Skip to main content
Data in Brief logoLink to Data in Brief
. 2018 Sep 19;20:2012–2016. doi: 10.1016/j.dib.2018.09.046

Data of root anatomical responses to periodic waterlogging stress of tobacco (Nicotiana tabacum) varieties

Hery Purnobasuki a,, Tutik Nurhidayati b, Sucipto Hariyanto a, Nurul Jadid b
PMCID: PMC6172428  PMID: 30306106

Abstract

The data of root anatomical structure and the formation of aerenchyma tissues of five varieties of tobacco under waterlogging stress were obtained by modified paraffin method. Each tobacco varieties performed distinct anatomical adaptation response, including changes of cortical tissue, stele diameter, xylem diameter and the formation of aerenchyma under periodic waterlogging stress.

Keywords: Nicotiana tabacum, Periodic Waterlogging Stress, Anatomy of the roots


Specifications table

Subject area Biology
More specific subject area Anatomy plant biology
Type of data Figures and text
How data was acquired Periodic waterlogging Method, paraffin method, data and image analysis
Data format Analyzed
Experimental factors Five tobacco varieties were traited under periodic waterlogging stress for 14 days, including 7 days with waterlogging conditions and followed by 7 days treatment of flooding conditions.
Experimental features Tobacco varieties used in this study include var. Jepon Palakean, Srumpung, Morakot, Somporis and Manilo. The observation of root anatomy was conducted using modified paraffin method.
Data source location Department of Biology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
Data accessibility The data are available with this article

Value of the data

  • The tobacco plant performs anatomical adaptation response of the roots under periodic waterlogging stress conditions through changes in cortical tissue, stele diameter, xylem diameter and the formation of aerenchyma.

  • Data on root anatomical responses might be useful for further study on tobacco plant breeding.

  • Data provided in this article could be combined with physiological and molecular study to elucidate the tobacco response mechanism against waterlogging and flooding stress.

1. Data

The data on Fig. 1 shows the waterlogging stress treatment and Fig. 2 shows the cross-section of fifth variety of tobacco root under periodic waterlogging stress. Our data clearly showed the anatomical differences between treated plant and control. All of treated plants have bigger size of all root parameter and much number in aerenchyma, epidermal and endodermal cells. All varieties showed the formation of aerenchyma tissue after being treated with waterlogging and flooding stress (Fig. 2, Fig. 3). During treatment, tobacco varieties exhibited different root anatomical responses. Tobacco var. Jepon Palakean, Marakot and Manilo showed an increase of cortex thickness (more than 60% in waterlogging and more than 100% in flooding), diameter of stele and xylem (more than 75% in waterlogging and more than 40% in flooding). In contrast, var. Srumpung and Somporis exhibited a decrease of cortex thickness, diameter of stele and xylem (Table 1).

Fig. 1.

Fig. 1

Treatment of periodic waterloging stress in Tobacco (Nicotiana tabacum): A.Waterlogging condition and B. Flooding condition.

Fig. 2.

Fig. 2

Cross-section of Fifth Root Varieties of Tobacco Plants under Periodic waterlogging (K: Tobacco Control Plants W: Tobacco Plants In Waterlogging Stress F: Tobacco Plants In Flooding Cash: 1. Var Jepon Palakean 2. Var Somporis3. Var, Marakot, 4. Var Srumpung, 5. Var Manilo).Observations were done using the Olympus CX 21 Light Microscope With Optilab Camera At Magnification (100×).

Fig. 3.

Fig. 3

I: Aerenchyma In Cross Sliced Root of Tobacco Crops under periodic waterlogging stress Periodically / Flooding: (1. Var Jepon Palakean 2. Var Somporis; 3. Var. Marakot; 4. Var Srumpung; 5. Var.Marakot: Observations Using the Olympus CX 21 Light Microscope With Optilab Camera At 100× Magnification); II:II: A: Typa latifolia Root with radial type lisogeny [1] was used as literature standard;Arrows indicate aerenchyme: (B: aerenchyme Var Somporis And C: Var.Marakot: Observation Using the Olympus CX 21 Light Microscope With Optilab Camera At 400× Magnification).

Table 1.

Various root anatomical characters of Tobacco Varieties under periodic waterlogging stress.

