Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Sep 28;74(Pt 10):1504–1508. doi: 10.1107/S2056989018013567

(NH4)Ga(HAsO4)2 and TlAl(HAsO4)2 - two new RbFe(HPO4)2-type M + M 3+ arsenates

Karolina Schwendtner a,*, Uwe Kolitsch b
PMCID: PMC6176428  PMID: 30319811

The crystal structures of hydro­thermally synthesized (NH4)Ga(HAsO4)2 and TlAl(HAsO4)2 were solved by single-crystal X-ray diffraction. They both crystallize in the common RbFe(HPO4)2 structure type (R Inline graphic c).

Keywords: crystal structure, (NH4)Ga(HAsO4)2, TlAl(HAsO4)2

Abstract

The crystal structures of hydro­thermally synthesized (T = 493 K, 7–9 d) ammonium gallium bis­[hydrogen arsenate(V)], (NH4)Ga(HAsO4)2, and thallium aluminium bis­[hydrogen arsenate(V)], TlAl(HAsO4)2, were solved by single-crystal X-ray diffraction. Both compounds crystallize in the common RbFe(HPO4)2 structure type (R Inline graphic c) and share the same tetra­hedral–octa­hedral framework topology that houses the M + cations in its channels. One of the two Tl sites is slightly offset from its ideal position. Strong O—H⋯O hydrogen bonds strengthen the network.

Chemical context  

Compounds with mixed tetra­hedral–octa­hedral (T–O) framework structures feature a broad range of different atomic arrangements. These result in topologies with several inter­esting properties such as ion exchange (Masquelier et al., 1996) and ion conductivity (Chouchene et al., 2017), as well as unusual piezoelectric (Ren et al., 2015), magnetic (Ouerfelli et al., 2007) or non-linear optical features (frequency doubling) (Sun et al., 2017).

The two new compounds were obtained during an extensive experimental study of the system M +M 3+–O–(H)–As5+ (M + = Li, Na, K, Rb, Cs, Ag, Tl, NH4; M 3+ = Al, Ga, In, Sc, Fe, Cr, Tl), which led to an unusually large variety of new structure types (Schwendtner & Kolitsch, 2004, 2005, 2007a ,b ,c , 2017a , 2018a ; Schwendtner, 2006, 2008). Among the many different structure types found during our study, one atomic arrangement, the RbFe(HPO4)2 type (Lii & Wu, 1994; rhombohedral, R Inline graphic c), was found to exhibit a large crystal–chemical flexibility, which allows the incorporation of a wide variety of M + and M 3+ cations. Previously, it was also known for the phosphate members RbAl(HPO4)2 and RbGa(HPO4)2 (Lesage et al., 2007). Currently (including the present paper), a total of eight arsenate members are known with the following M + M 3+ combinations: TlAl and (NH4)Ga (this work), RbIn, RbGa, RbAl, RbFe, CsIn and CsFe (Schwendtner & Kolitsch, 2017b , 2018a ,b ,c ). It is noteworthy that no K members are currently known.

Structural commentary  

The two compounds are representatives of the RbFe(HPO4)2 structure type (R Inline graphic c; Lii & Wu, 1994) and show a basic tetra­hedral–octa­hedral framework structure featuring inter­penetrating channels, which host the M + cations (Fig. 1). This structure type is closely related to the triclinic (NH4)Fe(HPO4)2 type (P Inline graphic; Yakubovich, 1993) in which all other known (NH4)M3 +(HTO4)2 (T = P, As) compounds crystallize (see Schwendtner & Kolitsch, 2018b for a compilation), the RbAl2As(HAsO4)6 type (R Inline graphic c; Schwendtner & Kolitsch, 2018a ) and the RbAl(HAsO4)2 type (R32; Schwendtner & Kolitsch, 2018a ). The fundamental building unit in all these structure types contains M 3+O6 octa­hedra, which are connected via their six corners to six protonated AsO4 tetra­hedra, thereby forming an M 3+As6O24 unit. These units are in turn connected via three corners to other M 3+O6 octa­hedra. The free, protonated corner of each AsO4 tetra­hedron forms a hydrogen bond to the neighbouring M 3+As6O24 group (Fig. 2). The M 3+As6O24 units are arranged in layers perpendicular to the c hex axis (Fig. 1). The units within these layers are held together by medium–strong hydrogen bonds (Tables 1 and 2). Both title compounds invariably show a very similar crystal habit: strongly pseudo-hexa­gonal to pseudo-octa­hedral (cf. Fig. 3).

