Skip to main content
Tissue Engineering and Regenerative Medicine logoLink to Tissue Engineering and Regenerative Medicine
. 2016 Oct 20;13(5):465–474. doi: 10.1007/s13770-016-9080-7

Microengineered platforms for co-cultured mesenchymal stem cells towards vascularized bone tissue engineering

Hyeryeon Park 1, Dong-Jin Lim 2, Minhee Sung 1, Soo-Hong Lee 3, Dokyun Na 1,, Hansoo Park 1,
PMCID: PMC6170844  PMID: 30603428

Abstract

Bone defects are common disease requiring thorough treatments since the bone is a complex vascularized tissue that is composed of multiple cell types embedded within an intricate extracellular matrix (ECM). For past decades, tissue engineering using cells, proteins, and scaffolds has been suggested as one of the promising approaches for effective bone regeneration. Recently, many researchers have been interested in designing effective platform for tissue regeneration by orchestrating factors involved in microenvironment around tissues. Among factors affecting bone formation, vascularization during bone development and after minor insults via endochondral and intramembranous ossification is especially critical for the long-term support for functional bone. In order to create vascularized bone constructs, the interactions between human mesenchymal stem cells (MSCs) and endothelial cells (ECs) have been investigated using both direct and indirect co-culture studies. Recently, various culture methods including micropatterning techniques, three dimensional scaffolds, and microfluidics have been developed to create micro-engineered platforms that mimic the nature of vascularized bone formation, leading to the creation of functional bone structures. This review focuses on MSCs co-cultured with endothelial cells and microengineered platforms to determine the underlying interplay between co-cultured MSCs and vascularized bone constructs, which is ultimately necessary for adequate regeneration of bone defects.

Key Words: Bone tissue engineering, Co-culture, Stem cell, Vascularization

Contributor Information

Dokyun Na, Phone: 82-2-820-5804, FAX: 82-2-814-2651, Email: blisszen@cau.ac.kr.

Hansoo Park, Phone: 82-2-820-5804, FAX: 82-2-814-2651, Email: heyshoo@cau.ac.kr.

References

  • 1.Sharma B, Elisseeff JH. Engineering structurally organized cartilage and bone tissues. Ann Biomed Eng. 2004;32:148–159. doi: 10.1023/B:ABME.0000007799.60142.78. [DOI] [PubMed] [Google Scholar]
  • 2.Laurencin CT, Ambrosio AM, Borden MD, Cooper JA., Jr Tissue engineering:orthopedic applications. Annu Rev Biomed Eng. 1999;1:19–46. doi: 10.1146/annurev.bioeng.1.1.19. [DOI] [PubMed] [Google Scholar]
  • 3.Santos MI, Reis RL. Vascularization in bone tissue engineering:physiology, current strategies, major hurdles and future challenges. Macromol Biosci. 2010;10:12–27. doi: 10.1002/mabi.200900107. [DOI] [PubMed] [Google Scholar]
  • 4.Simmons CA, Alsberg E, Hsiong S, Kim WJ, Mooney DJ. Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone. 2004;35:562–569. doi: 10.1016/j.bone.2004.02.027. [DOI] [PubMed] [Google Scholar]
  • 5.Vo TN, Kasper FK, Mikos AG. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev. 2012;64:1292–1309. doi: 10.1016/j.addr.2012.01.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Klenke FM, Liu Y, Yuan H, Hunziker EB, Siebenrock KA, Hofstetter W. Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes in vivo. J Biomed Mater Res A. 2008;85:777–786. doi: 10.1002/jbm.a.31559. [DOI] [PubMed] [Google Scholar]