Parameter Treatment Tobacco Plant Varieties
Palakean Somporis Marakot Srumpung Manilo
Root Diameter (µm) W0 1356,9 ± 1,43ab 784,47 ± 0,05ab 1618,37 ± 0,36ab 1302,8 ± 0,23ab 1638,77 ± 0,27ab
W1 1639,6 ± 0,43ab 705,93 ± 0,42ab 1585,53 ± 0,54ab 4410 ± 0,71ab 1274 ± 0,88ab
F0 721,67 ± 0,30ab 1246,1 ± 0,48ab 1281,87 ± 0,45ab 1648,3 ± 0,17ab 1627,37 ± 0,42ab
F1 1256,57 ± 0,22ab 846,4 ± 0,42ab 1470,33 ± 0,26ab 1421,4 ± 1,40ab 1670,13 ± 0,07ab
Stele Diameter (µm) W0 484,13 ± 3,75ad 616,93 ± 0,36ad 981,7 ± 0,14ce 904,57 ± 0,11be 715,57 ± 0,91ce
W1 833,33 ± 0,17be 562,83 ± 0,12ad 1016,57 ± 0,44ce 658,8 ± 0,21ad 892,67 ± 1,14ad
F0 348,13 ± 0,19ad 721,67 ± 0,22ad 672,8 ± 0,13ad 842,07 ± 0,46ae 733 ± 0,37ad
F1 760,07 ± 0,13bd 433,73 ± 0,49ad 751,33 ± 0,68ad 800,2 ± 0,60ad 1332,9 ± 0,52ce
Epidermal thickness(µm) W0 71,43 ± 0,03bd 107,7 ± 0,05bd 171,9 ± 0,07bd 168,5 ± 0,02bd 177,4 ± 0,04bd
W1 41,13 ± 0,33ac 28,23 ± 0,09ac 45,43 ± 0,19ac 35,53 ± 0,05ac 66,87 ± 0,23bd
F0 71,43 ± 0,22bd 107,7 ± 0,10bd 171,9 ± 0,01bd 168,5 ± 0,12bd 177,4 ± 0,12bd
F1 30,23 ± 0,01ac 23,73 ± 0,05ac 37,93 ± 0,06 ac 32,13 ± 0,09ac 31,23 ± 0,07ac
Cortex thickness (µm) W0 158,2 ± 0,24ade 65,53 ± 0,17ad 79,13 ± 0,62ad 110,33 ± 0,17ad 155,8 ± 0,16ad
W1 244,47 ± 0,21bde 42,57 ± 0,12ad 140,83 ± 0,37ad 108,9 ± 0,37ad 224,6 ± 0,04bde
F0 86,27 ± 0,05ad 157,97 ± 0,22ade 201,7 ± 0,24bde 257,83 ± 0,58bde 225,37 ± 0,45bde
F1 156,4 ± 0,39ade 155,27 ± 0,22ade 300,8 ± 0,61ce 249,53 ± 0,28bde 514,53 ± 1,14ce
Endodermal thickness (µm) W0 156,03 ± 0,31bd 51,07 ± 0,20ac 227,03 ± 0,63bd 85,2 ± 0,22acd 120,5 ± 0,13ad
W1 141,2 ± 0,21ad 50,17 ± 0,02ac 126,87 ± 0,63ad 172,73 ± 0,59bd 111,47 ± 0,15acd
F0 44,67 ± 0,07ac 122,23 ± 0,10ad 92,27 ± 0,13acd 92,73 ± 0,34acd 207,7 ± 1,03bd
F1 55,03 ± 0,34ac 45,4 ± 0,11ac 88,33 ± 0,04acd 53,9 ± 0,18ac 168,97 ± 0,44bd
Xylem thickness (µm) W0 20,3 ± 0,02ab 30,8 ± 0,07ab 28,8 ± 0,03ab 28,73 ± 0,05ab 28,17 ± 0,03ab
W1 29,7 ± 0,06ab 25,23 ± 0,05ab 36,5 ± 0,08ac 29,87 ± 0,05ab 30,47 ± 0,04abc
F0 41,9 ± 0,04ac 35,33 ± 0,01ac 31,1 ± 0,03ab 30,37 ± 0,05ab 21 ± 0,06ab
F1 35,37 ± 0,06ac 29,57 ± 0,01ab 36,9 ± 0,12ac 29,23 ± 0,01ab 34,67 ± 0,02ac
Xylem Diameter (µm) W0 99,97 ± 0,03ad 116,8 ± 0,01bd 108,87 ± 0,02bc 135,27 ± 0,02bd 87,97 ± 0,18ac
W1 121,17 ± 0,01bd 97,4 ± 0,02ac 148,1 ± 0,01bd 102,33 ± 0,07ad 116,2 ± 0,17ad
F0 92,77 ± 0,02ac 102,37 ± 0,01ad 90,87 ± 0,01ac 102,27 ± 0,01ad 102,37 ± 0,01ad
F1 119,53 ± 0,05bd 76,97 ± 0,03ac 93,6 ± 0,01ac 98,27 ± 0,02ac 87,03 ± 0,02ac
The number of aerenchyma cells W0 3 ± 0,00ac 1 ± 0,01ab 2 ± 0,02ab 2 ± 0,01ab 3 ± 0,01ac
W1 8 ± 0,05ac 5 ± 0,03ab 4 ± 0,02ab 5 ± 0,01ab 6 ± 0,02ac
F0 2 ± 0,01ab 2 ± 0,02ab 1 ± 0,01ab 2 ± 0,01ab 1 ± 0,01ab
F1 12 ± 0,01ad 10 ± 0,02ad 11 ± 0,02ad 8 ± 0,03ac 7 ± 0,00ac
Aerenchym Cell Length (µm) W0 34,55 ± 0,06ac 41,4 ± 0,07ad 33,67 ± 0,05ac 45,62 ± 0,06ac 48,97 ± 0,03ac
W1 115,16 ± 0,04be 97,23 ± 0,09bd 93,37 ± 0,03bd 123,17 ± 0,03be 80,93 ± 0,10ad
F0 75,2 ± 0,02ad 45,32 ± 0,01ac 42,12 ± 0,03ac 82,45 ± 0,10ad 67,82 ± 0,02ad
F1 137,76 ± 0,23be 138,63 ± 0,06be 166,1 ± 0,13bf 160,1 ± 0,45bf 168,17 ± 0,34be

