Skip to main content
Tissue Engineering and Regenerative Medicine logoLink to Tissue Engineering and Regenerative Medicine
. 2016 Feb 2;13(1):47–56. doi: 10.1007/s13770-016-9102-0

Effect of fibroblast growth factor-2 and retinoic acid on lineage commitment of bone marrow mesenchymal stem cells

Jiwon Lim 1,2, Eui Kyun Park 1,
PMCID: PMC6170995  PMID: 30603384

Abstract

In this study, we examined the effect of a combination of fibroblast growth factor-2 (FGF-2) and retinoic acid (RA) on osteoblast and adipocyte lineage commitment and differentiation of human bone marrow mesenchymal stem cells (BMSCs). Pretreatment of human BMSCs with FGF-2 or RA for 5 days followed by osteoblast differentiation induction showed high calcium deposition compared to control. A combination of FGF-2 and RA further induced calcium deposition compared to FGF-2 or RA alone. The enhanced mineral deposition was accompanied with the increased expression of osteoblast differentiation markers, alkaline phosphatase and osteocalcin. On the other hand, FGF-2 pretreatment followed by adipocyte differentiation induction also showed increased formation of lipid droplets in human BMSCs, whereas RA pretreatment suppressed formation of lipid droplets. However, a combination of FGF-2 and RA increased formation of lipid droplets and expression of adipocyte marker genes, including adiponectin, ADIPOQ, FABP4, peroxisome proliferator-activated receptor γ (PPARγ), and C/EBPα. During pretreatment of BMSCs with FGF-2, RA or in combination, the cells expressed similar levels of MSC surface markers such as CD29, CD44, CD90, and CD105, indicating that they maintain stem cell potential. To determine how RA cooperates with FGF-2 in osteoblast and adipocyte lineage commitment, the expression of RA receptors and intracellular lipid-binding proteins was examined. A combination of FGF-2 and RA strongly induced the expression of RA receptor α, β, γ, PPAR β/δ, CRABP-II, and FABP5. Collectively, these results demonstrate that combined pretreatment of human BMSCs with FGF-2 and RA enhances the commitment into osteoblast and adipocyte lineages through modulation of the expression of RA-related genes.

Keywords: Human bone marrow mesenchymal stem cells, Lineage commitment, Differentiation, Fibroblast growth factor-2, Retinoic acid