  • 7.Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest. 1999;103:159–165. doi: 10.1172/JCI5028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK. Tissue engineering:creation of long-lasting blood vessels. Nature. 2004;428:138–139. doi: 10.1038/428138a. [DOI] [PubMed] [Google Scholar]
  • 9.Saran U G, Piperni S, Chatterjee S. Role of angiogenesis in bone repair. Arch Biochem Biophys. 2014;561:109–117. doi: 10.1016/j.abb.2014.07.006. [DOI] [PubMed] [Google Scholar]
  • 10.Marie P F O. Osteogenic differentiation of human marrow-derived mesenchymal stem cells. Regen Med. 2006;1:539–548. doi: 10.2217/17460751.1.4.539. [DOI] [PubMed] [Google Scholar]
  • 11.Phinney DG, Prockop DJ. Concise review:mesenchymal stem/multipotent stromal cells:the state of transdifferentiation and modes of tissue repair—current views. Stem Cells. 2007;25:2896–2902. doi: 10.1634/stemcells.2007-0637. [DOI] [PubMed] [Google Scholar]
  • 12.Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147. doi: 10.1126/science.284.5411.143. [DOI] [PubMed] [Google Scholar]
  • 13.McFadden TM, Duffy GP, Allen AB, Stevens HY, Schwarzmaier SM, Plesnila N, et al. Acta Biomater. 2013. The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen-glycosaminoglycan scaffold in vivo. pp. 9303–9316. [DOI] [PubMed] [Google Scholar]
  • 14.Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury. 2005;36:1392–1404. doi: 10.1016/j.injury.2005.07.019. [DOI] [PubMed] [Google Scholar]
  • 15.Oswald J, Boxberger S, Jørgensen B, Feldmann S, Ehninger G, Bornhäuser M, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22:377–384. doi: 10.1634/stemcells.22-3-377. [DOI] [PubMed] [Google Scholar]
  • 16.Au P, Tam J, Fukumura D, Jain RK. Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood. 2008;111:4551–4558. doi: 10.1182/blood-2007-10-118273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Kirkpatrick CJ, Fuchs S, Unger RE. Co-culture systems for vascularization—learning from nature. Adv Drug Deliv Rev. 2011;63:291–299. doi: 10.1016/j.addr.2011.01.009. [DOI] [PubMed] [Google Scholar]
  • 18.Liu Y, Chan JK, Teoh SH. Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems. J Tissue Eng Regen Med. 2015;9:85–105. doi: 10.1002/term.1617. [DOI] [PubMed] [Google Scholar]
  • 19.Weatherholt AM, Fuchs RK, Warden SJ. Specialized connective tissue:bone, the structural framework of the upper extremity. J Hand Ther. 2012;25:123–131. doi: 10.1016/j.jht.2011.08.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Meghji S. Bone remodelling. Br Dent^J. 1992;172:235–242. doi: 10.1038/sj.bdj.4807835. [DOI] [PubMed] [Google Scholar]
  • 21.Rey C, Combes C, Drouet C, Glimcher MJ. Bone mineral:update on chemical composition and structure. Osteoporos Int. 2009;20:1013–1021. doi: 10.1007/s00198-009-0860-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Robinson RA. Bone tissue:composition and function. Johns Hopkins Med J. 1979;145:10–24. [PubMed] [Google Scholar]
  • 23.Eastoe JE. The chemical composition of bone and tooth. Adv Fluorine Res. 1965;21:5–17. [PubMed] [Google Scholar]
  • 24.Ashman RF, Buckwalter JA, Devane P, Dobbs MB, Ferguson PJ, Flatow EL, et al. Turek’s Orthopaedics:Principles and Their Application. 2005. [Google Scholar]