Description: 1. numbers followed by the same letters in the same row and column for the measured parameters do not significantly different by Tukey Test at 5%; 2. Treatment Code: W0: Control 1; W1: Waterlogging; F0: Control 2; F1: Flooding

2. Experimental design, materials, and methods

2.1. Periodic waterlogging stress treatment

Tobacco seedlings aged 65 DAS (days after sowing) were grown under the periodic waterlogging condition in a plastic container measuring 40 cm × 30 cm × 20 cm (Fig. 1). Five tobacco varieties were used in this study including var. Jepon Palakean, Srumpung, Marakot, Somporis and Manilo. Periodic waterlogging stress treatment with a total 14 days was divided into 7 days in waterlogging conditions and 7 days under flooding conditions.

2.2. Sample preservation tobacco׳s roots

Root samples were firstly washed before being used for further analysis. Samples were prepared as ± 2 cm size. Subsequently, samples were fixed in FAA solution (formalin: acetic acid: 95% alcohol = 50 ml: 50 ml: 900 ml for every 1 l of solution) in a desiccator tool. Hydration process is then performed in a desiccator for 3 × 30 min. The FAA solution was then removed, and the sample was stored in a 70% alcohol solution [2].

2.3. Observation of root anatomical structure

The cross-sectional root anatomical structure was prepared using modified paraffin method. Procedures of the modified paraffin method used in this study were: (1) gradual dehydration with alcohol; (2) redehydration; (3) immersion through paraffin: dehydrant 1: 1;(4) Embedding;(5) Cutting using microtome;(6) Staining; (8) mounting using entelan. Root anatomical observation was conducted using light microscope with a camera Olympus CX 21 OPTILAB. Quantitative observations of root anatomical roots include total root diameter, stele diameter, epidermal thickness, cortical thickness, endodermic thickness, xylem thickness, xylem diameter, aerenchyme cell count and aerenchyme cell length. The data were analyzed by analysis of variance two way followed by Tukey test.

Acknowledgments

We thank to PT. Sadhana for providing planting material and field, and reviewers for the valuable comments.

Acknowledgments

Funding sources

This research was supported by the Ministry of Research, Technology and Higher Education, Republic of Indonesia through research Grant No: 1500/UN3.14/LT/2017

Footnotes

Transparency document

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.09.046.

Transparency document. Supplementary material

Supplementary material

mmc1.pdf (66KB, pdf)

References

  • 1.Jung Jongduk, Cho Lee Seung, Choi Hong-Keun. Anatomical patterns of aerenchyma in aquatic and wetland plants. Journal of Plant Biology. 2008;51(6):428–439. [Google Scholar]
  • 2.Purnobasuki Hery, Suzuki Mitsuo. Aerenchyma tissue development and gas pathway structure in root of Avicennia marina (Forsk.) Vierh. Journal of Plant Research. 2005;118(4):285–294. doi: 10.1007/s10265-005-0221-7. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary material

mmc1.pdf (66KB, pdf)

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES