Abstract
Deformities in tissues and organs can be treated by using tissue engineering approach offering the development of biologically functionalized scaffolds from a variety of polymer blends which mimic the extracellular matrix and allow adjusting the material properties to meet the defect architecture. In recent years, research interest has been shown towards the development of chitosan (CS) based biomaterials for tissue engineering applications, because of its minimal foreign body reactions, intrinsic antibacterial property, biocompatibility, biodegradability and ability to be molded into various geometries and forms thereby making it suitable for cell ingrowth and conduction. The present work involves the fabrication of nanofibrous scaffold from CS and poly(vinyl alcohol) blends by free-surface electrospinning method. The morphology and functional characteristics of the developed scaffolds were assessed by field emission scanning electron microscopy and fourier transformed infra-red spectra analysis. The morphological analysis showed the average fiber diameter was 269 nm and thickness of the mat was 200–300 µm. X-ray diffraction study confirmed the crystalline nature of the prepared scaffolds, whereas hydrophilic characteristic of the prepared scaffolds was confirmed by measured contact angle. The scaffolds possess an adequate biodegradable, swelling and mechanical property that is found desirable for tissue engineering applications. The cell study using umbilical cord blood-derived mesenchymal stem cells has confirmed the in vitro biocompatibility and cell supportive property of the scaffold thereby depicting their potentiality for future clinical applications.
Key Words: Tissue engineering, Biocompatibility, Electrospinning, Chitosan, Poly(vinyl alcohol), Messenchymal stem cells
References
- 1.Nitya G, Nair GT, Mony U, Chennazhi KP, Nair SV. In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering. J Mater Sci Mater Med. 2012;23:1749–1761. doi: 10.1007/s10856-012-4647-x. [DOI] [PubMed] [Google Scholar]
- 2.Yang K, Wang X, Wang Y. Progress in nanocomposite of biodegradable polymer. J Ind Eng Chem. 2007;13:485–500. [Google Scholar]
- 3.Cancedda R, Dozin B, Giannoni P, Quarto R. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol. 2003;22:81–91. doi: 10.1016/S0945-053X(03)00012-X. [DOI] [PubMed] [Google Scholar]
- 4.Murugan R, Ramakrishna S. Development of nanocomposites for bone grafting. Comp Sci Technol. 2005;65:2385–2406. doi: 10.1016/j.compscitech.2005.07.022. [DOI] [Google Scholar]
- 5.Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering:state of the art and future trends. Macromol Biosci. 2004;4:743–765. doi: 10.1002/mabi.200400026. [DOI] [PubMed] [Google Scholar]
- 6.Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application:a review. Int J Polym Sci. 2011;2011:1–19. doi: 10.1155/2011/290602. [DOI] [Google Scholar]
- 7.Di Martino A, Sittinger M, Risbud MV. Chitosan:a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26:5983–5990. doi: 10.1016/j.biomaterials.2005.03.016. [DOI] [PubMed] [Google Scholar]
- 8.Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, et al. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv. 2008;26:1–21. doi: 10.1016/j.biotechadv.2007.07.009. [DOI] [PubMed] [Google Scholar]
- 9.Rinaudo M. Chitin and chitosan:properties and applications. Prog Polym Sci. 2006;31:603–632. doi: 10.1016/j.progpolymsci.2006.06.001. [DOI] [Google Scholar]
- 10.Deitzel JM, Kleinmeyer J, Harris D B, Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polym. 2001;42:261–272. doi: 10.1016/S0032-3861(00)00250-0. [DOI] [Google Scholar]
- 11.Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Sci Technol. 2003;63:2223–2253. doi: 10.1016/S0266-3538(03)00178-7. [DOI] [Google Scholar]
- 12.Higashi S, Yamamuro T, Nakamura T, Ikada Y, Hyon SH, Jamshidi K. Polymer-hydroxyapatite composites for biodegradable bone fillers. Biomaterials. 1986;7:183–187. doi: 10.1016/0142-9612(86)90099-2. [DOI] [PubMed] [Google Scholar]
- 13.Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials. 2005;26:3919–3928. doi: 10.1016/j.biomaterials.2004.09.062. [DOI] [PubMed] [Google Scholar]
- 14.Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K, et al. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials. 2005;26:611–619. doi: 10.1016/j.biomaterials.2004.03.013. [DOI] [PubMed] [Google Scholar]
