Skip to main content
Tissue Engineering and Regenerative Medicine logoLink to Tissue Engineering and Regenerative Medicine
. 2016 Oct 20;13(5):585–600. doi: 10.1007/s13770-016-9115-0

Functional recovery not correlated with axon regeneration through olfactory ensheathing cell-seeded scaffolds in a model of acute spinal cord injury

Haktan Altinova 1,2,3,4,, Sven Möllers 5, Ronald Deumens 2,3,6, Jose Gerardo-Nava 2,3, Tobias Führmann 7, Sabien Geraldine Antonia van Neerven 8, Ahmet Bozkurt 8,9, Christian Andreas Mueller 4, Hans Joachim Hoff 1, Ingo Heschel 10, Joachim Weis 2,3, Gary Anthony Brook 2,3
PMCID: PMC6170848  PMID: 30603440

Abstract

The implantation of bioengineered scaffolds into lesion-induced gaps of the spinal cord is a promising strategy for promoting functional tissue repair because it can be combined with other intervention strategies. Our previous investigations showed that functional improvement following the implantation of a longitudinally microstructured collagen scaffold into unilateral mid-cervical spinal cord resection injuries of adult Lewis rats was associated with only poor axon regeneration within the scaffold. In an attempt to improve graft-host integration as well as functional recovery, scaffolds were seeded with highly enriched populations of syngeneic, olfactory bulb-derived ensheathing cells (OECs) prior to implantation into the same lesion model. Regenerating neurofilament-positive axons closely followed the trajectory of the donor OECs, as well as that of the migrating host cells within the scaffold. However, there was only a trend for increased numbers of regenerating axons above that supported by non-seeded scaffolds or in the untreated lesions. Nonetheless, significant functional recovery in skilled forelimb motor function was observed following the implantation of both seeded and non-seeded scaffolds which could not be correlated to the extent of axon regeneration within the scaffold. Mechanisms other than simple bridging of axon regeneration across the lesion must be responsible for the improved motor function.

Key Words: Collagen, Scaffold, Olfactory ensheathing cells, Spinal cord injury, Functional recovery

References

  • 1.Bunge RP, Puckett WR, Becerra JL, Marcillo A, Quencer RM. Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv Neurol. 1993;59:75–89. [PubMed] [Google Scholar]
  • 2.Schwab ME, Bartholdi D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev. 1996;76:319–370. doi: 10.1152/physrev.1996.76.2.319. [DOI] [PubMed] [Google Scholar]
  • 3.Kakulas B, Taylor J. Pathology of injuries of the vertebral column and spinal cord. In: Vinken PJ, Bruyn GW, editors. Handbook of clinical neurology. 1992. pp. 21–51. [Google Scholar]
  • 4.Fawcett JW. Spinal cord repair:from experimental models to human application. Spinal Cord. 1998;36:811–817. doi: 10.1038/sj.sc.3100769. [DOI] [PubMed] [Google Scholar]
  • 5.Thuret S, Moon LD, Gage FH. Therapeutic interventions after spinal cord injury. Nat Rev Neurosci. 2006;7:628–643. doi: 10.1038/nrn1955. [DOI] [PubMed] [Google Scholar]
  • 6.Wu MC, Yuan H, Li KJ, Qiu DL. Cellular transplantation-based evolving treatment options in spinal cord injury. Cell Biochem Biophys. 2015;71:1–8. doi: 10.1007/s12013-014-0174-3. [DOI] [PubMed] [Google Scholar]
  • 7.Harrop JS, Hashimoto R, Norvell D, Raich A, Aarabi B, Grossman RG, et al. Evaluation of clinical experience using cell-based therapies in patients with spinal cord injury:a systematic review. J Neurosurg Spine. 2012;17:230–246. doi: 10.3171/2012.5.AOSPINE12115. [DOI] [PubMed] [Google Scholar]
