Skip to main content
Tissue Engineering and Regenerative Medicine logoLink to Tissue Engineering and Regenerative Medicine
. 2016 Oct 20;13(5):447–454. doi: 10.1007/s13770-016-9107-0

Efficient biomaterials for tissue engineering of female reproductive organs

Amin Tamadon 1, Kyu-Hyung Park 1, Yoon Young Kim 2, Byeong-Cheol Kang 3,4, Seung-Yup Ku 1,
PMCID: PMC6170846  PMID: 30603426

Abstract

Current investigations on the bioengineering of female reproductive tissues have created new hopes for the women suffering from reproductive organ failure including congenital anomaly of the female reproductive tract or serious injuries. There are many surgically restore forms that constitute congenital anomaly, however, to date, there is no treatment except surgical treatment of transplantation for patients who are suffering from anomaly or dysfunction organs like vagina and uterus. Restoring and maintaining the normal function of ovary and uterus require the establishment of biological substitutes that can cover the roles of structural support for cells and passage of secreting molecules. As in the case of constructing other functional organs, reproductive organ manufacturing also needs biological matrices which can provide an appropriate condition for attachment, growth, proliferation and signaling of various kinds of grafted cells. Among the organs, uterus needs special features such as plasticity due to their amazing changes in volume when they are in the state of pregnancy. Although numerous natural and synthetic biomaterials are still at the experimental stage, some biomaterials have already been evaluated their efficacy for the reconstruction of female reproductive tissues. In this review, all the biomaterials cited in recent literature that have ever been used and that have a potential for the tissue engineering of female reproductive organs were reviewed, especially focused on bioengineered ovary and uterus.

Key Words: Tissue engineering, Biomaterial, Ovary, Uterus

References

  • 1.SGO Clinical Practice Endometrial Cancer Working Group Endometrial cancer:a review and current management strategies:part II. Gynecol Oncol. 2014;134:393–402. doi: 10.1016/j.ygyno.2014.06.003. [DOI] [PubMed] [Google Scholar]
  • 2.Vassilakopoulou M, Boostandoost E, Papaxoinis G, de La Motte Rouge T, Khayat D, Psyrri A. Anticancer treatment and fertility:effect of therapeutic modalities on reproductive system and functions. Crit Rev Oncol Hematol. 2016;97:328–334. doi: 10.1016/j.critrevonc.2015.08.002. [DOI] [PubMed] [Google Scholar]
  • 3.Doherty L, Mutlu L, Sinclair D, Taylor H. Uterine fibroids:clinical manifestations and contemporary management. Reprod Sci. 2014;21:1067–1092. doi: 10.1177/1933719114533728. [DOI] [PubMed] [Google Scholar]
  • 4.Berman JR, Bassuk J. Physiology and pathophysiology of female sexual function and dysfunction. World J Urol. 2002;20:111–118. doi: 10.1007/s00345-002-0281-4. [DOI] [PubMed] [Google Scholar]
  • 5.Salama M, Mallmann P. Emergency fertility preservation for female patients with cancer:clinical perspectives. Anticancer Res. 2015;35:3117–3127. [PubMed] [Google Scholar]
  • 6.Carlson MJ, Thiel KW, Leslie KK. Past, present, and future of hormonal therapy in recurrent endometrial cancer. Int J Womens Health. 2014;6:429–435. doi: 10.2147/IJWH.S40942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Iavazzo C, Gkegkes ID. Possible role of DaVinci Robot in uterine transplantation. J Turk Ger Gynecol Assoc. 2015;16:179–180. doi: 10.5152/jtgga.2015.15045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Cervelló I, Santamaría X, Miyazaki K, Maruyama T, Simón C. Cell Therapy and tissue engineering from and toward the uterus. Semin Reprod Med. 2015;33:366–372. doi: 10.1055/s-0035-1559581. [DOI] [PubMed] [Google Scholar]
