Skip to main content
Tissue Engineering and Regenerative Medicine logoLink to Tissue Engineering and Regenerative Medicine
. 2016 Oct 20;13(5):516–526. doi: 10.1007/s13770-016-9099-9

Electrospun fibrous silk fibroin/poly(L-lactic acid) scaffold for cartilage tissue engineering

Weiwei Liu 1,2, Zhengqiang Li 1,2, Lu Zheng 3, Xiaoyan Zhang 4, Peng Liu 5, Ting Yang 3, Bing Han 1,2,
PMCID: PMC6170845  PMID: 30603432

Abstract

For successful tissue engineering of articular cartilage, a scaffold with mechanical properties that match those of natural cartilage as closely as possible is needed. In the present study, we prepared a fibrous silk fibroin (SF)/poly(L-lactic acid) (PLLA) scaffold via electrospinning and investigated the morphological, mechanical, and degradation properties of the scaffolds fabricated using different electrospinning conditions, including collection distance, working voltage, and the SF:PLLA mass ratio. In addition, in vitro cell-scaffold interactions were evaluated in terms of chondrocyte adhesion to the scaffolds as well as the cytotoxicity and cytocompatibility of the scaffolds. The optimum electrospinning conditions for generating a fibrous SF/PLLA scaffold with the best surface morphology (ordered alignment and suitable diameter) and tensile strength (~1.5 MPa) were a collection distance of 20 cm, a working voltage of 15 kV, and a SF:PLLA mass ratio of S50P50. The degradation rate of the SF/PLLA scaffolds was found to be determined by the SF:PLLA mass ratio, and it could be increased by reducing the PLLA proportion. Furthermore, chondrocytes spread well on the fibrous SF/PLLA scaffolds and secreted extracellular matrix, indicating good adhesion to the scaffold. The cytotoxicity of SF/PLLA scaffold extract to chondrocytes over 24 and 48 h in culture was low, indicating that the SF/PLLA scaffolds are biocompatible. Chondrocytes grew well on the SF/PLLA scaffold after 1, 3, 5, and 7 days of direct contact, indicating the good cytocompatibility of the scaffold. These results demonstrate that the fibrous SF/PLLA scaffold represents a promising composite material for use in cartilage tissue engineering.

Key Words: Electrospinning, Silk fibroin, Poly(L-lactic acid), Cartilage tissue engineering, Scaffold