  • 8.Li Y, Li D, Ibrahim A, Raisman G. Repair involves all three surfaces of the glial cell. Prog Brain Res. 2012;201:199–218. doi: 10.1016/B978-0-444-59544-7.00010-X. [DOI] [PubMed] [Google Scholar]
  • 9.Ibrahim A, Li D, Collins A, Tabakow P, Raisman G, Li Y. Comparison of olfactory bulbar and mucosal cultures in a rat rhizotomy model. Cell Transplant. 2014;23:1465–1470. doi: 10.3727/096368913X676213. [DOI] [PubMed] [Google Scholar]
  • 10.Raisman G, Barnett SC, Ramón-Cueto A. Repair of central nervous system lesions by transplantation of olfactory ensheathing cells. Handb Clin Neurol. 2012;109:541–549. doi: 10.1016/B978-0-444-52137-8.00033-4. [DOI] [PubMed] [Google Scholar]
  • 11.Fouad K, Schnell L, Bunge MB, Schwab ME, Liebscher T, Pearse DD. Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J Neurosci. 2005;25:1169–1178. doi: 10.1523/JNEUROSCI.3562-04.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Tabakow P, Raisman G, Fortuna W, Czyz M, Huber J, Li D, et al. Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging. Cell Transplant. 2014;23:1631–1655. doi: 10.3727/096368914X685131. [DOI] [PubMed] [Google Scholar]
  • 13.Schmidt CE, Leach JB. Neural tissue engineering:strategies for repair and regeneration. Annu Rev Biomed Eng. 2003;5:293–347. doi: 10.1146/annurev.bioeng.5.011303.120731. [DOI] [PubMed] [Google Scholar]
  • 14.Führmann T, Hillen LM, Montzka K, Wöltje M, Brook GA. Cell-cell interactions of human neural progenitor-derived astrocytes within a microstructured 3D-scaffold. Biomaterials. 2010;31:7705–7715. doi: 10.1016/j.biomaterials.2010.06.060. [DOI] [PubMed] [Google Scholar]
  • 15.Altinova H, Möllers S, Führmann T, Deumens R, Bozkurt A, Heschel I, et al. Functional improvement following implantation of a microstructured, type-I collagen scaffold into experimental injuries of the adult rat spinal cord. Brain Res. 2014;1585:37–50. doi: 10.1016/j.brainres.2014.08.041. [DOI] [PubMed] [Google Scholar]
  • 16.Montoya CP, Campbell-Hope LJ, Pemberton KD, Dunnett SB. The “staircase test”:a measure of independent forelimb reaching and grasping abilities in rats. J Neurosci Methods. 1991;36:219–228. doi: 10.1016/0165-0270(91)90048-5. [DOI] [PubMed] [Google Scholar]
  • 17.Colbourne F, Corbett D, Zhao Z, Yang J, Buchan AM. Prolonged but delayed postischemic hypothermia:a long-term outcome study in the rat middle cerebral artery occlusion model. J Cereb Blood Flow Metab. 2000;20:1702–1708. doi: 10.1097/00004647-200012000-00009. [DOI] [PubMed] [Google Scholar]
  • 18.Cregan EF, Peeling J, Corbett D, Buchan AM, Saunders J, Auer RN, et al. -(S)-Alpha-phenyl-2-pyridine-ethanamine Dihydrochloride-, a low affinity uncompetitive N-methyl-D-aspartic acid antagonist, is effective in rodent models of global and focal ischemia. J Pharmacol Exp Ther. 1997;283:1412–1424. [PubMed] [Google Scholar]
  • 19.Möllers S, Heschel I, Damink LH, Schügner F, Deumens R M B, et al. Cytocompatibility of a novel, longitudinally microstructured collagen scaffold intended for nerve tissue repair. Tissue Eng Part A. 2009;15:461–472. doi: 10.1089/ten.tea.2007.0107. [DOI] [PubMed] [Google Scholar]
  • 20.Veenman CL, Reiner A, Honig MG. Biotinylated dextran amine as an anterograde tracer for single-and double-labeling studies. J Neurosci Methods. 1992;41:239–254. doi: 10.1016/0165-0270(92)90089-V. [DOI] [PubMed] [Google Scholar]