  • 9.Hellström M, El-Akouri RR, Sihlbom C, Olsson BM, Lengqvist J, Bäckdahl H, et al. Towards the development of a bioengineered uterus:comparison of different protocols for rat uterus decellularization. Acta Biomater. 2014;10:5034–5042. doi: 10.1016/j.actbio.2014.08.018. [DOI] [PubMed] [Google Scholar]
  • 10.Li WX, Liang GT, Yan W, Zhang Q, Wang W, Zhou XM, et al. Artificial uterus on a microfluidic chip. Chin J Anal Chem. 2013;41:467–472. doi: 10.1016/S1872-2040(13)60639-8. [DOI] [Google Scholar]
  • 11.Labrie F. All sex steroids are made intracellularly in peripheral tissues by the mechanisms of intracrinology after menopause. J Steroid Biochem Mol Biol. 2015;145:133–138. doi: 10.1016/j.jsbmb.2014.06.001. [DOI] [PubMed] [Google Scholar]
  • 12.Jeong JH, Park JR, JIn ES, Min JK, Jeon SR, Kim DK, et al. Adipose tissue-derived stem cells in the ovariectomy-induced postmenopausal osteoporosis rat model. Tissue Eng Regen Med. 2015;12:28–36. doi: 10.1007/s13770-014-0001-3. [DOI] [Google Scholar]
  • 13.Wese ER, Shea LD, Woodruff TK. Engineering the follicle microenvironment. Semin Reprod Med. 2007;25:287–299. doi: 10.1055/s-2007-980222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Vanacker J, Luyckx V, Dolmans MM, Des Rieux A, Jaeger J, Van Langendonckt A, et al. Transplantation of an alginate-matrigel matrix containing isolated ovarian cells:first step in developing a biodegradable scaffold to transplant isolated preantral follicles and ovarian cells. Biomaterials. 2012;33:6079–6085. doi: 10.1016/j.biomaterials.2012.05.015. [DOI] [PubMed] [Google Scholar]
  • 15.Berkholtz CB, Lai BE, Woodruff TK, Shea LD. Distribution of extracellular matrix proteins type I collagen, type IV collagen, fibronectin, and laminin in mouse folliculogenesis. Histochem Cell Biol. 2006;126:583–592. doi: 10.1007/s00418-006-0194-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Shea LD, Woodruff TK, Shikanov A. Bioengineering the ovarian follicle microenvironment. Annu Rev Biomed Eng. 2014;16:29–52. doi: 10.1146/annurev-bioeng-071813-105131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Smith RM, Woodruff TK, Shea LD. Designing follicle-environment interactions with biomaterials. Cancer Treat Res. 2010;156:11–24. doi: 10.1007/978-1-4419-6518-9_2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–785. doi: 10.1038/nbt.2958. [DOI] [PubMed] [Google Scholar]
  • 19.Andrade LR, Salgado LT, Farina M, Pereira M M P A, Filho GM. Ultrastructure of acidic polysaccharides from the cell walls of brown algae. J Struct Biol. 2004;145:216–225. doi: 10.1016/j.jsb.2003.11.011. [DOI] [PubMed] [Google Scholar]
  • 20.Kedem A, Hourvitz A, Fisch B, Shachar M, Cohen S, Ben-Haroush A, et al. Alginate scaffold for organ culture of cryopreserved-thawed human ovarian cortical follicles. J Assist Reprod Genet. 2011;28:761–769. doi: 10.1007/s10815-011-9605-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Lee SH, Chung HY, Shin HI, Park DJ, Choi JH. Osteogenic activity of chitosan-based hybrid scaffold prepared by polyelectrolyte complex formation with alginate. Tissue Eng Regen Med. 2014;11:106–112. doi: 10.1007/s13770-013-1114-9. [DOI] [Google Scholar]
  • 22.Camboni A, Van Langendonckt A, Donnez J, Vanacker J, Dolmans MM, Amorim CA. Alginate beads as a tool to handle, cryopreserve and culture isolated human primordial/primary follicles. Cryobiology. 2013;67:64–69. doi: 10.1016/j.cryobiol.2013.05.002. [DOI] [PubMed] [Google Scholar]
