Skip to main content
Tissue Engineering and Regenerative Medicine logoLink to Tissue Engineering and Regenerative Medicine
. 2016 Oct 20;13(5):560–567. doi: 10.1007/s13770-016-0090-2

Pigmentation effect of electromagnetic fields at various intensities to melanocytes

Sang-Eun Cho 1, Yu-Mi Kim 1, Kye-Hong Kang 3, Soo-Chan Kim 2, Jung-Keug Park 1, Young-Kwon Seo 1,
PMCID: PMC6170843  PMID: 30603437

Abstract

Melanogenesis is the biological process that results in the synthesis of skin pigment of melanin and it has various functions in living systems and is synthesized by the melanosome within the melanocytes. A variety of physical treatments are used to promote melanin production in the melanocytes for pigmentation control. The purpose of this study was to evaluate the intensity-dependent effect of extremely low-frequency electromagnetic fields (ELF-EMFs) on melanogenesis by melanocytes in vitro. Melanocytes were exposed to ELF-EMFs at a frequency of 50 Hz and at intensities in the range of 0.5–20 G over 4 days. The results of lactate dehydrogenase assay showed that there were no significant differences between cells exposed to 0.5 G or 2 G groups and the controls. The melanin contents increased 1.2–1.5-fold in cells exposed to ELF-EMFs and tyrosinase activity increased 1.3-fold in cells exposed to ELF-EMFs, relative to the controls. Also, exposure to ELF-EMFs was associated with activation in cyclic-AMP response element binding protein and microphthalmia-associated transcription factor (MITF) was up-regulated. Up-regulation of MITF induces the expression of melanogenesis-related markers, such as tyrosinase, tyrosinase-related protein (TRP)-1, TRP-2. In conclusion, the present study showed that the exposure to ELF-EMFs at low intensities can stimulate melanogenesis in melanocyte, and these results may be used to a therapeutic devices for inducing repigmentation in vitiligo patients.

Key Words: Extremely low-frequency electromagnetic fields, Melanogenesis, p-AMP response element binding protein, Microphthalmia-associated transcription factor

