen C, Akiyama K, Snead ML, Shi S. Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration. Acta Biomater. 2013;9:9343–9350. doi: 10.1016/j.actbio.2013.07.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Mhanna R, Kashyap A, Palazzolo G, Vallmajo-Martin Q, Becher J M S, et al. Chondrocyte culture in three dimensional alginate sulfate hydrogels promotes proliferation while maintaining expression of chondrogenic markers. Tissue Eng Part A. 2014;20:1454–1464. doi: 10.1089/ten.tea.2013.0544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Gründer T, Gaissmaier C, Fritz J, Stoop R, Hortschansky P, Mollenhauer J, et al. Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthritis Cartilage. 2004;12:559–567. doi: 10.1016/j.joca.2004.04.001. [DOI] [PubMed] [Google Scholar]
  • 33.Re’em T, Tsur-Gang O, Cohen S. The effect of immobilized RGD peptide in macroporous alginate scaffolds on TGFbeta1-induced chondrogenesis of human mesenchymal stem cells. Biomaterials. 2010;31:6746–6755. doi: 10.1016/j.biomaterials.2010.05.025. [DOI] [PubMed] [Google Scholar]
  • 34.Guha Thakurta S, Budhiraja G, Subramanian A. Growth factor and ultrasound-assisted bioreactor synergism for human mesenchymal stem cell chondrogenesis. J Tissue Eng. 2015;6:2041731414566529. doi: 10.1177/2041731414566529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–4200. doi: 10.1242/jcs.023820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Loeser RF. Integrins and chondrocyte-matrix interactions in articular cartilage. Matrix Biol. 2014;39:11–16. doi: 10.1016/j.matbio.2014.08.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Yu HS, Kim JJ, Kim HW, Lewis MP, Wall I. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues. J Tissue Eng. 2016;7:2041731415618342. doi: 10.1177/2041731415618342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Enomoto-Iwamoto M, Iwamoto M, Nakashima K, Mukudai Y, Boettiger D, Pacifici M, et al. Involvement of alpha5beta1 integrin in matrix interactions and proliferation of chondrocytes. J Bone Miner Res. 1997;12:1124–1132. doi: 10.1359/jbmr.1997.12.7.1124. [DOI] [PubMed] [Google Scholar]
  • 39.Chen CW, Tsai YH, Deng WP, Shih SN, Fang CL, Burch JG, et al. Type I and II collagen regulation of chondrogenic differentiation by mesenchymal progenitor cells. J Orthop Res. 2005;23:446–453. doi: 10.1016/j.orthres.2004.09.002. [DOI] [PubMed] [Google Scholar]
  • 40.do Amaral RJ, Matsiko A, Tomazette MR, Rocha WK, Cordeiro-Spinetti E, Levingstone TJ, et al. Platelet-rich plasma releasate differently stimulates cellular commitment toward the chondrogenic lineage according to concentration. J Tissue Eng. 2015;6:2041731415594127. doi: 10.1177/2041731415594127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Shimomura Y, Yoneda T, Suzuki F. Osteogenesis by chondrocytes from growth cartilage of rat rib. Calcif Tissue Res. 1975;19:179–187. doi: 10.1007/BF02564002. [DOI] [PubMed] [Google Scholar]
  • 42.Liu Y, Chen M, Yao X, Xu C, Zhang Y, Wang Y. Enhancement in dentin collagen’s biological stability after proanthocyanidins treatment in clinically relevant time periods. Dent Mater. 2013;29:485–492. doi: 10.1016/j.dental.2013.01.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Tampieri A, Sandri M, Landi E, Pressato D, Francioli S, Quarto R, et al. Design of graded biomimetic osteochondral composite scaffolds. Biomaterials. 2008;29:3539–3546. doi: 10.1016/j.biomaterials.2008.05.008. [DOI] [PubMed] [Google Scholar]
  • 44.Mandair GS, Morris MD. Contributions of Raman spectroscopy to the understanding of bone strength. Bonekey Rep. 2015;4:620. doi: 10.1038/bonekey.2014.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Benya PD. Modulation and reexpression of the chondrocyte phenotype;mediation by cell shape and microfilament modification. Pathol Immunopathol Res. 1988;7:51–54. doi: 10.1159/000157093. [DOI] [PubMed] [Google Scholar]
  • 46.Bush PG, Hall AC. The volume and morphology of chondrocytes within non-degenerate and degenerate human articular cartilage. Osteoarthritis Cartilage. 2003;11:242–251. doi: 10.1016/S1063-4584(02)00369-2. [DOI] [PubMed] [Google Scholar]
  • 47.Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982;30:215–224. doi: 10.1016/0092-8674(82)90027-7. [DOI] [PubMed] [Google Scholar]
  • 48.Quarto R, Dozin B, Bonaldo P, Cancedda R, Colombatti A. Type VI collagen expression is upregulated in the early events of chondrocyte differentiation. Development. 1993;117:245–251. doi: 10.1242/dev.117.1.245. [DOI] [PubMed] [Google Scholar]
  • 49.Xu H, Bihan D, Chang F, Huang PH, Farndale RW, Leitinger B. Discoidin domain receptors promote a1ß1-and a2ß1-integrin mediated cell adhesion to collagen by enhancing integrin activation. PLoS One. 2012;7:e52209. doi: 10.1371/journal.pone.0052209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Marlovits S, Hombauer M, Truppe M, Vècsei V, Schlegel W. Changes in the ratio of type-I and type-II collagen expression during monolayer culture of human chondrocytes. J Bone Joint Surg Br. 2004;86:286–295. doi: 10.1302/0301-620X.86B2.14918. [DOI] [PubMed] [Google Scholar]

Articles from Tissue Engineering and Regenerative Medicine are provided here courtesy of Springer

RESOURCES