Skip to main content
Tissue Engineering and Regenerative Medicine logoLink to Tissue Engineering and Regenerative Medicine
. 2016 Oct 20;13(5):498–506. doi: 10.1007/s13770-016-9083-4

Comparative study of poly(L-lactic acid) scaffolds coated with chitosan nanoparticles prepared via ultrasonication and ionic gelation techniques

Majid Salehi 1,, Mahdi Naseri-Nosar 1, Mahmoud Azami 1, Saeedeh Jafari Nodooshan 2, Javad Arish 3
PMCID: PMC6170840  PMID: 30603431

Abstract

In this study, an attempt was made to develop bi-functional constructs serving both as scaffolds and potential delivery systems for application in neural tissue engineering. The constructs were prepared in two steps. In the first step, the bulks of poly (L-lactic acid) (PLLA) in 1, 4-dioxane/water (87:13) were fabricated using liquid-liquid thermally induced phase separation technique. In the next step, the prepared bulks were coated with chitosan nanoparticles produced by two different techniques of ultrasonication and ionic gelation by grafting-coating technique. In ultrasonication technique, the chitosan solution (2 mg/mL) in acetic acid/sodium acetate buffer (90:10) was irradiated by an ultrasound generator at 20 kHz and power output of 750 W for 100 s. In ionic gelation technique, the tripolyphosphate in water solution (1 mg/mL) was added to the same chitosan solution. The physicochemical properties of the products were characterized by Scanning Electron Microscopy, Attenuated Total Reflection Fourier Transform-Infrared, liquid displacement technique, contact angle measurement, compressive and tensile tests, as well as zeta potential and particle size analysis using dynamic light scattering. Moreover, the cell proliferation and attachment on the scaffolds were evaluated through human glioblastoma cell line (U-87 MG) and human neuroblastoma cell line [BE (2)-C] culture respectively. The results showed that the samples coated with chitosan nanoparticles prepared by ultrasonication possessed enhanced hydrophilicity, biodegradation and cytocompatibility compared with pure PLLA and PLLA coated with chitosan nanoparticles prepared by ionic gelation. This study suggests successful nanoparticles-scaffold systems which can act simultaneously as potential delivery systems and tissue engineering scaffolds.

Key Words: Neural tissue engineering, Poly(L-Lactic acid), Thermally induced phase separation, Chitosan nanoparticles, Ultrasonication, Ionic gelation