- 15.Xu HH, Simon CG., Jr Fast setting calcium phosphate-chitosan scaffold:mechanical properties and biocompatibility. Biomaterials. 2005;26:1337–1348. doi: 10.1016/j.biomaterials.2004.04.043. [DOI] [PubMed] [Google Scholar]
- 16.Kim SB, Kim YJ, Yoon TL, Park SA, Cho IH, Kim EJ, et al. The characteristics of a hydroxyapatite-chitosan-PMMA bone cement. Biomaterials. 2004;25:5715–5723. doi: 10.1016/j.biomaterials.2004.01.022. [DOI] [PubMed] [Google Scholar]
- 17.Kim SE, Park JH, Cho YW, Chung H, Jeong SY, Lee EB, et al. Porous chitosan scaffold containing microspheres loaded with transforming growth factor-beta1:implications for cartilage tissue engineering. J Control Release. 2003;91:365–374. doi: 10.1016/S0168-3659(03)00274-8. [DOI] [PubMed] [Google Scholar]
- 18.Hsieh CY, Tsai SP, Wang DM, Chang YN, Hsieh HJ. Preparation of gamma-PGA/chitosan composite tissue engineering matrices. Biomaterials. 2005;26:5617–5623. doi: 10.1016/j.biomaterials.2005.02.012. [DOI] [PubMed] [Google Scholar]
- 19.Charernsriwilaiwat N, Opanasopit P, Rojanarata T, Ngawhirunpat T, Supaphol P. Preparation and characterization of chitosan-hydroxybenzotriazole/ polyvinyl alcohol blend nanofibers by the electrospinning technique. Carbohydr Polym. 2010;81:675–680. doi: 10.1016/j.carbpol.2010.03.031. [DOI] [Google Scholar]
- 20.Soppimath KS, Kulkarni AR, Aminabhavi TM. Controlled release of antihypertensive drug from the interpenetrating network poly(vinyl alcohol)-guar gum hydrogel microspheres. J Biomater Sci Polym Ed. 2000;11:27–43. doi: 10.1163/156856200743472. [DOI] [PubMed] [Google Scholar]
- 21.Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure:a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60:613–621. doi: 10.1002/jbm.10167. [DOI] [PubMed] [Google Scholar]
- 22.Li D, Xia Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 2004;4:933–938. doi: 10.1021/nl049590f. [DOI] [Google Scholar]
- 23.Zhou FL, Gong RH, Porat I. Mass production of nanofiber assemblies by electrostatic spinning. Polym Int. 2009;58:331–342. doi: 10.1002/pi.2521. [DOI] [Google Scholar]
- 24.Dominici M L, Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. [DOI] [PubMed] [Google Scholar]
- 25.Yoon HH, Han MJ, Park JK, Lee JH, Seo YK. Effect of low temperature on Schwann-like cell differentiation of bone marrow mesenchymal stem cells. Tissue Eng Regen Med. 2015;12:259–267. doi: 10.1007/s13770-014-0058-z. [DOI] [Google Scholar]
- 26.Kern S, Eichler H, Stoeve J K H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–1301. doi: 10.1634/stemcells.2005-0342. [DOI] [PubMed] [Google Scholar]
- 27.Bissoyi A, Pramanik K. Effects of non-toxic cryoprotective agents on the viability of cord blood derived MNCs. Cryo Letters. 2013;34:453–465. [PubMed] [Google Scholar]
- 28.Alhosseini SN, Moztarzadeh F, Mozafari M, Asgari S, Dodel M, Samadikuchaksaraei A, et al. Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. Int J Nanomed. 2012;7:25–34. doi: 10.2147/IJN.S25376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Liang JZ, Zhong L. An elongation viscosity equation of polymer melts based on the Moore dynamic model. J Elastom Plast. 2014;46:662–672. doi: 10.1177/0095244313489902. [DOI] [Google Scholar]
- 30.Tangsadthakun C, Kanokpanont S, Sanchavanakit N, Banaprasert T, Damrongsakkul S. Properties of collagen/chitosan scaffolds for skin tissue engineering. J Metal Mater Min. 2006;16:37–44. [Google Scholar]
- 31.Ma Z, Kotaki M, Yong T, He W, Ramakrishna S. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials. 2005;26:2527–2536. doi: 10.1016/j.biomaterials.2004.07.026. [DOI] [PubMed] [Google Scholar]
- 32.He W, Ma Z, Yong T, Teo WE, Ramakrishna S. Fabrication of collagencoated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials. 2005;26:7606–7615. doi: 10.1016/j.biomaterials.2005.05.049. [DOI] [PubMed] [Google Scholar]
- 33.Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials. 2005;26:6176–6184. doi: 10.1016/j.biomaterials.2005.03.027. [DOI] [PubMed] [Google Scholar]
- 34.Paipitak K, Pornpra T, Mongkontalang P, Techitdheer W, Pecharapa W. Characterization of PVA-chitosan nanofibers prepared by electrospinning. Procedia Eng. 2011;8:101–105. doi: 10.1016/j.proeng.2011.03.019. [DOI] [Google Scholar]