  • 21.Küchler M, Fouad K, Weinmann O, Schwab ME, Raineteau O. Red nucleus projections to distinct motor neuron pools in the rat spinal cord. J Comp Neurol. 2002;448:349–359. doi: 10.1002/cne.10259. [DOI] [PubMed] [Google Scholar]
  • 22.Emmett CJ, Lawrence JM, Raisman G, Seeley PJ. Cultured epithelioid astrocytes migrate after transplantation into the adult rat brain. J Comp Neurol. 1991;311:330–341. doi: 10.1002/cne.903110304. [DOI] [PubMed] [Google Scholar]
  • 23.Feraboli-Lohnherr D, Orsal D, Yakovleff A, Giménez y, Ribotta M, Privat A. Recovery of locomotor activity in the adult chronic spinal rat after sublesional transplantation of embryonic nervous cells:specific role of serotonergic neurons. Exp Brain Res. 1997;113:443–454. doi: 10.1007/PL00005597. [DOI] [PubMed] [Google Scholar]
  • 24.Fehlings MG, Tator CH. The relationships among the severity of spinal cord injury, residual neurological function, axon counts, and counts of retrogradely labeled neurons after experimental spinal cord injury. Exp Neurol. 1995;132:220–228. doi: 10.1016/0014-4886(95)90027-6. [DOI] [PubMed] [Google Scholar]
  • 25.Keyvan-Fouladi N, Raisman G, Li Y. Functional repair of the corticospinal tract by delayed transplantation of olfactory ensheathing cells in adult rats. J Neurosci. 2003;23:9428–9434. doi: 10.1523/JNEUROSCI.23-28-09428.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Eng LF. Glial fibrillary acidic protein (GFAP):the major protein of glial intermediate filaments in differentiated astrocytes. J Neuroimmunol. 1985;8:203–214. doi: 10.1016/S0165-5728(85)80063-1. [DOI] [PubMed] [Google Scholar]
  • 27.Bartholdi D, Schwab ME. Oligodendroglial reaction following spinal cord injury in rat:transient upregulation of MBP mRNA. Glia. 1998;23:278–284. doi: 10.1002/(SICI)1098-1136(199807)23:3<278::AID-GLIA10>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  • 28.Stichel CC, Müller HW. Experimental strategies to promote axonal regeneration after traumatic central nervous system injury. Prog Neurobiol. 1998;56:119–148. doi: 10.1016/S0301-0082(98)00033-1. [DOI] [PubMed] [Google Scholar]
  • 29.Stichel CC, Müller HW. The CNS lesion scar:new vistas on an old regeneration barrier. Cell Tissue Res. 1998;294:1–9. doi: 10.1007/s004410051151. [DOI] [PubMed] [Google Scholar]
  • 30.Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull. 1999;49:377–391. doi: 10.1016/S0361-9230(99)00072-6. [DOI] [PubMed] [Google Scholar]
  • 31.Shearer MC, Fawcett JW. The astrocyte/meningeal cell interface—a barrier to successful nerve regeneration. Cell Tissue Res. 2001;305:267–273. doi: 10.1007/s004410100384. [DOI] [PubMed] [Google Scholar]
  • 32.Tator CH. Strategies for recovery and regeneration after brain and spinal cord injury. Inj Prev. 2002;8(4):IV33–IV36. doi: 10.1136/ip.8.suppl_4.iv33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci. 2004;24:2143–2155. doi: 10.1523/JNEUROSCI.3547-03.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci. 2004;5:146–156. doi: 10.1038/nrn1326. [DOI] [PubMed] [Google Scholar]
  • 35.Fawcett JW, Schwab ME, Montani L, Brazda N, Müller HW. Defeating inhibition of regeneration by scar and myelin components. Handb Clin Neurol. 2012;109:503–522. doi: 10.1016/B978-0-444-52137-8.00031-0. [DOI] [PubMed] [Google Scholar]
  • 36.Ramer LM, Ramer MS, Bradbury EJ. Restoring function after spinal cord injury:towards clinical translation of experimental strategies. Lancet Neurol. 2014;13:1241–1256. doi: 10.1016/S1474-4422(14)70144-9. [DOI] [PubMed] [Google Scholar]