  • 23.Xu M, West E, Shea LD, Woodruff TK. Identification of a stage-specific permissive in vitro culture environment for follicle growth and oocyte development. Biol Reprod. 2006;75:916–923. doi: 10.1095/biolreprod.106.054833. [DOI] [PubMed] [Google Scholar]
  • 24.Xu M, Kreeger PK, Shea LD, Woodruff TK. Tissue-engineered follicles produce live, fertile offspring. Tissue Eng. 2006;12:2739–2746. doi: 10.1089/ten.2006.12.2739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Tagler D, Makanji Y, Tu T, Bernabé BP, Lee R, Zhu J, et al. Promoting extracellular matrix remodeling via ascorbic acid enhances the survival of primary ovarian follicles encapsulated in alginate hydrogels. Biotechnol Bioeng. 2014;111:1417–1429. doi: 10.1002/bit.25181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Tagler D, Tu T, Smith RM, Anderson NR, Tingen CM, Woodruff TK, et al. Embryonic fibroblasts enable the culture of primary ovarian follicles within alginate hydrogels. Tissue Eng Part A. 2012;18:1229–1238. doi: 10.1089/ten.tea.2011.0418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Park KE, Kim YY, Ku SY, Baek SM, Huh Y, Kim YJ, et al. Effects of alginate hydrogels on in vitro maturation outcome of mouse preantral follicles. Tissue Eng Regen Med. 2012;9:170–174. doi: 10.1007/s13770-012-0170-x. [DOI] [Google Scholar]
  • 28.Chiu CL, Hecht V, Duong H, Wu B, Tawil B. Permeability of three-dimensional fibrin constructs corresponds to fibrinogen and thrombin concentrations. Biores Open Access. 2012;1:34–40. doi: 10.1089/biores.2012.0211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Sese N, Cole M, Tawil B. Proliferation of human keratinocytes and cocultured human keratinocytes and fibroblasts in three-dimensional fibrin constructs. Tissue Eng Part A. 2011;17:429–437. doi: 10.1089/ten.tea.2010.0113. [DOI] [PubMed] [Google Scholar]
  • 30.Luyckx V, Dolmans MM, Vanacker J, Scalercio SR, Donnez J, Amorim CA. First step in developing a 3D biodegradable fibrin scaffold for an artificial ovary. J Ovarian Res. 2013;6:83. doi: 10.1186/1757-2215-6-83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Luyckx V, Dolmans MM, Vanacker J, Legat C, Fortuño Moya C, Donnez J, et al. A new step toward the artificial ovary:survival and proliferation of isolated murine follicles after autologous transplantation in a fibrin scaffold. Fertil Steril. 2014;101:1149–1156. doi: 10.1016/j.fertnstert.2013.12.025. [DOI] [PubMed] [Google Scholar]
  • 32.Soares M, Sahrari K, Chiti MC, Amorim CA, Ambroise J, Donnez J, et al. The best source of isolated stromal cells for the artificial ovary:medulla or cortex, cryopreserved or fresh. Hum Reprod. 2015;30:1589–1598. doi: 10.1093/humrep/dev101. [DOI] [PubMed] [Google Scholar]
  • 33.Duong H, Wu B, Tawil B. Modulation of 3D fibrin matrix stiffness by intrinsic fibrinogen-thrombin compositions and by extrinsic cellular activity. Tissue Eng Part A. 2009;15:1865–1876. doi: 10.1089/ten.tea.2008.0319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Xu M, West-Farrell ER, Stouffer RL, Shea LD, Woodruff TK, Zelinski MB. Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles. Biol Reprod. 2009;81:587–594. doi: 10.1095/biolreprod.108.074732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Shikanov A, Xu M, Woodruff TK, Shea LD. A method for ovarian follicle encapsulation and culture in a proteolytically degradable 3 dimensional system. J Vis Exp. 2011;49:2695. doi: 10.3791/2695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Shea LD, Woodruff TK, Shikanov A. US20120142069 A1. Interpenetrating biomaterial matrices and uses thereof. 2012. [Google Scholar]