References

  • 1.Videira IF, Moura DF, Magina S. Mechanisms regulating melanogenesis. An Bras Dermatol. 2013;88:76–83. doi: 10.1590/S0365-05962013000100009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Lotti T, Gori A, Zanieri F, Colucci R, Moretti S. Vitiligo:new and emerging treatments. Dermatol Ther. 2008;21:110–117. doi: 10.1111/j.1529-8019.2008.00178.x. [DOI] [PubMed] [Google Scholar]
  • 3.Parsad D, Bhatnagar A, De D. Narrowband ultraviolet B for the treatment of vitiligo. Expert Rev Dermatol. 2010;5:445–459. doi: 10.1586/edm.10.34. [DOI] [Google Scholar]
  • 4.Sun Y, Wu Y, Xiao B, Li L, Li L, Chen HD, et al. Treatment of 308-nm excimer laser on vitiligo:a systemic review of randomized controlled trials. J Dermatolog Treat. 2015;26:347–353. doi: 10.3109/09546634.2014.991268. [DOI] [PubMed] [Google Scholar]
  • 5.Byun JW, Babitha S, Kim EK, Shin J. A successful helium-neon laser and topical tacrolimus combination therapy in one child with vitiligo. Dermatol Ther. 2015;28:333–335. doi: 10.1111/dth.12249. [DOI] [PubMed] [Google Scholar]
  • 6.Violaine V. Biological effects of low frequency electromagnetic fields. Radiobiología. 2003;3:44–46. [Google Scholar]
  • 7.Baek S, Quan X, Kim S, Lengner C, Park JK, Kim J. Electromagnetic fields mediate efficient cell reprogramming into a pluripotent state. ACS Nano. 2014;8:10125–10138. doi: 10.1021/nn502923s. [DOI] [PubMed] [Google Scholar]
  • 8.Kim MO, Jung H, Kim SC, Park JK, Seo YK. Electromagnetic fields and nanomagnetic particles increase the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Int J Mol Med. 2015;35:153–160. doi: 10.3892/ijmm.2014.1978. [DOI] [PubMed] [Google Scholar]
  • 9.Choi YK, Lee DH, Seo YK, Jung H, Park JK, Cho H. Stimulation of neural differentiation in human bone marrow mesenchymal stem cells by extremely low-frequency electromagnetic fields incorporated with MNPs. Appl Biochem Biotechnol. 2014;174:1233–1245. doi: 10.1007/s12010-014-1091-z. [DOI] [PubMed] [Google Scholar]
  • 10.Simon D, Daubos A, Pain C, Fitoussi R, Vié K, Taieb A, et al. Exposure to acute electromagnetic radiation of mobile phone exposure range alters transiently skin homeostasis of a model of pigmented reconstructed epidermis. Int J Cosmet Sci. 2013;35:27–34. doi: 10.1111/j.1468-2494.2012.00746.x. [DOI] [PubMed] [Google Scholar]
  • 11.Dong D, Jiang M, Xu X, Guan M, Wu J, Chen Q, et al. The effects of NBUVB on the hair follicle-derived neural crest stem cells differentiating into melanocyte lineage in vitro. J Dermatol Sci. 2012;66:20–28. doi: 10.1016/j.jdermsci.2012.01.012. [DOI] [PubMed] [Google Scholar]
  • 12.Lan CC, Wu CS, Chiou MH, Chiang TY, Yu HS. Low-energy heliumneon laser induces melanocyte proliferation via interaction with type IV collagen:visible light as a therapeutic option for vitiligo. Br J Dermatol. 2009;161:273–280. doi: 10.1111/j.1365-2133.2009.09152.x. [DOI] [PubMed] [Google Scholar]
  • 13.Sherwood KA, Murray S, Kurban AK, Tan OT. Effect of wavelength on cutaneous pigment using pulsed irradiation. J Invest Dermatol. 1989;92:717–720. doi: 10.1016/0022-202X(89)90187-5. [DOI] [PubMed] [Google Scholar]
  • 14.Goldberg DJ, Marmur ES, Schmults C, Hussain M, Phelps R. Histologic and ultrastructural analysis of ultraviolet B laser and light source treatment of leukoderma in striae distensae. Dermatol Surg. 2005;31:385–387. doi: 10.1097/00042728-200504000-00001. [DOI] [PubMed] [Google Scholar]
  • 15.Alhowaish AK, Dietrich N, Onder M, Fritz K. Effectiveness of a 308-nm excimer laser in treatment of vitiligo:a review. Lasers Med Sci. 2013;28:1035–1041. doi: 10.1007/s10103-012-1185-1. [DOI] [PubMed] [Google Scholar]
  • 16.Lee HC, Hong MN, Jung SH, Kim BC, Suh YJ, Ko YG, et al. Effect of extremely low frequency magnetic fields on cell proliferation and gene expression. Bioelectromagnetics. 2015;36:506–516. doi: 10.1002/bem.21932. [DOI] [PubMed] [Google Scholar]
  • 17.Julio César Hernández P, Modesto Sosa A, Teodoro Córdova F, Gloria Barbosa S, Sergio Solorio M, Myrna Sabanero L. Study of electromagnetic fields on cellular systems. Acta Univ. 2009;19:65–70. [Google Scholar]
  • 18.Pirozzoli MC, Marino C, Lovisolo GA, Laconi C, Mosiello L, Negroni A. Effects of 50 Hz electromagnetic field exposure on apoptosis and differentiation in a neuroblastoma cell line. Bioelectromagnetics. 2003;24:510–516. doi: 10.1002/bem.10130. [DOI] [PubMed] [Google Scholar]
  • 19.Shahbazi-Gahrouei D, Razavi S, Salimi M. Effect of extremely low-frequency (50 Hz) field on proliferation rate of human adipose-derived mesenchymal stem cells. J Radiobiol. 2014;1:31–37. doi: 10.4103/2277-9175.124668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Cho H, Seo YK, Yoon HH, Kim SC, Kim SM, Song KY, et al. Neural stimulation on human bone marrow-derived mesenchymal stem cells by extremely low frequency electromagnetic fields. Biotechnol Prog. 2012;28:1329–1335. doi: 10.1002/btpr.1607. [DOI] [PubMed] [Google Scholar]
  • 21.Lin JY, Fisher DE. Melanocyte biology and skin pigmentation. Nature. 2007;445:843–850. doi: 10.1038/nature05660. [DOI] [PubMed] [Google Scholar]
  • 22.Costin GE, Hearing VJ. Human skin pigmentation:melanocytes modulate skin color in response to stress. FASEB J. 2007;21:976–994. doi: 10.1096/fj.06-6649rev. [DOI] [PubMed] [Google Scholar]
  • 23.Henion PD, Weston JA. Timing and pattern of cell fate restrictions in the neural crest lineage. Development. 1997;124:4351–4359. doi: 10.1242/dev.124.21.4351. [DOI] [PubMed] [Google Scholar]
  • 24.Jian D, Jiang D, Su J, Chen W, Hu X, Kuang Y, et al. Diethylstilbestrol enhances melanogenesis via cAMP-PKA-mediating up-regulation of tyrosinase and MITF in mouse B16 melanoma cells. Steroids. 2011;76:1297–1304. doi: 10.1016/j.steroids.2011.06.008. [DOI] [PubMed] [Google Scholar]
  • 25.Buscà R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 2000;13:60–69. doi: 10.1034/j.1600-0749.2000.130203.x. [DOI] [PubMed] [Google Scholar]
  • 26.Videira IF, Moura DF, Magina S. Mechanisms regulating melanogenesis. An Bras Dermatol. 2013;88:76–83. doi: 10.1590/S0365-05962013000100009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Tachibana M. MITF:a stream flowing for pigment cells. Pigment Cell Res. 2000;13:230–240. doi: 10.1034/j.1600-0749.2000.130404.x. [DOI] [PubMed] [Google Scholar]
  • 28.Vachtenheim J, Borovanský J. “Transcription physiology” of pigment formation in melanocytes:central role of MITF. Exp Dermatol. 2010;19:617–627. doi: 10.1111/j.1600-0625.2009.01053.x. [DOI] [PubMed] [Google Scholar]
  • 29.Levy C, Khaled M, Fisher DE. MITF:master regulator of melanocyte development and melanoma oncogene. Trends Mol Med. 2006;12:406–414. doi: 10.1016/j.molmed.2006.07.008. [DOI] [PubMed] [Google Scholar]
  • 30.Jiang Z, Li S, Liu Y, Deng P, Huang J, He G. Sesamin induces melanogenesis by microphthalmia-associated transcription factor and tyrosinase up-regulation via cAMP signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2011;43:763–770. doi: 10.1093/abbs/gmr078. [DOI] [PubMed] [Google Scholar]
  • 31.Wei B, Zhang YP, Yan HZ, Xu Y, Du TM. Cilostazol promotes production of melanin by activating the microphthalmia-associated transcription factor (MITF). Biochem Biophys Res Commun. 2014;443:617–621. doi: 10.1016/j.bbrc.2013.12.017. [DOI] [PubMed] [Google Scholar]

Articles from Tissue Engineering and Regenerative Medicine are provided here courtesy of Springer

RESOURCES