Abstract
Treatment options for partial thickness cartilage defects are limited. The purpose of this study was to evaluate the efficacy of the chondrocyte-seeded cartilage extracellular matrix membrane in repairing partial thickness cartilage defects. First, the potential of the membrane as an effective cell carrier was investigated. Secondly, we have applied the chondrocyte-seeded membrane in an ex vivo, partial thickness defect model to analyze its repair potential. After culture of chondrocytes on the membrane in vitro, cell viability assay, cell seeding yield calculation and cell transfer assay were done. Cell carrying ability of the membrane was also tested by seeding different densities of cells. Partial defects were created on human cartilage tissue explants. Cell-seeded membranes were applied using a modified autologous chondrocyte implantation technique on the defects and implanted subcutaneously in nude mice for 2 and 4 weeks. In vitro data showed cell viability and seeding yield comparable to standard culture dishes. Time dependent cell transfer from the membrane was observed. Membranes supported various densities of cells. Ex vivo data showed hyaline-like cartilage tissue repair, integrated on the defect by 4 weeks. Overall, chondrocyte-seeded cartilage extracellular membranes may be an effective and feasible treatment strategy for the repair of partial thickness cartilage defects.
Key Words: Partial thickness cartilage defect, Cartilage extracellular matrix membrane, Autologous chondrocyte implantation, Cartilage repair
References
- 1.Hunziker EB, Rosenberg LC. Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am. 1996;78:721–733. doi: 10.2106/00004623-199605000-00012. [DOI] [PubMed] [Google Scholar]
- 2.Ding C, Cicuttini F, Scott F, Cooley H, Boon C, Jones G. Natural history of knee cartilage defects and factors affecting change. Arch Intern Med. 2006;166:651–658. doi: 10.1001/archinte.166.6.651. [DOI] [PubMed] [Google Scholar]
- 3.Buckwalter JA. Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther. 1998;28:192–202. doi: 10.2519/jospt.1998.28.4.192. [DOI] [PubMed] [Google Scholar]
- 4.Lewandowska K, Choi HU, Rosenberg LC, Zardi L, Culp LA. Fibronectin-mediated adhesion of fibroblasts: inhibition by dermatan sulfate proteoglycan and evidence for a cryptic glycosaminoglycan-binding domain. J Cell Biol. 1987;105:1443–1454. doi: 10.1083/jcb.105.3.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Huh SW, Shetty AA, Kim SJ, Kim YJ, Choi NY, Jun YJ, et al. The effect of platelet rich plasma combined with microfracture for the treatment of chondral defect in a rabbit knee. Tissue Eng Regen Med. 2014;11:178–185. doi: 10.1007/s13770-013-1115-8. [DOI] [Google Scholar]
- 6.Shetty AA, Kim SJ, Shetty V, Stelzeneder D, Shetty N, Bilagi P, et al. Autologous bone-marrow mesenchymal cell induced chondrogenesis: single-stage arthroscopic cartilage repair. Tissue Eng Regen Med. 2014;11:247–253. doi: 10.1007/s13770-014-0061-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Lee JC, Min HJ, Lee S, Seong SC, Lee MC. Effect of chondroitinase ABC on adhesion and behavior of synovial membrane-derived mesenchymal stem cells in rabbit partial-thickness chondral defects. J Orthop Res. 2013;31:1293–1301. doi: 10.1002/jor.22353. [DOI] [PubMed] [Google Scholar]
- 8.Wang DA, Varghese S, Sharma B, Strehin I, Fermanian S, Gorham J, et al. Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nat Mater. 2007;6:385–392. doi: 10.1038/nmat1890. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Nixon AJ, Begum L, Mohammed HO, Huibregtse B, O’Callaghan MM, Matthews GL. Autologous chondrocyte implantation drives early chondrogenesis and organized repair in extensive full-and partial-thickness cartilage defects in an equine model. J Orthop Res. 2011;29:1121–1130. doi: 10.1002/jor.21366. [DOI] [PubMed] [Google Scholar]
- 10.Kaneshiro N, Sato M, Ishihara M, Mitani G, Sakai H, Kikuchi T, et al. Cultured articular chondrocytes sheets for partial thickness cartilage defects utilizing temperature-responsive culture dishes. Eur Cell Mater. 2007;13:87–92. doi: 10.22203/ecm.v013a09. [DOI] [PubMed] [Google Scholar]
- 11.Cherubino P, Grassi FA, Bulgheroni P, Ronga M. Autologous chondrocyte implantation using a bilayer collagen membrane: a preliminary report. J Orthop Surg (Hong Kong) 2003;11:10–15. doi: 10.1177/230949900301100104. [DOI] [PubMed] [Google Scholar]