  • 37.Dikovsky D, Bianco-Peled H, Seliktar D. Proteolytically degradable photo-polymerized hydrogels made from PEG-fibrinogen adducts. Adv Eng Mater. 2010;12:B200–B209. doi: 10.1002/adem.200980054. [DOI] [Google Scholar]
  • 38.Peled E, Boss J, Bejar J, Zinman C, Seliktar D. A novel poly(ethylene glycol)-fibrinogen hydrogel for tibial segmental defect repair in a rat model. J Biomed Mater Res A. 2007;80:874–884. doi: 10.1002/jbm.a.30928. [DOI] [PubMed] [Google Scholar]
  • 39.Lerer-Serfaty G, Samara N, Fisch B, Shachar M, Kossover O, Seliktar D, et al. Attempted application of bioengineered/biosynthetic supporting matrices with phosphatidylinositol-trisphosphate-enhancing substances to organ culture of human primordial follicles. J Assist Reprod Genet. 2013;30:1279–1288. doi: 10.1007/s10815-013-0052-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Kossowska-Tomaszczuk K, Pelczar P, Güven S, Kowalski J, Volpi E, De Geyter C, et al. A novel three-dimensional culture system allows prolonged culture of functional human granulosa cells and mimics the ovarian environment. Tissue Eng Part A. 2010;16:2063–2073. doi: 10.1089/ten.tea.2009.0684. [DOI] [PubMed] [Google Scholar]
  • 41.Riva F, Omes C, Fassina L, Vaghi P, Reguzzoni M, Casasco M, et al. 3D culture of multipotent cells derived from waste human ovarian follicular liquid and seeded onto gelatin cryogel. Ital J Anat Embryol. 2013;118:162. [Google Scholar]
  • 42.Laronda MM, Rutz AL, Xiao S, Whelan KA, Woodruff TK, Shah RN. 3D printed scaffold architecture influences ovarian follicle function. Tissue Eng Part A. 2015;21:S30. [Google Scholar]
  • 43.Laronda MM, Rutz AL, Jakus AE, Xiao S, Whelan KA, Wertheim JA, et al. Ovarian follicles develop and ovulate within a bioengineered artificial ovary. Tissue Eng Part A. 2014;20:S44. [Google Scholar]
  • 44.Jaganathan H, Godin B. Biocompatibility assessment of Si-based nanoand micro-particles. Adv Drug Deliv Rev. 2012;64:1800–1819. doi: 10.1016/j.addr.2012.05.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Catalano PN, Bourguignon NS, Alvarez GS, Libertun C, Diaz LU, Desimone MF, et al. Sol-gel immobilized ovarian follicles:collaboration between two different cell types in hormone production and secretion. J Mater Chem. 2012;22:11681–11687. doi: 10.1039/c2jm30888f. [DOI] [Google Scholar]
  • 46.Wijesinghe W, Jeon YJ. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds:a review. Carbohydr Polym. 2012;88:13–20. doi: 10.1016/j.carbpol.2011.12.029. [DOI] [Google Scholar]
  • 47.Krotz SP, Robins JC, Ferruccio TM, Moore R, Steinhoff MM, Morgan JR, et al. In vitro maturation of oocytes via the pre-fabricated self-assembled artificial human ovary. J Assist Reprod Genet. 2010;27:743–750. doi: 10.1007/s10815-010-9468-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Laronda MM, Jakus AE, Whelan KA, Wertheim JA, Shah RN, Woodruff TK. Initiation of puberty in mice following decellularized ovary transplant. Biomaterials. 2015;50:20–29. doi: 10.1016/j.biomaterials.2015.01.051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Kakehi K, Kinoshita M, Yasueda S. Hyaluronic acid:separation and biological implications. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;797:347–355. doi: 10.1016/S1570-0232(03)00479-3. [DOI] [PubMed] [Google Scholar]
  • 50.Kim JT, Lee DY, Kim EJ, Jang JW, Cho NI. Tissue response to implants of hyaluronic acid hydrogel prepared by microbeads. Tissue Eng Regen Med. 2014;11:32–38. doi: 10.1007/s13770-013-1106-9. [DOI] [Google Scholar]