Figure 1.

Figure 1

Structure drawings of the framework structures of (a) (NH4)Ga(HAsO4)2 and (b) TlAl(HAsO4)2 viewed along a. The unit cell is outlined and the alternative position AsB in (b) is shown in light yellow (the main As position is orange). The Tl1 atom shows a slight positional disorder and is slightly offset from the ideal position.

Figure 2.

Figure 2

Structure drawings of the framework structures of (a) (NH4)Ga(HAsO4)2 and (b) TlAl(HAsO4)2 viewed along c. The unit cells are outlined and the alternative position AsB in (b), which can be generated by a mirror plane in (110), is shown in light yellow (the main As position is orange). The Tl1 atom shows a slight positional disorder.

Table 1. Hydrogen-bond geometry (Å, °) for (NH4)Ga(HAsO4).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4xxi 0.87 (3) 1.74 (3) 2.610 (3) 172 (6)

Symmetry code: (xxi) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for TlAl(HAsO4)2 .

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4xxi 0.87 (4) 1.87 (5) 2.584 (5) 139 (6)

Symmetry code: (xxi) Inline graphic.

Figure 3.

Figure 3

SEM image showing a flattened pseudo-octa­hedral crystal of (NH4)Ga(HAsO4)2.

TlAl(HAsO4)2 has the smallest unit cell of all the arsenates of this structure type published to date. Still, the size of the M +-hosting voids seems to be too large for the Tl+ cation, since Tl1 is slightly offset from the ideal position at 0, 0, 3/4 [resulting in some positional disorder for Tl1, with three symmetry-equivalent Tl1 positions in close proximity; Tl1–Tl1i,ii = 0.28 (3) Å; symmetry codes: (i) −y, x − y, z; (ii) y − x, −x, z] and there are minor, but distinct negative and positive residual electron densities close to the Tl2 atom. The latter is severely underbonded, with a very low bond-valence sum (BVS) of only 0.54 valence units (v.u.) (calculated after Gagné & Hawthorne, 2015). The average Tl2—O bond length (Table 3) of 3.321 Å is considerably larger than the longest average Tl—O bond length of 3.304 Å described in the latest review paper (Gagné & Hawthorne, 2018), but still shorter than the excessively long average Tl—O bond length found in the related compound TlGa2As(HAsO4)6 (3.439 Å, Schwendtner & Kolitsch, 2018b ). The electron-density distribution is well fitted for the Tl1 atom, which has a BVS of 0.74 v.u. and an average Tl1—O bond length of 3.261 Å, which is also significantly longer than the reported average of 3.195 Å (Gagné & Hawthorne, 2018). In contrast, the two Al atoms are considerably overbonded (3.05 and 3.14 v.u. for Al1 and Al2, respectively) and average Al—O bond lengths of 1.898 and 1.887 Å are slightly shorter than the reported average of 1.903 Å (Gagné & Hawthorne, 2018), but well within the general range of Al—O bond lengths. The protonated AsO4 group shows a fairly typical configuration with slightly above average As—O bond lengths and a BVS of 4.97 v.u. for the As atom. As expected from the strong hydrogen bond [2.584 (5) Å, Table 2] the As—O bond to the donor O3 atom is considerably elongated (Table 3).