References

  • 1.Schmidt CE, Leach JB. Neural tissue engineering:strategies for repair and regeneration. Annu Rev Biomed Eng. 2003;5:293–347. doi: 10.1146/annurev.bioeng.5.011303.120731. [DOI] [PubMed] [Google Scholar]
  • 2.Kessler MW, Grande DA. Tissue engineering and cartilage. Organogenesis. 2008;4:28–32. doi: 10.4161/org.6116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Duarte ARC, Mano JF, Reis RL. Preparation of starch-based scaffolds for tissue engineering by supercritical immersion precipitation. J Supercrit Fluids. 2009;49:279–285. doi: 10.1016/j.supflu.2008.12.008. [DOI] [Google Scholar]
  • 4.Zhu N, Li MG, Cooper D, Chen XB. Development of novel hybrid poly(L-lactide)/chitosan scaffolds using the rapid freeze prototyping technique. Biofabrication. 2011;3:034105. doi: 10.1088/1758-5082/3/3/034105. [DOI] [PubMed] [Google Scholar]
  • 5.Tessmar JK, Göpferich AM. Matrices and scaffolds for protein delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59:274–291. doi: 10.1016/j.addr.2007.03.020. [DOI] [PubMed] [Google Scholar]
  • 6.Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C. Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev. 2007;59:454–477. doi: 10.1016/j.addr.2007.04.011. [DOI] [PubMed] [Google Scholar]
  • 7.Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75:1–18. doi: 10.1016/j.colsurfb.2009.09.001. [DOI] [PubMed] [Google Scholar]
  • 8.Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60:1650–1662. doi: 10.1016/j.addr.2008.09.001. [DOI] [PubMed] [Google Scholar]
  • 9.Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems. J Control Release. 2003;89:151–165. doi: 10.1016/S0168-3659(03)00126-3. [DOI] [PubMed] [Google Scholar]
  • 10.Muzzarelli RAA. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate Polym. 2009;76:167–182. doi: 10.1016/j.carbpol.2008.11.002. [DOI] [Google Scholar]
  • 11.Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T. Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res. 2006;133:185–192. doi: 10.1016/j.jss.2005.12.013. [DOI] [PubMed] [Google Scholar]
  • 12.Freier T, Koh HS, Kazazian K, Shoichet MS. Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials. 2005;26:5872–5878. doi: 10.1016/j.biomaterials.2005.02.033. [DOI] [PubMed] [Google Scholar]
  • 13.Tang ES, Huang M, Lim LY. Ultrasonication of chitosan and chitosan nanoparticles. Int J Pharm. 2003;265:103–114. doi: 10.1016/S0378-5173(03)00408-3. [DOI] [PubMed] [Google Scholar]
  • 14.Patel JK, Jivani NP. Chitosan based nanoparticles in drug delivery. Int J Pharm Sci Nanotechnol. 2009;2:517–522. [Google Scholar]
  • 15.Suslick KS, Price GJ. Applications of ultrasound to materials chemistry. Annu Rev Mater Sci. 1999;29:295–326. doi: 10.1146/annurev.matsci.29.1.295. [DOI] [Google Scholar]
  • 16.Chen RH, Chang JR, Shyur JS. Effects of ultrasonic conditions and storage in acidic solutions on changes in molecular weight and polydispersity of treated chitosan. Carbohydrate Res. 1997;299:287–294. doi: 10.1016/S0008-6215(97)00019-0. [DOI] [Google Scholar]
  • 17.Gan Q, Wang T. Chitosan nanoparticle as protein delivery carrier—systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B Biointerfaces. 2007;59:24–34. doi: 10.1016/j.colsurfb.2007.04.009. [DOI] [PubMed] [Google Scholar]
  • 18.Gan Q, Wang T, Cochrane C, McCarron P. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids Surf B Biointerfaces. 2005;44:65–73. doi: 10.1016/j.colsurfb.2005.06.001. [DOI] [PubMed] [Google Scholar]
  • 19.Ko JA, Park HJ, Hwang SJ, Park JB, Lee JS. Preparation and characterization of chitosan microparticles intended for controlled drug delivery. Int J Pharm. 2002;249:165–174. doi: 10.1016/S0378-5173(02)00487-8. [DOI] [PubMed] [Google Scholar]