  • 51.Desai N, Abdelhafez F, Calabro A, Falcone T. Three dimensional culture of fresh and vitrified mouse pre-antral follicles in a hyaluronan-based hydrogel:a preliminary investigation of a novel biomaterial for in vitro follicle maturation. Reprod Biol Endocrinol. 2012;10:29. doi: 10.1186/1477-7827-10-29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Yalcinkaya TM, Sittadjody S, Opara EC. Scientific principles of regenerative medicine and their application in the female reproductive system. Maturitas. 2014;77:12–19. doi: 10.1016/j.maturitas.2013.10.007. [DOI] [PubMed] [Google Scholar]
  • 53.Huh Y, Kim YY, Ku SY. Perspective of bioartificial uterus as gynecological regenerative medicine. Tissue Eng Regen Med. 2012;9:233–239. doi: 10.1007/s13770-012-0360-6. [DOI] [Google Scholar]
  • 54.Johannesson L, Enskog A, Dahm-Kähler P, Hanafy A, Chai DC, Mwenda JM, et al. Uterus transplantation in a non-human primate:long-term follow-up after autologous transplantation. Hum Reprod. 2012;27:1640–1648. doi: 10.1093/humrep/des093. [DOI] [PubMed] [Google Scholar]
  • 55.Deonandan R, Green S, van Beinum A. Ethical concerns for maternal surrogacy and reproductive tourism. J Med Ethics. 2012;38:742–745. doi: 10.1136/medethics-2012-100551. [DOI] [PubMed] [Google Scholar]
  • 56.Atala A, Yoo JJ. Construction of an artificial uterus;provide biocompatible matrix, prefuse with cell population, culture cells, recover artificial uterine tissue. 2008. [Google Scholar]
  • 57.Li X, Sun H, Lin N, Hou X, Wang J, Zhou B, et al. Regeneration of uterine horns in rats by collagen scaffolds loaded with collagen-binding human basic fibroblast growth factor. Biomaterials. 2011;32:8172–8181. doi: 10.1016/j.biomaterials.2011.07.050. [DOI] [PubMed] [Google Scholar]
  • 58.Campbell GR, Turnbull G, Xiang L, Haines M, Armstrong S, Rolfe BE, et al. The peritoneal cavity as a bioreactor for tissue engineering visceral organs:bladder, uterus and vas deferens. J Tissue Eng Regen Med. 2008;2:50–60. doi: 10.1002/term.66. [DOI] [PubMed] [Google Scholar]
  • 59.Miyazaki K, Maruyama T. Partial regeneration and reconstruction of the rat uterus through recellularization of a decellularized uterine matrix. Biomaterials. 2014;35:8791–8800. doi: 10.1016/j.biomaterials.2014.06.052. [DOI] [PubMed] [Google Scholar]
  • 60.Santoso EG, Yoshida K, Hirota Y, Aizawa M, Yoshino O, Kishida A, et al. Application of detergents or high hydrostatic pressure as decellularization processes in uterine tissues and their subsequent effects on in vivo uterine regeneration in murine models. PLoS One. 2014;9:e103201. doi: 10.1371/journal.pone.0103201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Roberts CP, Rock JA. Surgical methods in the treatment of congenital anomalies of the uterine cervix. Curr Opin Obstet Gynecol. 2011;23:251–257. doi: 10.1097/GCO.0b013e3283478839. [DOI] [PubMed] [Google Scholar]
  • 62.Ding JX, Chen XJ, Zhang XY, Zhang Y, Hua KQ. Acellular porcine small intestinal submucosa graft for cervicovaginal reconstruction in eight patients with malformation of the uterine cervix. Hum Reprod. 2014;29:677–682. doi: 10.1093/humrep/det470. [DOI] [PubMed] [Google Scholar]
  • 63.Li M, Zhang Z. Laparoscopically assisted biomaterial graft for reconstruction in congenital atresia of vagina and cervix. Fertil Steril. 2013;100:1784–1787. doi: 10.1016/j.fertnstert.2013.08.046. [DOI] [PubMed] [Google Scholar]
  • 64.House M, Sanchez CC, Rice WL, Socrate S, Kaplan DL. Cervical tissue engineering using silk scaffolds and human cervical cells. Tissue Eng Part A. 2010;16:2101–2112. doi: 10.1089/ten.tea.2009.0457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Hoemann CD, Sun J, Légaré A, McKee MD, Buschmann MD. Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthritis Cartilage. 2005;13:318–329. doi: 10.1016/j.joca.2004.12.001. [DOI] [PubMed] [Google Scholar]