  • 37.Bozkurt A, Deumens R, Beckmann C, Olde Damink L, Schügner F, Heschel I, et al. In vitro cell alignment obtained with a Schwann cell enriched microstructured nerve guide with longitudinal guidance channels. Biomaterials. 2009;30:169–179. doi: 10.1016/j.biomaterials.2008.09.017. [DOI] [PubMed] [Google Scholar]
  • 38.Bozkurt A, Lassner F, O’Dey D, Deumens R, Böcker A, Schwendt T, et al. The role of microstructured and interconnected pore channels in a collagen-based nerve guide on axonal regeneration in peripheral nerves. Biomaterials. 2012;33:1363–1375. doi: 10.1016/j.biomaterials.2011.10.069. [DOI] [PubMed] [Google Scholar]
  • 39.Führmann T, Gerardo-Nava J, Brook GA. Central nervous system. In: Pallua N, Suschek CV, editors. Tissue engineering:from lab to clinic. 2010. pp. 221–244. [Google Scholar]
  • 40.Bozkurt A, Brook GA, Moellers S, Lassner F, Sellhaus B, Weis J, et al. In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix. Tissue Eng. 2007;13:2971–2979. doi: 10.1089/ten.2007.0116. [DOI] [PubMed] [Google Scholar]
  • 41.van Neerven SG, Krings L, Haastert-Talini K, Vogt M, Tolba RH, Brook G, et al. Human Schwann cells seeded on a novel collagen-based microstructured nerve guide survive, proliferate, and modify neurite outgrowth. Biomed Res Int. 2014;2014:493823. doi: 10.1155/2014/493823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Liu Y, Kim D, Himes BT, Chow SY, Schallert T, Murray M, et al. Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J Neurosci. 1999;19:4370–4387. doi: 10.1523/JNEUROSCI.19-11-04370.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Hilton BJ, Assinck P, Duncan GJ, Lu D, Lo S, Tetzlaff W. Dorsolateral funiculus lesioning of the mouse cervical spinal cord at C4 but not at C6 results in sustained forelimb motor deficits. J Neurotrauma. 2013;30:1070–1083. doi: 10.1089/neu.2012.2734. [DOI] [PubMed] [Google Scholar]
  • 44.Guth L, Zhang Z, DiProspero NA, Joubin K, Fitch MT. Spinal cord injury in the rat:treatment with bacterial lipopolysaccharide and indomethacin enhances cellular repair and locomotor function. Exp Neurol. 1994;126:76–87. doi: 10.1006/exnr.1994.1043. [DOI] [PubMed] [Google Scholar]
  • 45.Guth L, Zhang Z, Steward O. The unique histopathological responses of the injured spinal cord. Implications for neuroprotective therapy._Ann^N Y Acad Sci. 1999;890:366–384. doi: 10.1111/j.1749-6632.1999.tb08017.x. [DOI] [PubMed] [Google Scholar]
  • 46.Brook GA, Schmitt AB, Nacimiento W, Weis J, Schröder JM, Noth J. Distribution of B-50 (GAP-43) mRNA and protein in the normal adult human spinal cord. Acta Neuropathol. 1998;95:378–386. doi: 10.1007/s004010050814. [DOI] [PubMed] [Google Scholar]
  • 47.Brook GA, Houweling DA, Gieling RG, Hermanns T, Joosten EA, Bär DP, et al. Attempted endogenous tissue repair following experimental spinal cord injury in the rat:involvement of cell adhesion molecules L1 and NCAM. Eur J Neurosci. 2000;12:3224–3238. doi: 10.1046/j.1460-9568.2000.00228.x. [DOI] [PubMed] [Google Scholar]
  • 48.Brook GA, Pérez-Bouza A, Noth J, Nacimiento W. Astrocytes re-express nestin in deafferented target territories of the adult rat hippocampus. Neuroreport. 1999;10:1007–1011. doi: 10.1097/00001756-199904060-00021. [DOI] [PubMed] [Google Scholar]
  • 49.Pasterkamp RJ, Giger RJ, Ruitenberg MJ, Holtmaat AJ, De Wit J, De Winter F, et al. Expression of the gene encoding the chemorepellent semaphorin III is induced in the fibroblast component of neural scar tissue formed following injuries of adult but not neonatal CNS. Mol Cell Neurosci. 1999;13:143–166. doi: 10.1006/mcne.1999.0738. [DOI] [PubMed] [Google Scholar]