References

  • 1.Klein J. Chemistry. Repair or replacement—a joint perspective. Science. 2009;323:47–48. doi: 10.1126/science.1166753. [DOI] [PubMed] [Google Scholar]
  • 2.Zhang HY, Blunt L, Jiang XQ, Brown L, Barrans S, Zhao Y. Femoral stem wear in cemented total hip replacement. Proc Inst Mech Eng H. 2008;222:583–592. doi: 10.1243/09544119JEIM346. [DOI] [PubMed] [Google Scholar]
  • 3.Dowson D. Bio-tribology. Faraday Discuss. 2012;156:9–30. doi: 10.1039/c2fd20103h. [DOI] [PubMed] [Google Scholar]
  • 4.Liao Y, Pourzal R, Wimmer MA, Jacobs JJ, Fischer A, Marks LD. Graphitic tribological layers in metal-on-metal hip replacements. Science. 2011;334:1687–1690. doi: 10.1126/science.1213902. [DOI] [PubMed] [Google Scholar]
  • 5.Zhang H, Brown LT, Blunt LA, Jiang X, Barrans SM. Understanding initiation and propagation of fretting wear on the femoral stem in total hip replacement. Wear. 2009;266:566–569. doi: 10.1016/j.wear.2008.04.076. [DOI] [Google Scholar]
  • 6.Zhang HY, Blunt LA, Jiang XQ, Fleming LT, Barrans SM. The influence of bone cement type on production of fretting wear on the femoral stem surface:a preliminary study. Clin Biomech (Bristol, Avon) 2012;27:666–672. doi: 10.1016/j.clinbiomech.2012.02.008. [DOI] [PubMed] [Google Scholar]
  • 7.Mäkelä KT, Matilainen M, Pulkkinen P, Fenstad AM, Havelin LI, Engesaeter L, et al. Countrywise results of total hip replacement. An analysis of 438,733 hips based on the Nordic Arthroplasty Register Association Database. Acta Orthop. 2014;85:107–116. doi: 10.3109/17453674.2014.893498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Zhang HY, Luo JB, Zhou M, Zhang Y, Huang YL. Biotribological properties at the stem-cement interface lubricated with different media. J Mech Behav Biomed Mater. 2013;20:209–216. doi: 10.1016/j.jmbbm.2013.01.001. [DOI] [PubMed] [Google Scholar]
  • 9.Zhang H, Brown LT, Blunt LA, Barrans SM. Influence of femoral stem surface finish on the apparent static shear strength at the stem-cement interface. J Mech Behav Biomed Mater. 2008;1:96–104. doi: 10.1016/j.jmbbm.2007.06.001. [DOI] [PubMed] [Google Scholar]
  • 10.Zhang H, Zhang S, Luo J, Liu Y, Qian S, Liang F, et al. Investigation of protein adsorption mechanism and biotribological properties at simulated stem-cement interface. J Tribol. 2013;135:032301. doi: 10.1115/1.4023802. [DOI] [Google Scholar]
  • 11.Kuo CK, Li WJ, Mauck RL, Tuan RS. Cartilage tissue engineering:its potential and uses. Curr Opin Rheumatol. 2006;18:64–73. doi: 10.1097/01.bor.0000198005.88568.df. [DOI] [PubMed] [Google Scholar]
  • 12.Ma PX. Scaffolds for tissue fabrication. Mater Today. 2004;7:30–40. doi: 10.1016/S1369-7021(04)00233-0. [DOI] [Google Scholar]
  • 13.Patterson J, Martino MM, Hubbell JA. Biomimetic materials in tissue engineering. Mater Today. 2010;13:14–22. doi: 10.1016/S1369-7021(10)70013-4. [DOI] [Google Scholar]
  • 14.Niu X, Fan Y, Liu X, Li X, Li P, Wang J, et al. Repair of bone defect in femoral condyle using microencapsulated chitosan, nanohydroxyapatite/ collagen and poly(L-lactide)-based microsphere-scaffold delivery system. Artif Organs. 2011;35:E119–E128. doi: 10.1111/j.1525-1594.2011.01274.x. [DOI] [PubMed] [Google Scholar]
  • 15.Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28:5–24. doi: 10.1016/S0169-409X(97)00048-3. [DOI] [PubMed] [Google Scholar]
  • 16.Ki CS, Park SY, Kim HJ, Jung HM, Woo KM, Lee JW, et al. Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning:implications for bone regeneration. Biotechnol Lett. 2008;30:405–410. doi: 10.1007/s10529-007-9581-5. [DOI] [PubMed] [Google Scholar]
  • 17.Mauney JR, Nguyen T, Gillen K, Kirker-Head C, Gimble JM, Kaplan DL. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials. 2007;28:5280–5290. doi: 10.1016/j.biomaterials.2007.08.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Park SY, Ki CS, Park YH, Jung HM, Woo KM, Kim HJ. Electrospun silk fibroin scaffolds with macropores for bone regeneration:an in vitro and in vivo study. Tissue Eng Part A. 2010;16:1271–1279. doi: 10.1089/ten.tea.2009.0328. [DOI] [PubMed] [Google Scholar]
  • 19.Lazzeri L, Cascone MG, Danti S, Serino LP, Moscato S, Bernardini N. Gelatine/PLLA sponge-like scaffolds:morphological and biological characterization. J Mater Sci Mater Med. 2007;18:1399–1405. doi: 10.1007/s10856-007-0127-0. [DOI] [PubMed] [Google Scholar]
  • 20.Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013;65:457–470. doi: 10.1016/j.addr.2012.09.043. [DOI] [PubMed] [Google Scholar]
  • 21.Ehler E, Jayasinghe SN. Cell electrospinning cardiac patches for tissue engineering the heart. Analyst. 2014;139:4449–4452. doi: 10.1039/C4AN00766B. [DOI] [PubMed] [Google Scholar]
  • 22.Wang S, Zhang Y, Wang H, Dong Z. Preparation, characterization and biocompatibility of electrospinning heparin-modified silk fibroin nanofibers. Int J Biol Macromol. 2011;48:345–353. doi: 10.1016/j.ijbiomac.2010.12.008. [DOI] [PubMed] [Google Scholar]