  • 66.Berillo D, Elowsson L, Kirsebom H. Oxidized dextran as crosslinker for chitosan cryogel scaffolds and formation of polyelectrolyte complexes between chitosan and gelatin. Macromol Biosci. 2012;12:1090–1099. doi: 10.1002/mabi.201200023. [DOI] [PubMed] [Google Scholar]
  • 67.Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B. In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A. 2006;76:431–438. doi: 10.1002/jbm.a.30570. [DOI] [PubMed] [Google Scholar]
  • 68.Reza AT, Nicoll SB. Characterization of novel photocrosslinked carboxymethylcellulose hydrogels for encapsulation of nucleus pulposus cells. Acta Biomater. 2010;6:179–186. doi: 10.1016/j.actbio.2009.06.004. [DOI] [PubMed] [Google Scholar]
  • 69.Yu C, Bianco J, Brown C, Fuetterer L, Watkins JF, Samani A, et al. Porous decellularized adipose tissue foams for soft tissue regeneration. Biomaterials. 2013;34:3290–3302. doi: 10.1016/j.biomaterials.2013.01.056. [DOI] [PubMed] [Google Scholar]
  • 70.Grover CN, Cameron RE, Best SM. Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering. J Mech Behav Biomed Mater. 2012;10:62–74. doi: 10.1016/j.jmbbm.2012.02.028. [DOI] [PubMed] [Google Scholar]
  • 71.Aboushwareb T, Eberli D, Ward C, Broda C, Holcomb J, Atala A, et al. A keratin biomaterial gel hemostat derived from human hair:evaluation in a rabbit model of lethal liver injury. J Biomed Mater Res B Appl Biomater. 2009;90:45–54. doi: 10.1002/jbm.b.31251. [DOI] [PubMed] [Google Scholar]
  • 72.Fini M, Motta A, Torricelli P, Giavaresi G N, Aldini N, Tschon M, et al. The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel. Biomaterials. 2005;26:3527–3536. doi: 10.1016/j.biomaterials.2004.09.040. [DOI] [PubMed] [Google Scholar]
  • 73.Peach MS, Kumbar SG, James R, Toti US, Balasubramaniam D, Deng M, et al. Design and optimization of polyphosphazene functionalized fiber matrices for soft tissue regeneration. J Biomed Nanotechnol. 2012;8:107–124. doi: 10.1166/jbn.2012.1368. [DOI] [PubMed] [Google Scholar]
  • 74.Gualandi C, Soccio M, Govoni M, Valente S, Lotti N, Munari A, et al. Poly(butylene/diethylene glycol succinate) multiblock copolyester as a candidate biomaterial for soft tissue engineering:solid-state properties, degradability, and biocompatibility. J Bioact Compat Polym. 2012;27:244–264. doi: 10.1177/0883911512440536. [DOI] [Google Scholar]
  • 75.Guo X, Park H, Young S, Kretlow JD, van den Beucken JJ, Baggett LS, et al. Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model. Acta Biomater. 2010;6:39–47. doi: 10.1016/j.actbio.2009.07.041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Efe T, Getgood A, Schofer MD, Fuchs-Winkelmann S, Mann D, Paletta JR, et al. The safety and short-term efficacy of a novel polyurethane meniscal scaffold for the treatment of segmental medial meniscus deficiency. Knee Surg Sports Traumatol Arthrosc. 2012;20:1822–1830. doi: 10.1007/s00167-011-1779-3. [DOI] [PubMed] [Google Scholar]
  • 77.Flynn L, Dalton PD, Shoichet MS. Fiber templating of poly(2-hydroxyethyl methacrylate) for neural tissue engineering. Biomaterials. 2003;24:4265–4272. doi: 10.1016/S0142-9612(03)00334-X. [DOI] [PubMed] [Google Scholar]
  • 78.Lai JY, Chen KH, Hsiue GH. Tissue-engineered human corneal endothelial cell sheet transplantation in a rabbit model using functional biomaterials. Transplantation. 2007;84:1222–1232. doi: 10.1097/01.tp.0000287336.09848.39. [DOI] [PubMed] [Google Scholar]

Articles from Tissue Engineering and Regenerative Medicine are provided here courtesy of Springer

RESOURCES