  • 50.Cholas RH, Hsu HP, Spector M. The reparative response to cross-linked collagen-based scaffolds in a rat spinal cord gap model. Biomaterials. 2012;33:2050–2059. doi: 10.1016/j.biomaterials.2011.11.028. [DOI] [PubMed] [Google Scholar]
  • 51.Tunturi AR. Elasticity of the spinal cord, pia, and denticulate ligament in the dog. J Neurosurg. 1978;48:975–979. doi: 10.3171/jns.1978.48.6.0975. [DOI] [PubMed] [Google Scholar]
  • 52.Ozawa H, Matsumoto T, Ohashi T, Sato M, Kokubun S. Comparison of spinal cord gray matter and white matter softness:measurement by pipette aspiration method. J Neurosurg. 2001;95:221–224. doi: 10.3171/spi.2001.95.2.0221. [DOI] [PubMed] [Google Scholar]
  • 53.Smith GM, Silver J. Transplantation of immature and mature astrocytes and their effect on scar formation in the lesioned central nervous system. Prog Brain Res. 1988;78:353–361. doi: 10.1016/S0079-6123(08)60304-0. [DOI] [PubMed] [Google Scholar]
  • 54.Ramón-Cueto A, Cordero MI, Santos-Benito FF, Avila J. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron. 2000;25:425–435. doi: 10.1016/S0896-6273(00)80905-8. [DOI] [PubMed] [Google Scholar]
  • 55.Raisman G. Sniffing out new approaches to spinal cord repair. Nat Med. 2000;6:382–383. doi: 10.1038/74638. [DOI] [PubMed] [Google Scholar]
  • 56.Deumens R, Van Gorp SF, Bozkurt A, Beckmann C F T, Montzka K, et al. Motor outcome and allodynia are largely unaffected by novel olfactory ensheathing cell grafts to repair low-thoracic lesion gaps in the adult rat spinal cord. Behav Brain Res. 2013;237:185–189. doi: 10.1016/j.bbr.2012.09.036. [DOI] [PubMed] [Google Scholar]
  • 57.Lu J, Féron F, Mackay-Sim A, Waite PM. Olfactory ensheathing cells promote locomotor recovery after delayed transplantation into transected spinal cord. Brain. 2002;125:14–21. doi: 10.1093/brain/awf014. [DOI] [PubMed] [Google Scholar]
  • 58.Bretzner F, Plemel JR, Liu J, Richter M, Roskams AJ, Tetzlaff W. Combination of olfactory ensheathing cells with local versus systemic cAMP treatment after a cervical rubrospinal tract injury. J Neurosci Res. 2010;88:2833–2846. doi: 10.1002/jnr.22440. [DOI] [PubMed] [Google Scholar]
  • 59.Deumens R, Koopmans GC, Honig WM, Hamers FP, Maquet V J R, et al. Olfactory ensheathing cells, olfactory nerve fibroblasts and biomatrices to promote long-distance axon regrowth and functional recovery in the dorsally hemisected adult rat spinal cord. Exp Neurol. 2006;200:89–103. doi: 10.1016/j.expneurol.2006.01.030. [DOI] [PubMed] [Google Scholar]
  • 60.Guest JD, Rao A, Olson L, Bunge MB, Bunge RP. The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord. Exp Neurol. 1997;148:502–522. doi: 10.1006/exnr.1997.6693. [DOI] [PubMed] [Google Scholar]
  • 61.Franklin RJ, Barnett SC. Do olfactory glia have advantages over Schwann cells for CNS repair. J Neurosci Res. 1997;50:665–672. doi: 10.1002/(SICI)1097-4547(19971201)50:5<665::AID-JNR4>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  • 62.Raisman G. Repair of spinal cord injury by transplantation of olfactory ensheathing cells. C R Biol. 2007;330:557–560. doi: 10.1016/j.crvi.2007.03.010. [DOI] [PubMed] [Google Scholar]
  • 63.Ramón-Cueto A, Nieto-Sampedro M. Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants. Exp Neurol. 1994;127:232–244. doi: 10.1006/exnr.1994.1099. [DOI] [PubMed] [Google Scholar]