  • 23.Garrigues NW, Little D, Sanchez-Adams J, Ruch DS, Guilak F. Electrospun cartilage-derived matrix scaffolds for cartilage tissue engineering. J Biomed Mater Res A. 2014;102:3998–4008. doi: 10.1002/jbm.a.35068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Kijenska E, Prabhakaran MP, Swieszkowski W, Kurzydlowski KJ, Ramakrishna S. Electrospun bio-composite P(LLA-CL)/collagen I/collagen III scaffolds for nerve tissue engineering. J Biomed Mater Res B Appl Biomater. 2012;100:1093–1102. doi: 10.1002/jbm.b.32676. [DOI] [PubMed] [Google Scholar]
  • 25.Puppi D, Piras AM, Chiellini F, Chiellini E, Martins A, Leonor IB, et al. Optimized electro-and wet-spinning techniques for the production of polymeric fibrous scaffolds loaded with bisphosphonate and hydroxyapatite. J Tissue Eng Regen Med. 2011;5:253–263. doi: 10.1002/term.310. [DOI] [PubMed] [Google Scholar]
  • 26.Vatankhah E, Prabhakaran MP, Semnani D, Razavi S, Morshed M, Ramakrishna S. Electrospun tecophilic/gelatin nanofibers with potential for small diameter blood vessel tissue engineering. Biopolymers. 2014;101:1165–1180. doi: 10.1002/bip.22524. [DOI] [PubMed] [Google Scholar]
  • 27.Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63:2223–2253. doi: 10.1016/S0266-3538(03)00178-7. [DOI] [Google Scholar]
  • 28.Ma G, Fang D, Liu Y, Zhu X, Nie J. Electrospun sodium alginate/ poly(ethylene oxide) core-shell nanofibers scaffolds potential for tissue engineering applications. Carbohyd Polym. 2012;87:737–743. doi: 10.1016/j.carbpol.2011.08.055. [DOI] [PubMed] [Google Scholar]
  • 29.Kai D, Prabhakaran MP, Jin G, Ramakrishna S. Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. J Biomed Mater Res B. 2011;98:379–386. doi: 10.1002/jbm.b.31862. [DOI] [PubMed] [Google Scholar]
  • 30.USP. USP 24. Rockville, MD:United States Pharmacopeial Convention, Inc;2000. p.1943.
  • 31.He X, Fu W, Feng B, Wang H, Liu Z, Yin M, et al. Electrospun collagenpoly( L-lactic acid-co-e-caprolactone) membranes for cartilage tissue engineering. Regen Med. 2013;8:425–436. doi: 10.2217/rme.13.29. [DOI] [PubMed] [Google Scholar]
  • 32.Brown L, Zhang H, Blunt L, Barrans S. Reproduction of fretting wear at the stem-cement interface in total hip replacement. Proc Inst Mech Eng H. 2007;221:963–971. doi: 10.1243/09544119JEIM333. [DOI] [PubMed] [Google Scholar]
  • 33.Wang Y, Kim HJ, Vunjak-Novakovic G, Kaplan DL. Stem cell-based tissue engineering with silk biomaterials. Biomaterials. 2006;27:6064–6082. doi: 10.1016/j.biomaterials.2006.07.008. [DOI] [PubMed] [Google Scholar]
  • 34.Zhang HY, Brown L, Barrans S, Blunt L, Jiang XQ. Investigation of relative micromotion at the stem-cement interface in total hip replacement. Proc Inst Mech Eng H. 2009;223:955–964. doi: 10.1243/09544119JEIM594. [DOI] [PubMed] [Google Scholar]
  • 35.Zhang H, Brown L, Blunt L, Jiang X, Barrans S. The contribution of the micropores in bone cement surface to generation of femoral stem wear in total hip replacement. Tribol Int. 2011;44:1476–1482. doi: 10.1016/j.triboint.2010.11.007. [DOI] [Google Scholar]
  • 36.Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science. 2012;338:917–921. doi: 10.1126/science.1222454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Frenot A, Chronakis IS. Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci. 2003;8:64–75. doi: 10.1016/S1359-0294(03)00004-9. [DOI] [Google Scholar]
  • 38.Kumbar SG, James R, Nukavarapu SP, Laurencin CT. Electrospun nanofiber scaffolds:engineering soft tissues. Biomed Mater. 2008;3:034002. doi: 10.1088/1748-6041/3/3/034002. [DOI] [PubMed] [Google Scholar]
  • 39.Sung HJ, Meredith C, Johnson C, Galis ZS. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials. 2004;25:5735–5742. doi: 10.1016/j.biomaterials.2004.01.066. [DOI] [PubMed] [Google Scholar]
  • 40.Sionkowska A. Current research on the blends of natural and synthetic polymers as new biomaterials:review. Prog Polym Sci. 2011;36:1254–1276. doi: 10.1016/j.progpolymsci.2011.05.003. [DOI] [Google Scholar]
  • 41.Torricelli P, Gioffrè M, Fiorani A, Panzavolta S, Gualandi C, Fini M, et al. Co-electrospun gelatin-poly(L-lactic acid) scaffolds:modulation of mechanical properties and chondrocyte response as a function of composition. Mater Sci Eng C Mater Biol Appl. 2014;36:130–138. doi: 10.1016/j.msec.2013.11.050. [DOI] [PubMed] [Google Scholar]
  • 42.Slepicka P, Kasalkova NS, Siegel J, Kolska Z, Bacakova L, Svorcik V. Nanostructured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol Adv. 2015;53:1120–1129. doi: 10.1016/j.biotechadv.2015.01.001. [DOI] [PubMed] [Google Scholar]

Articles from Tissue Engineering and Regenerative Medicine are provided here courtesy of Springer

RESOURCES