Skip to main content
Tissue Engineering and Regenerative Medicine logoLink to Tissue Engineering and Regenerative Medicine
. 2016 Aug 5;13(4):375–387. doi: 10.1007/s13770-016-9097-y

Grafting collagen on poly (lactic acid) by a simple route to produce electrospun scaffolds, and their cell adhesion evaluation

Alida Ospina-Orejarena 1, Ricardo Vera-Graziano 1, Maria Monica Castillo-Ortega 2, Juan Paulo Hinestroza 3, Mabel Rodriguez-Gonzalez 4, Laura Palomares-Aguilera 4, Marissa Morales-Moctezuma 1, Alfredo Maciel-Cerda 1,5,
PMCID: PMC6171549  PMID: 30603419

Abstract

Increasing bioactivity and mechanical properties of polymers to produce more suitable scaffold for tissue engineering is a recurrent goal in the development of new biomedical materials. In this study, collagen-functionalized poly (lactic acid), PLA, was obtained by means of a simple grafting route, and electrospun scaffolds were produced to grow cells in vitro; their bioactivity was compared with scaffolds made of physical blends of PLA and collagen. Grafting was verified via nuclear magnetic resonance, attenuated total reflection-Fourier transform infrared and X-ray photoelectron spectroscopy. The cell adhesion performance of the scaffolds was studied using macrophages. Elastic modulus (74.7 megapascals) and tensile strength (3.0 megapascals) of the scaffold made from PLA grafted with collagen were substantially higher than the scaffolds made from physical blends of collagen and PLA: 32 and 2.16 megapascals, respectively, implying a more resistant material because of the chemical bond of the polypeptide to PLA. Besides, the fibers had more uniform diameter without defects. Scaffolds made from PLA grafted with collagen presented four-fold increase in cell adhesion than those of PLA blended with collagen. Furthermore, cell spreading within the scaffolds occurred only when collagen-functionalized poly (lactic acid) was used. These results open a new option for the easy tailoring of nanofiber-based scaffolds in three dimensions for tissue engineering.

Key Words: Poly (lactic acid), Collagen, Grafting, Electrospun scaffold, Cell adhesion

References

  • 1.Laurie GW, Horikoshi S, Killen PD, Segui-Real B, Yamada Y. In situ hybridization reveals temporal and spatial changes in cellular expression of mRNA for a laminin receptor, laminin, and basement membrane (type IV) collagen in the developing kidney. J Cell Biol. 1989;109:1351–1362. doi: 10.1083/jcb.109.3.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Sanes JR, Engvall E, Butkowski R, Hunter DD. Molecular heterogeneity of basal laminae: isoforms of laminin and collagen IVat the neuromuscular junction and elsewhere. J Cell Biol. 1990;111:1685–1699. doi: 10.1083/jcb.111.4.1685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Werb Z, Chin JR. Extracellular matrix remodeling during morphogenesis. Ann N YAcad Sci. 1998;857:110–118. doi: 10.1111/j.1749-6632.1998.tb10111.x. [DOI] [PubMed] [Google Scholar]
  • 4.Boudreau N, Myers C, Bissell MJ. From laminin to lamin: regulation of tissue-specific gene expression by the ECM. Trends Cell Biol. 1995;5:1–4. doi: 10.1016/S0962-8924(00)88924-2. [DOI] [PubMed] [Google Scholar]
  • 5.Ingber D. Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis. J Cell Biochem. 1991;47:236–241. doi: 10.1002/jcb.240470309. [DOI] [PubMed] [Google Scholar]
  • 6.Lannutti J, Reneker D, Ma T, Tomasko D, Farson D. Electrospinning for tissue engineering scaffolds. Mat Sci Eng C. 2007;27:504–509. doi: 10.1016/j.msec.2006.05.019. [DOI] [Google Scholar]
  • 7.Agarwal S, Greiner A, Wendorff JH. Electrospinning of manmade and biopolymer nanofibers-progress in techniques, materials, and applications. Adv Funct Mater. 2009;19:2863–2879. doi: 10.1002/adfm.200900591. [DOI] [Google Scholar]
  • 8.Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008;49:5603–5621. doi: 10.1016/j.polymer.2008.09.014. [DOI] [Google Scholar]
  • 9.Baker SC, Atkin N, Gunning PA, Granville N, Wilson K, Wilson D, et al. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials. 2006;27:3136–3146. doi: 10.1016/j.biomaterials.2006.01.026. [DOI] [PubMed] [Google Scholar]
  • 10.Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials. 2004;25:1891–1900. doi: 10.1016/j.biomaterials.2003.08.062. [DOI] [PubMed] [Google Scholar]
  • 11.Hench LL, Jones JR. Biomaterials, artificial organs and tissue engineering. Cambridge: Woodhead Publishing Ltd; 2005. [Google Scholar]
  • 12.Zhang Y, Lim CT, Ramakrishna S, Huang ZM. Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med. 2005;16:933–946. doi: 10.1007/s10856-005-4428-x. [DOI] [PubMed] [Google Scholar]
  • 13.Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomed. 2006;1:15–30. doi: 10.2147/nano.2006.1.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Huang ZM, Zhang YZ, Kotakic M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63:2223–2253. doi: 10.1016/S0266-3538(03)00178-7. [DOI] [Google Scholar]
  • 15.Smith R. Biodegradable polymers for industrial applications. Cambridge: Woodhead Publishing Ltd.; 2005. [Google Scholar]
  • 16.Lee J, Tae G, Kim YH, Park IS, Kim SH, Kim SH. The effect of gelatin incorporation into electrospun poly(L-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility. Biomaterials. 2008;29:1872–1879. doi: 10.1016/j.biomaterials.2007.12.029. [DOI] [PubMed] [Google Scholar]
  • 17.Charulatha V, Rajaram A. Influence of different crosslinking treatments on the physical properties of collagen membranes. Biomaterials. 2003;24:759–767. doi: 10.1016/S0142-9612(02)00412-X. [DOI] [PubMed] [Google Scholar]
  • 18.Friess W. Collagen—biomaterial for drug delivery. Eur J Pharm Biopharm. 1998;45:113–136. doi: 10.1016/S0939-6411(98)00017-4. [DOI] [PubMed] [Google Scholar]
  • 19.Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60:184–198. doi: 10.1016/j.addr.2007.08.041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24:4353–4364. doi: 10.1016/S0142-9612(03)00339-9. [DOI] [PubMed] [Google Scholar]
  • 21.Gunn J, Zhang M. Polyblend nanofibers for biomedical applications: perspectives and challenges. Trends Biotechnol. 2010;28:189–197. doi: 10.1016/j.tibtech.2009.12.006. [DOI] [PubMed] [Google Scholar]
  • 22.Nyanhongo G, Rodriguez R N, Prasetyo E, Cristina C, Ribeiro C, Sencadas V, et al. Bioactive albumin functionalized polylactic acid membranes for improved biocompatibilty. React Funct Polym. 2013;73:1399–1404. doi: 10.1016/j.reactfunctpolym.2012.12.007. [DOI] [Google Scholar]
  • 23.Yang X, Yuan M, Li W, Zhang G. Synthesis and properties of collagen/polylactic acid blends. Appl Polym. 2004;94:1670–1675. doi: 10.1002/app.21056. [DOI] [Google Scholar]
  • 24.Yang Y, Porte MC, Marmey P, El Haj AJ, Amédée J, Baquey C. Covalent bonding of collagen on poly(L-lactic acid) by gamma irradiation. Nucl Instrum Methods Phys Res Sect B. 2003;207:165–174. doi: 10.1016/S0168-583X(03)00456-7. [DOI] [Google Scholar]
  • 25.Rasal RM, Janorkar AV, Hirt DE. Poly(lactic acid) modifications. Prog Polym Sci. 2010;35:338–356. doi: 10.1016/j.progpolymsci.2009.12.003. [DOI] [Google Scholar]
  • 26.Cui YL, Qi AD, Liu WG, Wang XH, Wang H, Ma DM, et al. Biomimetic surface modification of poly(L-lactic acid) with chitosan and its effects on articular chondrocytes in vitro. Biomaterials. 2003;24:3859–3868. doi: 10.1016/S0142-9612(03)00209-6. [DOI] [PubMed] [Google Scholar]
  • 27.Croll TI, O’Connor AJ, Stevens GW, Cooper-White JJ. Controllable surface modification of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or aminolysis I: physical, chemical, and theoretical aspects. Biomacromolecules. 2004;5:463–473. doi: 10.1021/bm0343040. [DOI] [PubMed] [Google Scholar]
  • 28.Goddard JM, Hotchkiss JH. Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci. 2007;32:698–725. doi: 10.1016/j.progpolymsci.2007.04.002. [DOI] [Google Scholar]
  • 29.Cui M, Liu L, Guo N, Su R, Ma F. Preparation, cell compatibility and degradability of collagen-modified poly(lactic acid) Molecules. 2015;20:595–607. doi: 10.3390/molecules20010595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Luo YF, Wang YL, Niu XF, Pan J, Shi LP. Synthesis and characterization of a novel biomaterial: maleic anhydride-modified poly(dl-lactic acid) Chin Chem Lett. 2014;15:521–524. [Google Scholar]
  • 31.Pan J, Wang Y, Qin S, Zhang B, Luo Y. Grafting reaction of poly(D,L)lactic acid with maleic anhydride and hexanediamine to introduce more reactive groups in its bulk. J Biomed Mater Res B Appl Biomater. 2005;74:476–480. doi: 10.1002/jbm.b.30208. [DOI] [PubMed] [Google Scholar]
  • 32.Niu X, Wang Y, Luo Y, Pan J, Shang J. Synthesis of the biomimetic polymer: aliphatic diamine and RGDS modified poly(D, L-lactic acid) Chin Chem Lett. 2005;16:1035–1038. [Google Scholar]
  • 33.Vera-Grazianoa R, AMaciel-Cerda A, Moreno-Rondon EV, Ospina A, Gomez-Pachon EY. Modified Polylactide Microfiber Scaffolds for Tissue Engineering. In: Rodil S, Almaguer A, Anselme K, editors. MRS Proceedings. Warrendale, PA: Materials Research Society; 2012. [Google Scholar]
  • 34.Plackett D. Maleated polylactide as an interfacial compatibilizer in biocomposites. J Polym Environ. 2004;12:131–138. doi: 10.1023/B:JOOE.0000038544.75554.0e. [DOI] [Google Scholar]
  • 35.Kang IK, Kwon BK, Lee JH, Lee HB. Immobilization of proteins on poly(methyl methacrylate) films. Biomaterials. 1993;14:787–792. doi: 10.1016/0142-9612(93)90045-4. [DOI] [PubMed] [Google Scholar]