  • 20.Mi FL, Shyu SS, Chen CT, Lai JY. Adsorption of indomethacin onto chemically modified chitosan beads. Polymer. 2002;43:757–765. doi: 10.1016/S0032-3861(01)00580-8. [DOI] [Google Scholar]
  • 21.Hua FJ, Kim GE, Lee JD, Son YK, Lee DS. Macroporous poly(L-lactide) scaffold 1. Preparation of a macroporous scaffold by liquid—liquid phase separation of a PLLA—dioxane—water system. J Biomed Mater Res. 2002;63:161–167. doi: 10.1002/jbm.10121. [DOI] [PubMed] [Google Scholar]
  • 22.Ho ST, Hutmacher DW. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials. 2006;27:1362–1376. doi: 10.1016/j.biomaterials.2005.08.035. [DOI] [PubMed] [Google Scholar]
  • 23.Salehi M, Nosar MN, Amani A, Azami M, Tavakol S, Ghanbari H. Preparation of pure PLLA, pure chitosan, and PLLA/chitosan blend porous tissue engineering scaffolds by thermally induced phase separation method and evaluation of the corresponding mechanical and biological properties. Int J Polym Mater Polym Biomater. 2015;64:675–682. doi: 10.1080/00914037.2014.1002093. [DOI] [Google Scholar]
  • 24.Lao L, Tan H, Wang Y, Gao C. Chitosan modified poly(L-lactide) microspheres as cell microcarriers for cartilage tissue engineering. Colloids Surf B Biointerfaces. 2008;66:218–225. doi: 10.1016/j.colsurfb.2008.06.014. [DOI] [PubMed] [Google Scholar]
  • 25.Hong Y, Gao C, Xie Y, Gong Y, Shen J. Collagen-coated polylactide microspheres as chondrocyte microcarriers. Biomaterials. 2005;26:6305–6313. doi: 10.1016/j.biomaterials.2005.03.038. [DOI] [PubMed] [Google Scholar]
  • 26.Liao YZ, Xin MH, Li MC, Su S. Preparation and characterization O-lauroyl chitosan/poly(l-lactic acid) blend membranes by solution-casting approach. Chin Chem Lett. 2007;18:213–216. doi: 10.1016/j.cclet.2006.12.024. [DOI] [Google Scholar]
  • 27.Chen C, Dong L, Cheung MK. Preparation and characterization of biodegradable poly(l-lactide)/chitosan blends. Eur Polym J. 2005;41:958–966. doi: 10.1016/j.eurpolymj.2004.12.002. [DOI] [Google Scholar]
  • 28.Moffa M, Polini A, Sciancalepore AG, Persano L, Mele E, Passione LG, et al. Microvascular endothelial cell spreading and proliferation on nanofibrous scaffolds by polymer blends with enhanced wettability. Soft Matter. 2013;9:5529–5539. doi: 10.1039/c3sm50328c. [DOI] [Google Scholar]
  • 29.Peniche C, Argüelles-Monal W, Davidenko N, Sastre R, Gallardo A, San Román J. Self-curing membranes of chitosan/PAA IPNs obtained by radical polymerization:preparation, characterization and interpolymer complexation. Biomaterials. 1999;20:1869–1878. doi: 10.1016/S0142-9612(99)00048-4. [DOI] [PubMed] [Google Scholar]
  • 30.Xu Y, Du Y. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm. 2003;250:215–226. doi: 10.1016/S0378-5173(02)00548-3. [DOI] [PubMed] [Google Scholar]
  • 31.Wu Y, Yang W, Wang C, Hu J, Fu S. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int J Pharm. 2005;295:235–245. doi: 10.1016/j.ijpharm.2005.01.042. [DOI] [PubMed] [Google Scholar]
  • 32.Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials. 2004;25:1891–1900. doi: 10.1016/j.biomaterials.2003.08.062. [DOI] [PubMed] [Google Scholar]
  • 33.Zhu X, Cui W, Li X, Jin Y. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules. 2008;9:1795–1801. doi: 10.1021/bm800476u. [DOI] [PubMed] [Google Scholar]
  • 34.Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev. 2001;52:117–126. doi: 10.1016/S0169-409X(01)00231-9. [DOI] [PubMed] [Google Scholar]
  • 35.Pukanszk B, Maurer FHJ, Boode JW. Impact testing of polypropylene blends and comosites. Polym Eng Sci. 1995;35:1962–1971. doi: 10.1002/pen.760352408. [DOI] [Google Scholar]