  • 64.Lakatos A, Franklin RJ, Barnett SC. Olfactory ensheathing cells and Schwann cells differ in their in vitro interactions with astrocytes. Glia. 2000;32:214–225. doi: 10.1002/1098-1136(200012)32:3<214::AID-GLIA20>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  • 65.Li Y, Li D, Raisman G. Interaction of olfactory ensheathing cells with astrocytes may be the key to repair of tract injuries in the spinal cord:the ‘pathway hypothesis’. J Neurocytol. 2005;34:343–351. doi: 10.1007/s11068-005-8361-1. [DOI] [PubMed] [Google Scholar]
  • 66.Li Y, Field PM, Raisman G. Olfactory ensheathing cells and olfactory nerve fibroblasts maintain continuous open channels for regrowth of olfactory nerve fibres. Glia. 2005;52:245–251. doi: 10.1002/glia.20241. [DOI] [PubMed] [Google Scholar]
  • 67.Raisman G, Li Y. Repair of neural pathways by olfactory ensheathing cells. Nat Rev Neurosci. 2007;8:312–319. doi: 10.1038/nrn2099. [DOI] [PubMed] [Google Scholar]
  • 68.Yamamoto M, Raisman G, Li D, Li Y. Transplanted olfactory mucosal cells restore paw reaching function without regeneration of severed corticospinal tract fibres across the lesion. Brain Res. 2009;1303:26–31. doi: 10.1016/j.brainres.2009.09.073. [DOI] [PubMed] [Google Scholar]
  • 69.Wang B, Zhao Y, Lin H, Chen B, Zhang J, Zhang J, et al. Phenotypical analysis of adult rat olfactory ensheathing cells on 3-D collagen scaffolds. Neurosci Lett. 2006;401:65–70. doi: 10.1016/j.neulet.2006.02.085. [DOI] [PubMed] [Google Scholar]
  • 70.Tom VJ, Steinmetz MP, Miller JH, Doller CM, Silver J. Studies on the development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in an in vitro model of the glial scar and after spinal cord injury. J Neurosci. 2004;24:6531–6539. doi: 10.1523/JNEUROSCI.0994-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Ruschel J, Hellal F, Flynn KC, Dupraz S, Elliott DA, Tedeschi A, et al. Axonal regeneration. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury. Science. 2015;348:347–352. doi: 10.1126/science.aaa2958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Woerly S. Restorative surgery of the central nervous system by means of tissue engineering using NeuroGel implants. Neurosurg Rev. 2000;23:59–77. doi: 10.1007/pl00021694. [DOI] [PubMed] [Google Scholar]
  • 73.Ramón-Cueto A, Plant GW, Avila J, Bunge MB. Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J Neurosci. 1998;18:3803–3815. doi: 10.1523/JNEUROSCI.18-10-03803.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Li Y, Field PM, Raisman G. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science. 1997;277:2000–2002. doi: 10.1126/science.277.5334.2000. [DOI] [PubMed] [Google Scholar]
  • 75.Li Y, Decherchi P, Raisman G. Transplantation of olfactory ensheathing cells into spinal cord lesions restores breathing and climbing. J Neurosci. 2003;23:727–731. doi: 10.1523/JNEUROSCI.23-03-00727.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Cholas R, Hsu HP, Spector M. Collagen scaffolds incorporating select therapeutic agents to facilitate a reparative response in a standardized hemiresection defect in the rat spinal cord. Tissue Eng Part A. 2012;18:2158–2172. doi: 10.1089/ten.tea.2011.0577. [DOI] [PubMed] [Google Scholar]
  • 77.Novikova LN, Pettersson J, Brohlin M, Wiberg M, Novikov LN. Biodegradable poly-beta-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair. Biomaterials. 2008;29:1198–1206. doi: 10.1016/j.biomaterials.2007.11.033. [DOI] [PubMed] [Google Scholar]
  • 78.Blakemore W. Remyelination of demyelinated spinal cord axons by Schwann cells. In:Kao CC, editor. Spinal cord reconstruction. New York: Raven Press;1983. p.281–291.