  • 36.Gómez-Pachón E, Sânchez-Arévalo FM, Sabina FJ, Maciel-Cerda A, Campos MR, Batina N, et al. Characterisation and modelling of the elastic properties of poly(lactic acid) nanofibre scaffolds. J Materials Sci. 2013;48:8308–8319. doi: 10.1007/s10853-013-7644-7. [DOI] [Google Scholar]
  • 37.Su R, Liu L, Li X, Cui M, Ma F. Study on synthesis and application of collagen modified polylactic acid. Polym Compos. 2015;36:88–93. doi: 10.1002/pc.22916. [DOI] [Google Scholar]
  • 38.ASTM D1708-96. Standard test method for tensile properties of plastics by use of microtensile specimens. West Conshohocken, PA: ASTM International; 2002. DOI: 10.1520/D1708-96.
  • 39.Fowlks AC. Development of polylactic acid-based materials through reactive modification. Ann Arbor: Michigan State University; 2010. [Google Scholar]
  • 40.Muenprasat D, Suttireungwong S, Tongpin C. Functionalization of poly (lactic acid) with maleic anhydride for biomedical application. J Met Mater Min. 2010;20:189–192. [Google Scholar]
  • 41.Li X, Liu LL, Yang PF, Li P, Xin JJ, Su RX. Synthesis of collagen-modified polylactide and its application in drug delivery. J Appl Polym Sci. 2013;129:3290–3296. doi: 10.1002/app.39051. [DOI] [Google Scholar]
  • 42.Meng ZX, Wang YS, Ma C, Zheng W, Li L, Zheng YF. Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Eng C. 2010;30:1204–1210. doi: 10.1016/j.msec.2010.06.018. [DOI] [Google Scholar]
  • 43.Hwang SW, Lee SB, Lee CK, Lee JY, Shim JK, Susan EM, et al. Grafting of maleic anhydride on poly(L-lactic acid) Effects of physical and mechanical properties. Polym Test. 2012;31:333–344. [Google Scholar]
  • 44.Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100. doi: 10.1016/j.smim.2007.11.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials. 2012;33:3792–3802. doi: 10.1016/j.biomaterials.2012.02.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Almeida CR, Serra T, Oliveira MI, Planell JA, Barbosa MA, Navarro M. Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation. Acta Biomater. 2014;10:613–622. doi: 10.1016/j.actbio.2013.10.035. [DOI] [PubMed] [Google Scholar]
  • 47.Pouchert CJ. Aldrich Library of NMR Spectra. Milwaukee, WI: Aldrich Chemical Co; 1983. pp. 1–603. [Google Scholar]
  • 48.Pretsch E, Bühlmann P, Badertscher M. Structure determination of organic compounds. Berlin Heidelberg: Springer-Verlag; 2009. p. 224. [Google Scholar]
  • 49.Cui W, Li X, Xie C, Zhuang H, Zhou S, Weng J. Hydroxyapatite nucleation and growth mechanism on electrospun fibers functionalized with different chemical groups and their combinations. Biomaterials. 2010;31:4620–4629. doi: 10.1016/j.biomaterials.2010.02.050. [DOI] [PubMed] [Google Scholar]
  • 50.Cao C, Zhu F, Yu X, Wang Q, Wang C, Li B, et al. Two-step modification of poly(D, L-lactic acid) by ethylenediamine-maleic anhydride. Biomed Mater. 2008;3:015002. doi: 10.1088/1748-6041/3/1/015002. [DOI] [PubMed] [Google Scholar]
  • 51.Wen F, Chang S, Teoh SH, Yu H. Preparation of biocompatible poly(lactic-coglycolic acid) fiber scaffolds for rat liver cells cultivation. Mater Sci Eng C. 2007;27:285–292. doi: 10.1016/j.msec.2006.05.007. [DOI] [Google Scholar]
  • 52.Kwon IK, Matsuda T. Co-electrospun nanofiber fabrics of poly(l-lactide-co-ε-caprolactone) with type I collagen or heparin. Biomacromolecules. 2005;6:2096–2105. doi: 10.1021/bm050086u. [DOI] [PubMed] [Google Scholar]
  • 53.Gonçalves F, Bentini R, Burrows MC, Carreira ACO, Kossugue PM, Sogayar MC, et al. Hybrid membranes of PLLA/collagen for bone tissue engineering: a comparative study of scaffold production techniques for optimal mechanical properties and osteoinduction ability. Materials. 2015;8:408–423. doi: 10.3390/ma8020408. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Tissue Engineering and Regenerative Medicine are provided here courtesy of Springer

RESOURCES