References

  • 1.Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147. doi: 10.1126/science.284.5411.143. [DOI] [PubMed] [Google Scholar]
  • 2.Bajada S, Mazakova I, Richardson JB, Ashammakhi N. Updates on stem cells and their applications in regenerative medicine. J Tissue Eng Regen Med. 2008;2:169–183. doi: 10.1002/term.83. [DOI] [PubMed] [Google Scholar]
  • 3.Cancedda R, Mastrogiacomo M, Bianchi G, Derubeis A, Muraglia A, Quarto R. Bone marrow stromal cells and their use in regenerating bone. Novartis Found Symp. 2003;249:133–143. doi: 10.1002/0470867973.ch10. [DOI] [PubMed] [Google Scholar]
  • 4.Gospodarowicz D. Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature. 1974;249:123–127. doi: 10.1038/249123a0. [DOI] [PubMed] [Google Scholar]
  • 5.Olwin BB, Arthur K, Hannon K, Hein P, McFall A, Riley B, et al. Role of FGFs in skeletal muscle and limb development. Mol Reprod Dev. 1994;39:90–100. doi: 10.1002/mrd.1080390114. [DOI] [PubMed] [Google Scholar]
  • 6.Martin I, Muraglia A, Campanile G, Cancedda R, Quarto R. Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology. 1997;138:4456–4462. doi: 10.1210/endo.138.10.5425. [DOI] [PubMed] [Google Scholar]
  • 7.Iwasaki M, Nakahara H, Nakata K, Nakase T, Kimura T, Ono K. Regulation of proliferation and osteochondrogenic differentiation of periosteum-derived cells by transforming growth factor-beta and basic fibroblast growth factor. J Bone Joint Surg Am. 1995;77:543–554. doi: 10.2106/00004623-199504000-00007. [DOI] [PubMed] [Google Scholar]
  • 8.Ito T, Sawada R, Fujiwara Y, Tsuchiya T. FGF-2 increases osteogenic and chondrogenic differentiation potentials of human mesenchymal stem cells by inactivation of TGF-beta signaling. Cytotechnology. 2008;56:1–7. doi: 10.1007/s10616-007-9092-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Suga H, Shigeura T, Matsumoto D, Inoue K, Kato H, Aoi N, et al. Rapid expansion of human adipose-derived stromal cells preserving multipotency. Cytotherapy. 2007;9:738–745. doi: 10.1080/14653240701679873. [DOI] [PubMed] [Google Scholar]
  • 10.Choi KM, Seo YK, Yoon HH, Song KY, Kwon SY, Lee HS, et al. Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation. J Biosci Bioeng. 2008;105:586–594. doi: 10.1263/jbb.105.586. [DOI] [PubMed] [Google Scholar]
  • 11.Xue Y, Karaplis AC, Hendy GN, Goltzman D, Miao D. Exogenous 1,25-dihydroxyvitamin D3 exerts a skeletal anabolic effect and improves mineral ion homeostasis in mice that are homozygous for both the 1alpha-hydroxylase and parathyroid hormone null alleles. Endocrinology. 2006;147:4801–4810. doi: 10.1210/en.2006-0403. [DOI] [PubMed] [Google Scholar]
  • 12.Sanz MA. Treatment of acute promyelocytic leukemia. Hematology Am Soc Hematol Educ Program. 2006;2006:147–155. doi: 10.1182/asheducation-2006.1.147. [DOI] [PubMed] [Google Scholar]
  • 13.Kim BJ, Seo JH, Bubien JK, Oh YS. Differentiation of adult bone marrow stem cells into neuroprogenitor cells in vitro. Neuroreport. 2002;13:1185–1188. doi: 10.1097/00001756-200207020-00023. [DOI] [PubMed] [Google Scholar]
  • 14.Wan DC, Siedhoff MT, Kwan MD, Nacamuli RP, Wu BM, Longaker MT. Refining retinoic acid stimulation for osteogenic differentiation of murine adipose-derived adult stromal cells. Tissue Eng. 2007;13:1623–1631. doi: 10.1089/ten.2006.0283. [DOI] [PubMed] [Google Scholar]
  • 15.Ventura C, Cantoni S, Bianchi F, Lionetti V, Cavallini C, Scarlata I, et al. Hyaluronan mixed esters of butyric and retinoic Acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infarcted rat hearts. J Biol Chem. 2007;282:14243–14252. doi: 10.1074/jbc.M609350200. [DOI] [PubMed] [Google Scholar]
  • 16.Oliva A, Borriello A, Zeppetelli S, Di Feo A, Cortellazzi P, Ventriglia V, et al. Retinoic acid inhibits the growth of bone marrow mesenchymal stem cells and induces p27Kip1 and p16INK4A up-regulation. Mol Cell Biochem. 2003;247:55–60. doi: 10.1023/A:1024192719178. [DOI] [PubMed] [Google Scholar]
  • 17.Hisada K, Hata K, Ichida F, Matsubara T, Orimo H, Nakano T, et al. Retinoic acid regulates commitment of undifferentiated mesenchymal stem cells into osteoblasts and adipocytes. J Bone Miner Metab. 2013;31:53–63. doi: 10.1007/s00774-012-0385-x. [DOI] [PubMed] [Google Scholar]
  • 18.Schug TT, Berry DC, Shaw NS, Travis SN, Noy N. Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell. 2007;129:723–733. doi: 10.1016/j.cell.2007.02.050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Lee SY, Lim J, Khang G, Son Y, Choung PH, Kang SS, et al. Enhanced ex vivo expansion of human adipose tissue-derived mesenchymal stromal cells by fibroblast growth factor-2 and dexamethasone. Tissue Eng Part A. 2009;15:2491–2499. doi: 10.1089/ten.tea.2008.0465. [DOI] [PubMed] [Google Scholar]

Articles from Tissue Engineering and Regenerative Medicine are provided here courtesy of Springer

RESOURCES