- 35.Desai K, Kit K, Li J, Zivanovic S. Morphological and surface properties of electrospun chitosan nanofibers. Biomacromolecules. 2008;9:1000–1006. doi: 10.1021/bm701017z. [DOI] [PubMed] [Google Scholar]
- 36.Ranjan A, Webster TJ. Increased endothelial cell adhesion and elongation on micron-patterned nano-rough poly(dimethylsiloxane) films. Nanotechnology. 2009;20:305102. doi: 10.1088/0957-4484/20/30/305102. [DOI] [PubMed] [Google Scholar]
- 37.Curtis A, Wilkinson C. Topographical control of cells. Biomaterials. 1997;18:1573–1583. doi: 10.1016/S0142-9612(97)00144-0. [DOI] [PubMed] [Google Scholar]
- 38.Hatano K, Inoue H, Kojo T, Matsunaga T, Tsujisawa T, Uchiyama C, et al. Effect of surface roughness on proliferation and alkaline phosphatase expression of rat calvarial cells cultured on polystyrene. Bone. 1999;25:439–445. doi: 10.1016/S8756-3282(99)00192-1. [DOI] [PubMed] [Google Scholar]
- 39.Chung TW, Liu DZ, Wang SY, Wang SS. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials. 2003;24:4655–4661. doi: 10.1016/S0142-9612(03)00361-2. [DOI] [PubMed] [Google Scholar]
- 40.Bartolo LD, Rende M, Morelli S, Giusi G, Salerno S, Piscioneri A, et al. Influence of membrane surface properties on the growth of neuronal cells isolated form hippocampus. J Membrane Sci. 2008;325:139–149. doi: 10.1016/j.memsci.2008.07.022. [DOI] [Google Scholar]
- 41.Zhang YY, Huang XB, Duan B, Wu LL, Li S, Yuan SY. Preparation of electrospun chitosan/poly(vinyl alcohol) membranes. Colloid Polym Sci. 2007;285:855–863. doi: 10.1007/s00396-006-1630-4. [DOI] [Google Scholar]
- 42.Sionkowska A, Skopinska J, Wisniewski M. Photochemical stability of collagen/poly (vinyl alcohol) blends. Polym degrad stab. 2004;83:117–125. doi: 10.1016/S0141-3910(03)00232-5. [DOI] [Google Scholar]
- 43.Mansur HS, Sadahira CM, Souza AN, Mansur AA. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C. 2008;28:539–548. doi: 10.1016/j.msec.2007.10.088. [DOI] [Google Scholar]
- 44.Miya M, Iwamoto R, Mima S. FT-IR study of intermolecular interactions in polymer blends. J Polym Sci Polym Phys Ed. 1984;22:1149–1151. doi: 10.1002/pol.1984.180220615. [DOI] [Google Scholar]
- 45.Lee YM, Kim SH, Kim SJ. Preparation and characteristics of ß-chitin and poly(vinyl alcohol) blend. Polymer. 1996;37:5897–5905. doi: 10.1016/S0032-3861(96)00449-1. [DOI] [Google Scholar]
- 46.Shanmugasundaram N, Ravichandran P, Reddy PN, Ramamurty N, Pal S, Rao KP. Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials. 2001;22:1943–1951. doi: 10.1016/S0142-9612(00)00220-9. [DOI] [PubMed] [Google Scholar]
- 47.Don TM, King CF, Chiu WY, Peng CA. Preparation and characterization of chitosan-g-poly (vinyl alcohol)/poly (vinyl alcohol) blends used for the evaluation of blood-contacting compatibility. Carbohydr Polym. 2006;63:331–339. doi: 10.1016/j.carbpol.2005.08.023. [DOI] [Google Scholar]
- 48.Wang T, Turhan M, Gunasekaran S. Selected properties of pH-sensitive, biodegradable chitosan-poly(vinyl alcohol) hydrogel. Polymer Int. 2004;53:911–918. doi: 10.1002/pi.1461. [DOI] [Google Scholar]
- 49.Oh SH, Kang SG, Kim ES, Cho SH, Lee JH. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials. 2003;24:4011–4021. doi: 10.1016/S0142-9612(03)00284-9. [DOI] [PubMed] [Google Scholar]
- 50.Tamada Y, Ikada Y. Fibroblast growth on polymer surfaces and biosynthesis of collagen. J Biomed Mater Res. 1994;28:783–789. doi: 10.1002/jbm.820280705. [DOI] [PubMed] [Google Scholar]
- 51.Vogler EA. Water and the acute biological response to surfaces. J Biomater Sci Polym Ed. 1999;10:1015–1045. doi: 10.1163/156856299X00667. [DOI] [PubMed] [Google Scholar]
- 52.Saltzman MW. Cell interactions with polymers. In: Lanza R, Langer R, Chick W, editors. Principles of Tissue Engineering. 1997. pp. 225–246. [Google Scholar]
- 53.Srinivasa PC, Ramesh MN, Kumar KR, Tharanathan RN. Properties and sorption studies of chitosan-polyvinyl alcohol blend films. Carbohydr Polymer. 2003;53:431–438. doi: 10.1016/S0144-8617(03)00105-X. [DOI] [Google Scholar]
- 54.Zhang ZY, Teoh SH, Hui JH, Fisk NM, Choolani M, Chan JK. The potential of human fetal mesenchymal stem cells for off-the-shelf bone tissue engineering application. Biomaterials. 2012;33:2656–2672. doi: 10.1016/j.biomaterials.2011.12.025. [DOI] [PubMed] [Google Scholar]