- 12.Li TZ, Jin CZ, Choi BH, Kim MS, Kim YJ, Park SR, et al. Using Cartilage Extracellular Matrix (CECM) membrane to enhance the reparability of the bone marrow stimulation technique for articular cartilage defect in canine model. Adv Funct Mater. 2012;22:4292–4300. doi: 10.1002/adfm.201102695. [DOI] [Google Scholar]
- 13.Jin LH, Choi BH, Kim YJ, Park SR, Jin CZ, Min BH. Implantation of bone marrow-derived buffy coat can supplement bone marrow stimulation for articular cartilage repair. Osteoarthritis Cartilage. 2011;19:1440–1448. doi: 10.1016/j.joca.2011.07.012. [DOI] [PubMed] [Google Scholar]
- 14.van den Borne MP, Raijmakers NJ, Vanlauwe J, Victor J, de Jong SN, Bellemans J, et al. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis Cartilage. 2007;15:1397–1402. doi: 10.1016/j.joca.2007.05.005. [DOI] [PubMed] [Google Scholar]
- 15.van Osch GJ, van den Berg WB, Hunziker EB, Häuselmann HJ. Differential effects of IGF-1 and TGF beta-2 on the assembly of proteoglycans in pericellular and territorial matrix by cultured bovine articular chondrocytes. Osteoarthritis Cartilage. 1998;6:187–195. doi: 10.1053/joca.1998.0111. [DOI] [PubMed] [Google Scholar]
- 16.Jürgensen K, Aeschlimann D, Cavin V, Genge M, Hunziker EB. A new biological glue for cartilage-cartilage interfaces: tissue transglutaminase. J Bone Joint Surg Am. 1997;79:185–193. doi: 10.2106/00004623-199702000-00004. [DOI] [PubMed] [Google Scholar]
- 17.Krych AJ, Wanivenhaus F, Ng KW, Doty S, Warren RF, Maher SA. Matrix generation within a macroporous non-degradable implant for osteochondral defects is not enhanced with partial enzymatic digestion of the surrounding tissue: evaluation in an in vivo rabbit model. J Mater Sci Mater Med. 2013;24:2429–2437. doi: 10.1007/s10856-013-4999-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982;30:215–224. doi: 10.1016/0092-8674(82)90027-7. [DOI] [PubMed] [Google Scholar]
- 19.Hembry RM, Dyce J, Driesang I, Hunziker EB, Fosang AJ, Tyler JA, et al. Immunolocalization of matrix metalloproteinases in partial-thickness defects in pig articular cartilage. A preliminary report. J Bone Joint Surg Am. 2001;83-A:826–838. doi: 10.2106/00004623-200106000-00003. [DOI] [PubMed] [Google Scholar]
- 20.Bhosale AM, Kuiper JH, Johnson WE, Harrison PE, Richardson JB. Midterm to long-term longitudinal outcome of autologous chondrocyte implantation in the knee joint: a multilevel analysis. Am J Sports Med. 2009;37(1):131S–138S. doi: 10.1177/0363546509350555. [DOI] [PubMed] [Google Scholar]
- 21.Gillogly SD, Voight M, Blackburn T. Treatment of articular cartilage defects of the knee with autologous chondrocyte implantation. J Orthop Sports Phys Ther. 1998;28:241–251. doi: 10.2519/jospt.1998.28.4.241. [DOI] [PubMed] [Google Scholar]
- 22.Bentley G, Biant LC, Vijayan S, Macmull S, Skinner JA, Carrington RW. Minimum ten-year results of a prospective randomised study of autologous chondrocyte implantation versus mosaicplasty for symptomatic articular cartilage lesions of the knee. J Bone Joint Surg Br. 2012;94:504–509. doi: 10.1302/0301-620X.94B4.27495. [DOI] [PubMed] [Google Scholar]
- 23.Jin CZ, Choi BH, Park SR, Min BH. Cartilage engineering using cell-derived extracellular matrix scaffold in vitro. J Biomed Mater Res A. 2010;92:1567–1577. doi: 10.1002/jbm.a.32419. [DOI] [PubMed] [Google Scholar]
- 24.Ramallal M, Maneiro E, López E, Fuentes-Boquete I, López-Armada MJ, Fernández-Sueiro JL, et al. Xeno-implantation of pig chondrocytes into rabbit to treat localized articular cartilage defects: an animal model. Wound Repair Regen. 2004;12:337–345. doi: 10.1111/j.1067-1927.2004.012309.x. [DOI] [PubMed] [Google Scholar]
- 25.Fuentes-Boquete I, López-Armada MJ, Maneiro E, Fernández-Sueiro JL, Caramés B, Galdo F, et al. Pig chondrocyte xenoimplants for human chondral defect repair: an in vitro model. Wound Repair Regen. 2004;12:444–452. doi: 10.1111/j.1067-1927.2004.012412.x. [DOI] [PubMed] [Google Scholar]
- 26.Mueller-Rath R, Gavénis K, Gravius S, Andereya S, Mumme T, Schneider U. In vivo cultivation of human articular chondrocytes in a nude mouse-based contained defect organ culture model. Biomed Mater Eng. 2007;17:357–366. [PubMed] [Google Scholar]