Table 3. Selected bond lengths (Å) for TlAl(HAsO4)2 .

Tl1—Tl1i 0.28 (3) Tl2—O4xi 3.516 (3)
Tl1—O3 3.085 (8) Tl2—O3xii 3.545 (4)
Tl1—O3ii 3.085 (8) Tl2—O3xiii 3.545 (4)
Tl1—O3iii 3.136 (5) Tl2—O3xiv 3.545 (4)
Tl1—O3i 3.136 (5) Al1—O2xv 1.895 (4)
Tl1—O2iii 3.233 (13) Al1—O2v 1.895 (4)
Tl1—O2i 3.233 (13) Al1—O2xvi 1.895 (4)
Tl1—O3iv 3.261 (12) Al1—O4xvii 1.901 (4)
Tl1—O3v 3.261 (12) Al1—O4i 1.901 (4)
Tl1—O2ii 3.351 (4) Al1—O4xviii 1.901 (4)
Tl1—O2 3.351 (4) Al2—O1viii 1.887 (4)
Tl1—O2v 3.501 (15) Al2—O1xiv 1.887 (4)
Tl1—O2iv 3.501 (15) Al2—O1xix 1.887 (4)
Tl2—O3i 2.813 (4) Al2—O1i 1.887 (4)
Tl2—O3v 2.813 (4) Al2—O1xviii 1.887 (4)
Tl2—O3 2.813 (4) Al2—O1xvii 1.887 (4)
Tl2—O1vi 3.410 (4) As—O1xx 1.661 (3)
Tl2—O1vii 3.410 (4) As—O2 1.674 (3)
Tl2—O1viii 3.410 (4) As—O4ii 1.679 (3)
Tl2—O4ix 3.516 (3) As—O3 1.746 (4)
Tl2—O4x 3.516 (3)    

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic; (x) Inline graphic; (xi) Inline graphic; (xii) Inline graphic; (xiii) Inline graphic; (xiv) Inline graphic; (xv) Inline graphic; (xvi) Inline graphic; (xvii) Inline graphic; (xviii) Inline graphic; (xix) Inline graphic; (xx) Inline graphic.

For (NH4)Ga(HAsO4)2, the bond-valence sum values for the M 3+ cations and As are quite similar (Table 4), with overbonded Ga3+ (BVS 3.10 and 3.15 v.u., respectively) and numbers for As that are close to the expected values (BVS 5.03 v.u., average bond length of 1.686 Å). The NH4 + cations (average N⋯O = 3.268 Å for N1 and 3.336 Å for N2) seem to fill the M +-hosting voids much better, and the BVSs (calculated after García-Rodríguez et al., 2000) of 0.74 and 1.03 v.u. for N1 and N2, respectively, are closer to ideal values, although N1 is underbonded.

Table 4. Selected bond lengths (Å) for (NH4)Ga(HAsO4).

N1—O3 3.173 (3) N2—O4xi 3.493 (5)
N1—O3i 3.173 (3) N2—O3xii 3.557 (4)
N1—O3ii 3.173 (3) N2—O3xiii 3.557 (4)
N1—O3iii 3.173 (3) N2—O3xiv 3.557 (4)
N1—O3iv 3.173 (3) Ga1—O2xv 1.9619 (16)
N1—O3v 3.173 (3) Ga1—O2iii 1.9619 (17)
N1—O2 3.3657 (18) Ga1—O2xvi 1.9619 (17)
N1—O2ii 3.3657 (18) Ga1—O4v 1.9666 (17)
N1—O2iv 3.3657 (18) Ga1—O4xvii 1.9666 (17)
N1—O2iii 3.3657 (18) Ga1—O4xviii 1.9667 (16)
N1—O2i 3.3657 (17) Ga2—O1viii 1.9588 (18)
N1—O2v 3.3657 (17) Ga2—O1xiv 1.9588 (19)
N2—O3v 2.918 (4) Ga2—O1xix 1.9588 (18)
N2—O3iii 2.918 (4) Ga2—O1v 1.9589 (18)
N2—O3 2.918 (4) Ga2—O1xviii 1.9589 (19)
N2—O1vi 3.375 (3) Ga2—O1xvii 1.9589 (18)
N2—O1vii 3.375 (3) As—O1xx 1.6555 (18)
N2—O1viii 3.375 (3) As—O2 1.6700 (16)
N2—O4ix 3.493 (5) As—O4ii 1.6783 (17)
N2—O4x 3.493 (5) As—O3 1.740 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic; (x) Inline graphic; (xi) Inline graphic; (xii) Inline graphic; (xiii) Inline graphic; (xiv) Inline graphic; (xv) Inline graphic; (xvi) Inline graphic; (xvii) Inline graphic; (xviii) Inline graphic; (xix) Inline graphic; (xx) Inline graphic.