  • 25.Yang L, Perez-Amodio S B-, de Groot FY, Everts V, van Blitterswijk CA, Habibovic P. The effects of inorganic additives to calcium phosphate on in vitro behavior of osteoblasts and osteoclasts. Biomaterials. 2010;31:2976–2989. doi: 10.1016/j.biomaterials.2010.01.002. [DOI] [PubMed] [Google Scholar]
  • 26.Fung YC. Biomechanics:Mechanical Properties of Living Tissues. 1993. [Google Scholar]
  • 27.Alford AI, Kozloff KM, Hankenson KD. Extracellular matrix networks in bone remodeling. Int J Biochem Cell Biol. 2015;65:20–31. doi: 10.1016/j.biocel.2015.05.008. [DOI] [PubMed] [Google Scholar]
  • 28.Nijweide PJ, Burger EH, Feyen JH. Cells of bone:proliferation, differentiation, and hormonal regulation. Physiol Rev. 1986;66:855–886. doi: 10.1152/physrev.1986.66.4.855. [DOI] [PubMed] [Google Scholar]
  • 29.Heino TJ, Kurata K, Higaki H, Väänänen HK. Evidence for the role of osteocytes in the initiation of targeted remodeling. Technol Health Care. 2009;17:49–56. doi: 10.3233/THC-2009-0534. [DOI] [PubMed] [Google Scholar]
  • 30.Vrahnas C, Sims NA. EphrinB2 signalling in osteoblast differentiation, bone formation and endochondral ossification. Curr Mol Bio Rep. 2015;1:148–156. doi: 10.1007/s40610-015-0024-0. [DOI] [Google Scholar]
  • 31.Ehninger A, Trumpp A. The bone marrow stem cell niche grows up:mesenchymal stem cells and macrophages move in. J Exp Med. 2011;208:421–428. doi: 10.1084/jem.20110132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Yin T, Li L. The stem cell niches in bone. J Clin Invest. 2006;116:1195–1201. doi: 10.1172/JCI28568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Caplan AI. Why are MSCs therapeutic? New data:new insight. J Pathol. 2009;217:318–324. doi: 10.1002/path.2469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Müller-Sieburg CE, Cho RH, Thoman M, Adkins B, Sieburg HB. Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood. 2002;100:1302–1309. [PubMed] [Google Scholar]
  • 35.Marieb E H k. Human anatomy and physiology. San Francisco, CA: Pearson Benjamin Cummings; 2007. [Google Scholar]
  • 36.Mackie EJ, Tatarczuch L, Mirams M. The skeleton:a multi-functional complex organ:the growth plate chondrocyte and endochondral ossification. J Endocrinol. 2011;211:109–121. doi: 10.1530/JOE-11-0048. [DOI] [PubMed] [Google Scholar]
  • 37.Thompson Z, Miclau T, Hu D, Helms JA. A model for intramembranous ossification during fracture healing. J Orthop Res. 2002;20:1091–1098. doi: 10.1016/S0736-0266(02)00017-7. [DOI] [PubMed] [Google Scholar]
  • 38.Ortega N, Behonick DJ, Werb Z. Matrix remodeling during endochondral ossification. Trends Cell Biol. 2004;14:86–93. doi: 10.1016/j.tcb.2003.12.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Schindeler A, McDonald MM, Bokko P, Little DG. Bone remodeling during fracture repair:the cellular picture. Semin Cell Dev Biol. 2008;19:459–466. doi: 10.1016/j.semcdb.2008.07.004. [DOI] [PubMed] [Google Scholar]
  • 40.Streeten EA, Brandi ML. Biology of bone endothelial cells. Bone Miner. 1990;10:85–94. doi: 10.1016/0169-6009(90)90084-S. [DOI] [PubMed] [Google Scholar]
  • 41.Fujihara K, Kotaki M, Ramakrishna S. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials. 2005;26:4139–4147. doi: 10.1016/j.biomaterials.2004.09.014. [DOI] [PubMed] [Google Scholar]
