Skip to main content
Tissue Engineering and Regenerative Medicine logoLink to Tissue Engineering and Regenerative Medicine
. 2016 Dec 17;13(6):750–761. doi: 10.1007/s13770-016-9123-0

Bone morphogenetic protein-2 sustained delivery by hydrogels with microspheres repairs rabbit mandibular defects

Wei-Yi Song 1, Guo-Min Liu 2, Juan Li 1,4,, Yun-Gang Luo 3,
PMCID: PMC6170863  PMID: 30603456

Abstract

Mandible defect is a difficult issue in dental surgery owing to limited therapeutic options. Recombinant human bone morphogenetic protein-2 (rhBMP2) is osteoinductive in bone regeneration. This article prepared chitosan/collagen hydrogels with rhBMP2-incorporated gelatin microsphere (GMs) for a sustained release of rhBMP2 to induce bone regeneration in rabbits. In experiments, mandibular defects of 8 mm in diameter and 3 mm in depth were surgically prepared on the right cheek of 27 rabbits. Either chitosan/collagen hydrogels alone, rhBMP2-incorporated hydrogels, or hydrogels with rhBMP2-incorporated GMs were implanted to the defect sites. The animals were euthanized at 2, 6, 12 weeks following surgery. In results, scanning electronic microscope images revealled spherical GMs. The complex delivery systems, hydrogels with rhBMP2-incorporated GMs, exhibited ideal release profiles in vitro. The complex delivery systems resulted in apparent new bone formation within 12 weeks, as evidenced by computed tomography and histological observations. All these results demonstrated that the chitosan/collagen hydrogels with rhBMP2-incorporated GMs had a better capacity to heal mandible defects than other two hydrogel scaffolds. Chitosan/collagen hydrogels with rhBMP2-incorporated GMs might be potential carriers of rhBMP2 for accelerating the repair of mandibular defects.

Key Words: Bone morphogenetic protein-2, Bone substitutes, Dental implants, Microsphere, Hydrogel

Footnotes

These authors contributed equally to this work.

Contributor Information

Juan Li, Phone: 86-431 85619419, FAX: 86-431 85645486, Email: liuyedao123@163.com.

Yun-Gang Luo, Phone: 86-431 85612708, FAX: 86-431 85612708, Email: luoygjlu@sina.com.