  • 79.Blight AR, Young W. Central axons in injured cat spinal cord recover electrophysiological function following remyelination by Schwann cells. J Neurol Sci. 1989;91:15–34. doi: 10.1016/0022-510X(89)90073-7. [DOI] [PubMed] [Google Scholar]
  • 80.Li Y, Li D, Raisman G. Transplanted Schwann cells, not olfactory ensheathing cells, myelinate optic nerve fibres. Glia. 2007;55:312–316. doi: 10.1002/glia.20458. [DOI] [PubMed] [Google Scholar]
  • 81.Hamori J. Morphological plasticity of postsynaptic neurones in reactive synaptogenesis. J Exp Biol. 1990;153:251–260. doi: 10.1242/jeb.153.1.251. [DOI] [PubMed] [Google Scholar]
  • 82.Anderson KD, Gunawan A, Steward O. Spinal pathways involved in the control of forelimb motor function in rats. Exp Neurol. 2007;206:318–331. doi: 10.1016/j.expneurol.2007.05.024. [DOI] [PubMed] [Google Scholar]
  • 83.Woerly S, Pinet E, de Robertis L, Van Diep D, Bousmina M. Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel). Biomaterials. 2001;22:1095–1111. doi: 10.1016/S0142-9612(00)00354-9. [DOI] [PubMed] [Google Scholar]
  • 84.Giannetti S, Lauretti L, Fernandez E, Salvinelli F, Tamburrini G, Pallini R. Acrylic hydrogel implants after spinal cord lesion in the adult rat. Neurol Res. 2001;23:405–409. doi: 10.1179/016164101101198622. [DOI] [PubMed] [Google Scholar]
  • 85.Martín-López E, Darder M, Ruiz-Hitzky E N, Sampedro M. Agarbased bridges as biocompatible candidates to provide guide cues in spinal cord injury repair. Biomed Mater Eng. 2013;23:405–421. doi: 10.3233/BME-130763. [DOI] [PubMed] [Google Scholar]
  • 86.Kataoka K, Suzuki Y, Kitada M, Hashimoto T, Chou H, Bai H, et al. Alginate enhances elongation of early regenerating axons in spinal cord of young rats. Tissue Eng. 2004;10:493–504. doi: 10.1089/107632704323061852. [DOI] [PubMed] [Google Scholar]
  • 87.Hejcl A, Urdzikova L, Sedy J, Lesny P, Pradny M, Michalek J, et al. Acute and delayed implantation of positively charged 2-hydroxyethyl methacrylate scaffolds in spinal cord injury in the rat. J Neurosurg Spine. 2008;8:67–73. doi: 10.3171/SPI-08/01/067. [DOI] [PubMed] [Google Scholar]
  • 88.Austin JW, Kang CE, Baumann MD, Diodato L, Satkunendrarajah K, Wilson JR, et al. The effects of intrathecal injection of a hyaluronan-based hydrogel on inflammation, scarring and neurobehavioural outcomes in a rat model of severe spinal cord injury associated with arachnoiditis. Biomaterials. 2012;33:4555–4564. doi: 10.1016/j.biomaterials.2012.03.022. [DOI] [PubMed] [Google Scholar]

Articles from Tissue Engineering and Regenerative Medicine are provided here courtesy of Springer

RESOURCES