  • 36.Correlo VM, Boesel LF, Bhattacharya M, Mano JF, Neves NM, Reis RL. Properties of melt processed chitosan and aliphatic polyester blends. Mater Sci Eng A. 2005;403:57–68. doi: 10.1016/j.msea.2005.04.055. [DOI] [Google Scholar]
  • 37.Jiao Y, Liu Z, Zhou C. Fabrication and characterization of PLLA-chitosan hybrid scaffolds with improved cell compatibility. J Biomed Mater Res A. 2007;80:820–825. doi: 10.1002/jbm.a.31061. [DOI] [PubMed] [Google Scholar]
  • 38.Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials. 2005;26:3919–3928. doi: 10.1016/j.biomaterials.2004.09.062. [DOI] [PubMed] [Google Scholar]
  • 39.Zhang Y, Zhang M. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res. 2001;55:304–312. doi: 10.1002/1097-4636(20010605)55:3<304::AID-JBM1018>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  • 40.Ma PX, Choi JW. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng. 2001;7:23–33. doi: 10.1089/107632701300003269. [DOI] [PubMed] [Google Scholar]
  • 41.Peña J, Corrales T, Izquierdo-Barba I, Doadrio A V-R M. Long term degradation of poly (e-caprolactone) films in biologically related fluids. Polym Degrad Stab. 2006;91:1424–1432. doi: 10.1016/j.polymdegradstab.2005.10.016. [DOI] [Google Scholar]
  • 42.Li RK, Weisel RD. Cardiac regeneration and repair. Cambridge, UK: Woodhead Publishing; 2014. [Google Scholar]
  • 43.Nasti A, Zaki NM, de Leonardis P, Ungphaiboon S, Sansongsak P, Rimoli MG, et al. Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles:systematic optimisation of the preparative process and preliminary biological evaluation. Pharm Res. 2009;26:1918–1930. doi: 10.1007/s11095-009-9908-0. [DOI] [PubMed] [Google Scholar]
  • 44.Mi FL, Shyu SS, Lee ST, Wong TB. Kinetic study of chitosan-tripolyphosphate complex reaction and acid-resistive properties of the chitosan-tripolyphosphate gel beads prepared by in-liquid curing method. J Polym Sci B Polym Phys. 1999;37:1551–1564. doi: 10.1002/(SICI)1099-0488(19990715)37:14<1551::AID-POLB1>3.0.CO;2-H. [DOI] [Google Scholar]
  • 45.Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21:2335–2346. doi: 10.1016/S0142-9612(00)00101-0. [DOI] [PubMed] [Google Scholar]
  • 46.Lu L, Peter SJ, Lyman MD, Lai HL, Leite SM, Tamada JA, et al. In vitro degradation of porous poly(L-lactic acid) foams. Biomaterials. 2000;21:1595–1605. doi: 10.1016/S0142-9612(00)00048-X. [DOI] [PubMed] [Google Scholar]
  • 47.López-León T, Carvalho EL, Seijo B, Ortega-Vinuesa J B-G D. Physicochemical characterization of chitosan nanoparticles:electrokinetic and stability behavior. J Colloid Interface Sci. 2005;283:344–351. doi: 10.1016/j.jcis.2004.08.186. [DOI] [PubMed] [Google Scholar]
  • 48.Chen S, Hao Y, Cui W. Biodegradable electrospun PLLA/chitosan membrane as guided tissue regeneration membrane for treating periodontitis. J Mater Sci. 2013;48:6567–6577. doi: 10.1007/s10853-013-7453-z. [DOI] [Google Scholar]
  • 49.Lee JH, Park TG, Park HS, Lee DS, Lee YK, Yoon SC, et al. Thermal and mechanical characteristics of poly(l-lactic acid) nanocomposite scaffold. Biomaterials. 2003;24:2773–2778. doi: 10.1016/S0142-9612(03)00080-2. [DOI] [PubMed] [Google Scholar]
  • 50.Wan Y, Wu H, Cao X, Dalai S. Compressive mechanical properties and biodegradability of porous poly (caprolactone)/chitosan scaffolds. Polym Degrad Stab. 2008;93:1736–1741. doi: 10.1016/j.polymdegradstab.2008.08.001. [DOI] [Google Scholar]
  • 51.Wang X, Song G, Lou T, Peng W. Fabrication of nano-fibrous PLLA scaffold reinforced with chitosan fibers. J Biomater Sci Polym Ed. 2009;20:1995–2002. doi: 10.1163/156856208X396083. [DOI] [PubMed] [Google Scholar]

Articles from Tissue Engineering and Regenerative Medicine are provided here courtesy of Springer

RESOURCES