References

  • 1.Cheng G, Li Z, Wan Q, Lv K, Li D, Xing X, et al. A novel animal model treated with tooth extraction to repair the full-thickness defects in the mandible of rabbits. J Surg Res. 2015;194:706–716. doi: 10.1016/j.jss.2014.11.010. [DOI] [PubMed] [Google Scholar]
  • 2.Li ZJ, Lu CT, Feng ZQ, Zhao QT, Zhou ZY, Lai RF. Antigen-extracted xenogeneic cancellous bone graft with recombinant human bone morphogenetic protein-2 enhances bone regeneration in repair of mandibular defect in rabbits. Kaohsiung J Med Sci. 2015;31:18–25. doi: 10.1016/j.kjms.2014.10.008. [DOI] [PubMed] [Google Scholar]
  • 3.Yun YP, Lee SY, Kim HJ, Song JJ, Kim SE. Improvement of osteoblast functions by sustained release of bone morphogenetic protein-2 (BMP-2) from heparin-coated chitosan scaffold. Tissue Eng Regen Med. 2013;10:183–191. doi: 10.1007/s13770-013-0389-1. [DOI] [Google Scholar]
  • 4.Sun B, Ma W, Su F, Wang Y, Liu J, Wang D, et al. The osteogenic differentiation of dog bone marrow mesenchymal stem cells in a thermo-sensitive injectable chitosan/collagen/β-glycerophosphate hydrogel: in vitro and in vivo. J Mater Sci Mater Med. 2011;22:2111–2118. doi: 10.1007/s10856-011-4386-4. [DOI] [PubMed] [Google Scholar]
  • 5.Luca L, Rougemont AL, Walpoth BH, Boure L, Tami A, Anderson JM, et al. Injectable rhBMP-2-loaded chitosan hydrogel composite: osteoinduction at ectopic site and in segmental long bone defect. J Biomed Mater Res A. 2011;96:66–74. doi: 10.1002/jbm.a.32957. [DOI] [PubMed] [Google Scholar]
  • 6.Jung UW, Lee IK, Park JY, Thoma DS, Hämmerle CH, Jung RE. The efficacy of BMP-2 preloaded on bone substitute or hydrogel for bone regeneration at peri-implant defects in dogs. Clin Oral Implants Res. 2015;26:1456–1465. doi: 10.1111/clr.12491. [DOI] [PubMed] [Google Scholar]
  • 7.Liu X, Zhao K, Gong T, Song J, Bao C, Luo E, et al. Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect. Biomacromolecules. 2014;15:1019–1030. doi: 10.1021/bm401911p. [DOI] [PubMed] [Google Scholar]
  • 8.Mirahmadi F, Tafazzoli-Shadpour M, Shokrgozar MA, Bonakdar S. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl. 2013;33:4786–4794. doi: 10.1016/j.msec.2013.07.043. [DOI] [PubMed] [Google Scholar]
  • 9.Ding K, Yang Z, Zhang YL, Xu JZ. Injectable thermosensitive chitosan/β-glycerophosphate/collagen hydrogel maintains the plasticity of skeletal muscle satellite cells and supports their in vivo viability. Cell Biol Int. 2013;37:977–987. doi: 10.1002/cbin.10123. [DOI] [PubMed] [Google Scholar]
  • 10.Yun YP, Yang DH, Kim SW, Park K, Ohe JY, Lee BS, et al. Local delivery of recombinant human bone morphogenic protein-2 (rhBMP-2) from rhBMP-2/heparin complex fixed to a chitosan scaffold enhances osteoblast behavior. Tissue Eng Regen Med. 2014;11:163–170. doi: 10.1007/s13770-014-0049-0. [DOI] [Google Scholar]
  • 11.Huang H, Zhang X, Hu X, Dai L, Zhu J, Man Z, et al. Directing chondrogenic differentiation of mesenchymal stem cells with a solid-supported chitosan thermogel for cartilage tissue engineering. Biomed Mater. 2014;9:035008. doi: 10.1088/1748-6041/9/3/035008. [DOI] [PubMed] [Google Scholar]
  • 12.Yunoki S, Ohyabu Y, Hatayama H. Temperature-responsive gelation of type I collagen solutions involving fibril formation and genipin crosslinking as a potential injectable hydrogel. Int J Biomater. 2013;2013:620765. doi: 10.1155/2013/620765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Yang IA, Fong KM, Sim EH, Black PN, Lasserson TJ. Inhaled corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2007;2:CD002991. doi: 10.1002/14651858.CD002991.pub2. [DOI] [PubMed] [Google Scholar]
  • 14.Kodali A, Lim TC, Leong DT, Tong YW. Cell-microsphere constructs formed with human adipose-derived stem cells and gelatin microspheres promotes stemness, differentiation, and controlled pro-angiogenic potential. Macromol Biosci. 2014;14:1458–1468. doi: 10.1002/mabi.201400094. [DOI] [PubMed] [Google Scholar]
  • 15.Kim S, Kang Y, Krueger CA, Sen M, Holcomb JB, Chen D, et al. Sequential delivery of BMP-2 and IGF-1 using a chitosan gel with gelatin microspheres enhances early osteoblastic differentiation. Acta Biomater. 2012;8:1768–1777. doi: 10.1016/j.actbio.2012.01.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Rajan N, Habermehl J, Coté MF, Doillon CJ, Mantovani D. Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat Protoc. 2006;1:2753–2758. doi: 10.1038/nprot.2006.430. [DOI] [PubMed] [Google Scholar]
  • 17.Wang L, Stegemann JP. Thermogelling chitosan and collagen composite hydrogels initiated with beta-glycerophosphate for bone tissue engineering. Biomaterials. 2010;31:3976–3985. doi: 10.1016/j.biomaterials.2010.01.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Patel ZS, Yamamoto M, Ueda H, Tabata Y, Mikos AG. Biodegradable gelatin microparticles as delivery systems for the controlled release of bone morphogenetic protein-2. Acta Biomater. 2008;4:1126–1138. doi: 10.1016/j.actbio.2008.04.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Xu M, Zhang X, Meng S, Dai X, Han B, Deng X. Enhanced critical size defect repair in rabbit mandible by electrospun gelatin/β-TCP composite nanofibrous membranes. J Nanomater. 2015;2015:1–9. [Google Scholar]
  • 20.Kim J, Yang HJ, Cho TH, Lee SE, Park YD, Kim HM, et al. Enhanced regeneration of rabbit mandibular defects through a combined treatment of electrical stimulation and rhBMP-2 application. Med Biol Eng Comput. 2013;51:1339–1348. doi: 10.1007/s11517-013-1106-x. [DOI] [PubMed] [Google Scholar]
  • 21.Srouji S, Rachmiel A, Blumenfeld I, Livne E. Mandibular defect repair by TGF-beta and IGF-1 released from a biodegradable osteoconductive hydrogel. J Craniomaxillofac Surg. 2005;33:79–84. doi: 10.1016/j.jcms.2004.09.003. [DOI] [PubMed] [Google Scholar]
  • 22.Hou J, Wang J, Cao L, Qian X, Xing W, Lu J, et al. Segmental bone regeneration using rhBMP-2-loaded collagen/chitosan microspheres composite scaffold in a rabbit model. Biomed Mater. 2012;7:035002. doi: 10.1088/1748-6041/7/3/035002. [DOI] [PubMed] [Google Scholar]
  • 23.Zamora DO, Natesan S, Christy RJ. Constructing a collagen hydrogel for the delivery of stem cell-loaded chitosan microspheres. J Vis Exp. 2012;64:e3624. doi: 10.3791/3624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Dreifke MB, Ebraheim NA, Jayasuriya AC. Investigation of potential injectable polymeric biomaterials for bone regeneration. J Biomed Mater Res A. 2013;101:2436–2447. doi: 10.1002/jbm.a.34521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Yao L, Phan F, Li Y. Collagen microsphere serving as a cell carrier supports oligodendrocyte progenitor cell growth and differentiation for neurite myelination in vitro. Stem Cell Res Ther. 2013;4:109. doi: 10.1186/scrt320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Niu X, Feng Q, Wang M, Guo X, Zheng Q. Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2. J Control Release. 2009;134:111–117. doi: 10.1016/j.jconrel.2008.11.020. [DOI] [PubMed] [Google Scholar]
  • 27.Li W, Lan Y, Guo R, Zhang Y, Xue W, Zhang Y. In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achieving the sustained release of basic fibroblast growth factor. J Biomater Appl. 2015;29:882–893. doi: 10.1177/0885328214547091. [DOI] [PubMed] [Google Scholar]
  • 28.Yao AH, Li XD, Xiong L, Zeng JH, Xu J, Wang DP. Hollow hydroxyapatite microspheres/chitosan composite as a sustained delivery vehicle for rhBMP-2 in the treatment of bone defects. J Mater Sci Mater Med. 2015;26:5336. doi: 10.1007/s10856-014-5336-8. [DOI] [PubMed] [Google Scholar]
  • 29.Wu Y, Hou J, Yin M, Wang J, Liu C. Enhanced healing of rabbit segmental radius defects with surface-coated calcium phosphate cement/bone morphogenetic protein-2 scaffolds. Mater Sci Eng C Mater Biol Appl. 2014;44:326–335. doi: 10.1016/j.msec.2014.08.020. [DOI] [PubMed] [Google Scholar]
  • 30.Gao L, Gan H, Meng Z, Gu R, Wu Z, Zhang L, et al. Effects of genipin cross-linking of chitosan hydrogels on cellular adhesion and viability. Colloids Surf B Biointerfaces. 2014;117:398–405. doi: 10.1016/j.colsurfb.2014.03.002. [DOI] [PubMed] [Google Scholar]
  • 31.Moroi A, Ueki K, Okabe K, Marukawa K, Sotobori M, Mukozawa A, et al. Comparison between unsintered hydroxyapatite/poly-L-lactic acid mesh and titanium mesh in bone regeneration of rabbit mandible. Implant Dent. 2013;22:255–262. doi: 10.1097/ID.0b013e31828336be. [DOI] [PubMed] [Google Scholar]
  • 32.Huh JY, Choi BH, Kim BY, Lee SH, Zhu SJ, Jung JH. Critical size defect in the canine mandible. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100:296–301. doi: 10.1016/j.tripleo.2004.12.015. [DOI] [PubMed] [Google Scholar]
  • 33.Alfotawei R, Naudi KB, Lappin D, Barbenel J, Di Silvio L, Hunter K, et al. The use of TriCalcium Phosphate (TCP) and stem cells for the regeneration of osteoperiosteal critical-size mandibular bony defects, an in vitro and preclinical study. J Craniomaxillofac Surg. 2014;42:863–869. doi: 10.1016/j.jcms.2013.12.006. [DOI] [PubMed] [Google Scholar]
  • 34.Wikesjö UM, Guglielmoni P, Promsudthi A, Cho KS, Trombelli L, Selvig KA, et al. Periodontal repair in dogs: effect of rhBMP-2 concentration on regeneration of alveolar bone and periodontal attachment. J Clin Periodontol. 1999;26:392–400. doi: 10.1034/j.1600-051X.1999.260610.x. [DOI] [PubMed] [Google Scholar]
  • 35.Wikesjö UM, Susin C, Qahash M, Polimeni G, Leknes KN, Shanaman RH, et al. The critical-size supraalveolar peri-implant defect model: characteristics and use. J Clin Periodontol. 2006;33:846–854. doi: 10.1111/j.1600-051X.2006.00985.x. [DOI] [PubMed] [Google Scholar]

Articles from Tissue Engineering and Regenerative Medicine are provided here courtesy of Springer

RESOURCES