  • 42.Lu Y, Lekszycki T. Modeling of an initial stage of bone fracture healing. Continuum Mech Thermodyn. 2015;27:851–859. doi: 10.1007/s00161-014-0380-7. [DOI] [Google Scholar]
  • 43.Cruess RL, Dumont J. Fracture healing. Can J Surg. 1975;18:403–413. [PubMed] [Google Scholar]
  • 44.Ketenjian AY, Jafri AM, Arsenis C. Studies on the mechanism of callus cartilage differentiation and calcification during fracture healing. Orthop Clin North Am. 1978;9:43–65. [PubMed] [Google Scholar]
  • 45.Tsunoda M, Mizuno K, Matsubara T. The osteogenic potential of fracture hematoma and its mechanism on bone formation—through fracture hematoma culture and transplantation of freeze-dried hematoma. Kobe J Med Sci. 1993;39:35–50. [PubMed] [Google Scholar]
  • 46.Macmahon P, Eustace SJ. General principles. Semin Musculoskelet Radiol. 2006;10:243–248. doi: 10.1055/s-2007-971995. [DOI] [PubMed] [Google Scholar]
  • 47.Sfeir C, Ho L, Doll BA, Azari K, Hollinger JO. Fracture Repair. In: Lieberman JR, Friedlander GE, editors. Bone Regeneration and Repair:Biology and Clinical Applications. Totowa, NJ: Humana Press Inc.; 2005. [Google Scholar]
  • 48.Singh MAF. Nutrition and Bone Health. New York, NY: Springer; 2015. Exercise and bone health; pp. 505–542. [Google Scholar]
  • 49.Cowin SC. Wolff’s law of trabecular architecture at remodeling equilibrium. J Biomech Eng. 1986;108:83–88. doi: 10.1115/1.3138584. [DOI] [PubMed] [Google Scholar]
  • 50.Greer R 3rd. Wolff’s Law. Orthop Rev. 1993;22:1087–1088. [PubMed] [Google Scholar]
  • 51.Battiston KG, Cheung JW, Jain D, Santerre JP. Biomaterials in co-culture systems:towards optimizing tissue integration and cell signaling within scaffolds. Biomaterials. 2014;35:4465–4476. doi: 10.1016/j.biomaterials.2014.02.023. [DOI] [PubMed] [Google Scholar]
  • 52.Jin GZ, Han CM, Kim HW. In vitro co-culture strategies to prevascularization for bone regeneration:a brief update. Tissue Eng Regen Med. 2015;12:69–79. doi: 10.1007/s13770-014-0095-7. [DOI] [Google Scholar]
  • 53.Suh JD, Lim KT, Jin H, Kim J, Choung PH, Chung JH. Effects of co-culture of dental pulp stem cells and periodontal ligament stem cells on assembled dual disc scaffolds. Tissue Eng Regen Med. 2014;11:47–58. doi: 10.1007/s13770-013-1109-6. [DOI] [Google Scholar]
  • 54.Lawrence TS, Beers WH, Gilula NB. Transmission of hormonal stimulation by cell-to-cell communication. Nature. 1978;272:501–506. doi: 10.1038/272501a0. [DOI] [PubMed] [Google Scholar]
  • 55.El-Sabban ME, Sfeir AJ, Daher MH, Kalaany NY, Bassam RA, Talhouk RS. ECM-induced gap junctional communication enhances mammary epithelial cell differentiation. J Cell Sci. 2003;116:3531–3541. doi: 10.1242/jcs.00656. [DOI] [PubMed] [Google Scholar]
  • 56.Sinclair SS, Burg KJ. Effect of osteoclast co-culture on the differentiation of human mesenchymal stem cells grown on bone graft granules. J Biomater Sci Polym Ed. 2011;22:789–808. doi: 10.1163/092050610X496260. [DOI] [PubMed] [Google Scholar]
  • 57.Joensuu K, Uusitalo L, Alm JJ, Aro HT, Hentunen TA, Heino TJ. Enhanced osteoblastic differentiation and bone formation in co-culture of human bone marrow mesenchymal stromal cells and peripheral blood mononuclear cells with exogenous VEGF. Orthop Traumatol Surg Res. 2015;101:381–386. doi: 10.1016/j.otsr.2015.01.014. [DOI] [PubMed] [Google Scholar]
  • 58.Kolbe M, Xiang Z, Dohle E, Tonak M, Kirkpatrick CJ, Fuchs S. Paracrine effects influenced by cell culture medium and consequences on microvessel-like structures in cocultures of mesenchymal stem cells and outgrowth endothelial cells. Tissue Eng Part A. 2011;17:2199–2212. doi: 10.1089/ten.tea.2010.0474. [DOI] [PubMed] [Google Scholar]
  • 59.Ern C, Krump-Konvalinkova V, Docheva D, Schindler S, Rossmann O, Böcker W, et al. Interactions of human endothelial and multipotent mesenchymal stem cells in cocultures. Open Biomed Eng J. 2010;4:190–198. doi: 10.2174/1874120701004010190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Pedersen TO, Blois AL, Xue Y, Xing Z, Cottler-Fox M, Fristad I, et al. Osteogenic stimulatory conditions enhance growth and maturation of endothelial cell microvascular networks in culture with mesenchymal stem cells. J Tissue Eng. 2012;3:2041731412443236. doi: 10.1177/2041731412443236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Paschos NK, Brown WE, Eswaramoorthy R, Hu JC, Athanasiou KA. Advances in tissue engineering through stem cell-based co-culture. J Tissue Eng Regen Med. 2015;9:488–503. doi: 10.1002/term.1870. [DOI] [PubMed] [Google Scholar]
  • 62.Melchiorri AJ, Nguyen BN, Fisher JP. Mesenchymal stem cells:roles and relationships in vascularization. Tissue Eng Part B Rev. 2014;20:218–228. doi: 10.1089/ten.teb.2013.0541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Ball SG, Shuttleworth AC, Kielty CM. Direct cell contact influences bone marrow mesenchymal stem cell fate. Int J Biochem Cell Biol. 2004;36:714–727. doi: 10.1016/j.biocel.2003.10.015. [DOI] [PubMed] [Google Scholar]
  • 64.Rouwkema J, de Boer J, Van Blitterswijk CA. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng. 2006;12:2685–2693. doi: 10.1089/ten.2006.12.2685. [DOI] [PubMed] [Google Scholar]
  • 65.Saleh FA, Whyte M, Genever PG. Effects of endothelial cells on human mesenchymal stem cell activity in a three-dimensional in vitro model. Eur Cell Mater. 2011;22:242–257. doi: 10.22203/ecm.v022a19. [DOI] [PubMed] [Google Scholar]
  • 66.Fu WL, Xiang Z, Huang FG, Gu ZP, Yu XX, Cen SQ, et al. Coculture of peripheral blood-derived mesenchymal stem cells and endothelial progenitor cells on strontium-doped calcium polyphosphate scaffolds to generate vascularized engineered bone. Tissue Eng Part A. 2015;21:948–959. doi: 10.1089/ten.tea.2014.0267. [DOI] [PubMed] [Google Scholar]
  • 67.Goers L, Freemont P, Polizzi KM. J R Soc Interface. 2014. Co-culture systems and technologies:taking synthetic biology to the next level. p. 11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Fuchs S, Ghanaati S, Orth C, Barbeck M, Kolbe M, Hofmann A, et al. Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds. Biomaterials. 2009;30:526–534. doi: 10.1016/j.biomaterials.2008.09.058. [DOI] [PubMed] [Google Scholar]
  • 69.Santos MI, Unger RE, Sousa RA, Reis RL, Kirkpatrick CJ. Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularization. Biomaterials. 2009;30:4407–4415. doi: 10.1016/j.biomaterials.2009.05.004. [DOI] [PubMed] [Google Scholar]
  • 70.Unger RE, Sartoris A, Peters K, Motta A, Migliaresi C, Kunkel M, et al. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials. 2007;28:3965–3976. doi: 10.1016/j.biomaterials.2007.05.032. [DOI] [PubMed] [Google Scholar]
  • 71.Usami K, Mizuno H, Okada K, Narita Y, Aoki M, Kondo T, et al. Composite implantation of mesenchymal stem cells with endothelial progenitor cells enhances tissue-engineered bone formation. J Biomed Mater Res A. 2009;90:730–741. doi: 10.1002/jbm.a.32142. [DOI] [PubMed] [Google Scholar]
  • 72.Correia C, Grayson WL, Park M, Hutton D, Zhou B, Guo XE, et al. In vitro model of vascularized bone:synergizing vascular development and osteogenesis. PLoS One. 2011;6:e28352. doi: 10.1371/journal.pone.0028352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Peng R, Yao X, Cao B, Tang J, Ding J. The effect of culture conditions on the adipogenic and osteogenic inductions of mesenchymal stem cells on micropatterned surfaces. Biomaterials. 2012;33:6008–6019. doi: 10.1016/j.biomaterials.2012.05.010. [DOI] [PubMed] [Google Scholar]
  • 74.Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Micropatterned surfaces for control of cell shape, position, and function. Biotechnol Prog. 1998;14:356–363. doi: 10.1021/bp980031m. [DOI] [PubMed] [Google Scholar]
  • 75.Kim S, Kim BS. Control of adult stem cell behavior with biomaterials. Tissue Eng Regen Med. 2014;11:423–430. doi: 10.1007/s13770-014-0068-x. [DOI] [Google Scholar]
  • 76.Nakanishi J, Takarada T, Yamaguchi K, Maeda M. Recent advances in cell micropatterning techniques for bioanalytical and biomedical sciences. Anal Sci. 2008;24:67–72. doi: 10.2116/analsci.24.67. [DOI] [PubMed] [Google Scholar]
  • 77.Tang MD, Golden AP, Tien J. Molding of three-dimensional microstructures of gels. J Am Chem Soc. 2003;125:12988–12989. doi: 10.1021/ja037677h. [DOI] [PubMed] [Google Scholar]
  • 78.Javaherian S, O’Donnell KA, McGuigan AP. A fast and accessible methodology for micro-patterning cells on standard culture substrates using ParafilmTM inserts. PLoS One. 2011;6:e20909. doi: 10.1371/journal.pone.0020909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Javaherian S, Li KJ, McGuigan AP. A simple and rapid method for generating patterned co-cultures with stable interfaces. Biotechniques. 2013;55:21–26. doi: 10.2144/000114051. [DOI] [PubMed] [Google Scholar]
  • 80.Khetan S, Burdick JA. Patterning hydrogels in three dimensions towards controlling cellular interactions. Soft Matter. 2011;7:830–838. doi: 10.1039/C0SM00852D. [DOI] [Google Scholar]
  • 81.Hasan A, Paul A, Vrana NE, Zhao X, Memic A, Hwang YS, et al. Microfluidic techniques for development of 3D vascularized tissue. Biomaterials. 2014;35:7308–7325. doi: 10.1016/j.biomaterials.2014.04.091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Ji D, Jiang L, Jiang L, Fu X, Dong H, Yu J, et al. A novel method for photolithographic polymer shadow masking:toward high-resolution high-performance top-contact organic field effect transistors. Chem Commun (Camb) 2014;50:8328–8330. doi: 10.1039/c4cc01932f. [DOI] [PubMed] [Google Scholar]
  • 83.Nikkhah M, Eshak N, Zorlutuna P, Annabi N, Castello M, Kim K, et al. Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials. 2012;33:9009–9018. doi: 10.1016/j.biomaterials.2012.08.068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6:483–495. doi: 10.1016/S1534-5807(04)00075-9. [DOI] [PubMed] [Google Scholar]
  • 85.Kim J, Kim HN, Lim KT, Kim Y, Pandey S, Garg P, et al. Synergistic effects of nanotopography and co-culture with endothelial cells on osteogenesis of mesenchymal stem cells. Biomaterials. 2013;34:7257–7268. doi: 10.1016/j.biomaterials.2013.06.029. [DOI] [PubMed] [Google Scholar]
  • 86.Trkov S, Eng G, Di Liddo R, Parnigotto PP, Vunjak-Novakovic G. Micropatterned three-dimensional hydrogel system to study human endothelial-mesenchymal stem cell interactions. J Tissue Eng Regen Med. 2010;4:205–215. doi: 10.1002/term.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Tourovskaia A, Figueroa-Masot X, Folch A. Long-term micropatterned cell cultures in heterogeneous microfluidic environments. Conf Proc IEEE Eng Med Biol Soc. 2004;4:2675–2678. doi: 10.1109/IEMBS.2004.1403768. [DOI] [PubMed] [Google Scholar]
  • 88.Abbott RD, Kaplan DL. Strategies for improving the physiological relevance of human engineered tissues. Trends Biotechnol. 2015;33:401–407. doi: 10.1016/j.tibtech.2015.04.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Riehl BD, Lim JY. Macro and microfluidic flows for skeletal regenerative medicine. Cells. 2012;1:1225–1245. doi: 10.3390/cells1041225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Andersson H, van den Berg A. Microfabrication and microfluidics for tissue engineering:state of the art and future opportunities. Lab Chip. 2004;4:98–103. doi: 10.1039/b314469k. [DOI] [PubMed] [Google Scholar]
  • 91.Hasani-Sadrabadi MM, Hajrezaei SP, Emami SH, Bahlakeh G, Daneshmandi L, Dashtimoghadam E, et al. Enhanced osteogenic differentiation of stem cells via microfluidics synthesized nanoparticles. Nanomedicine. 2015;11:1809–1819. doi: 10.1016/j.nano.2015.04.005. [DOI] [PubMed] [Google Scholar]
  • 92.Kirkpatrick CJ, Peters K, Hermanns MI, Bittinger F, Krump-Konvalinkova V, Fuchs S, et al. In vitro methodologies to evaluate biocompatibility:status quo and perspective. ITBM-RBM. 2005;26:192–199. doi: 10.1016/j.rbmret.2005.04.008. [DOI] [Google Scholar]
  • 93.Yim EK, Wan A L, Visage C, Liao IC, Leong KW. Proliferation and differentiation of human mesenchymal stem cell encapsulated in polyelectrolyte complexation fibrous scaffold. Biomaterials. 2006;27:6111–6122. doi: 10.1016/j.biomaterials.2006.07.037. [DOI] [PubMed] [Google Scholar]
  • 94.Sudo R, Chung S, Zervantonakis IK, Vickerman V, Toshimitsu Y, Griffith LG, et al. Transport-mediated angiogenesis in 3D epithelial coculture. FASEB J. 2009;23:2155–2164. doi: 10.1096/fj.08-122820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Shi X, Chen S, Zhao Y, Lai C, Wu H. Enhanced osteogenesis by a biomimic pseudo-periosteum-involved tissue engineering strategy. Adv Healthc Mater. 2013;2:1229–1235. doi: 10.1002/adhm.201300012. [DOI] [PubMed] [Google Scholar]
  • 96.Duttenhoefer F L, de Freitas R, Meury T, Loibl M, Benneker LM, Richards RG, et al. 3D scaffolds co-seeded with human endothelial progenitor and mesenchymal stem cells:evidence of prevascularisation within 7 days. Eur Cell Mater. 2013;26:49–64. doi: 10.22203/ecm.v026a04. [DOI] [PubMed] [Google Scholar]
  • 97.Bonzani IC, George JH, Stevens MM. Novel materials for bone and cartilage regeneration. Curr Opin Chem Biol. 2006;10:568–575. doi: 10.1016/j.cbpa.2006.09.009. [DOI] [PubMed] [Google Scholar]
  • 98.Marieb EN, Wilhelm PB, Mallatt JB. Human Anatomy. San Francisco. CA: Pearson Benjamin Cummings; 2005. [Google Scholar]

Articles from Tissue Engineering and Regenerative Medicine are provided here courtesy of Springer

RESOURCES