Synthesis and crystallization  

The compounds were grown by hydro­thermal synthesis at 493 K (autogeneous pressure, slow furnace cooling) using Teflon-lined stainless steel autoclaves with an approximate filling volume of 2 cm3. Reagent-grade NH4OH, Tl2CO3, Ga2O3, Al2O3 and H3AsO4·0.5H2O were used as starting reagents in approximate volume ratios of M +:M 3+:As of 1:1:3 of the respective M + M 3+ compound for both synthesis batches. For TlAl(HAsO4)2, the vessels were filled with distilled water to about 70% of their inner volumes, which led to initial and final pH values of 1 and 0.5, respectively, and the synthesis was allowed to proceed at 493 K for 9 d. (NH4)Ga(HAsO4)2 was grown over a period of 7 d and the initial and final pH values were 3 and 1, respectively. The reaction products were washed thoroughly with distilled water, filtered, and dried at room temperature. (NH4)Ga(HAsO4)2 formed large colourless pseudo-octa­hedral crystals (Fig. 3), while TlAl(HAsO4)2 formed small pseudo-hexa­gonal platelets. Both compounds are stable in air.

A measured X-ray powder diffraction pattern of (NH4)Ga(HAsO4)2 was deposited at the Inter­national Centre for Diffraction Data under PDF number 00-059-0055 (Wohlschlaeger et al., 2007).

Semiqu­anti­tative SEM–EDX analysis (15 kV) of carbon-coated, horizontally oriented crystals of (NH4)Ga(HAsO4)2 were undertaken to discriminate between H3O+ and NH4 +. They confirmed the suspected formula and revealed no impurities.

Refinement  

Crystal data, data collection, and structure refinement details are summarized in Table 5.

Table 5. Experimental details.

  (NH4)Ga(HAsO4)2 TlAl(HAsO4)2
Crystal data
M r 367.62 511.21
Crystal system, space group Trigonal, R Inline graphic c:H Trigonal, R Inline graphic c:H
Temperature (K) 293 293
a, c (Å) 8.380 (1), 53.811 (11) 8.290 (1), 52.940 (11)
V3) 3272.6 (10) 3150.8 (10)
Z 18 18
Radiation type Mo Kα Mo Kα
μ (mm−1) 12.83 32.58
Crystal size (mm) 0.08 × 0.07 × 0.03 0.08 × 0.07 × 0.03
 
Data collection
Diffractometer Nonius KappaCCD single-crystal four-circle diffractometer Nonius KappaCCD single-crystal four-circle
Absorption correction Multi-scan (HKL SCALEPACK; Otwinowski et al., 2003) Multi-scan (HKL SCALEPACK; Otwinowski et al., 2003)
T min, T max 0.427, 0.700 0.180, 0.441
No. of measured, independent and observed [I > 2σ(I)] reflections 4834, 1326, 1156 2478, 698, 685
R int 0.024 0.022
(sin θ/λ)max−1) 0.757 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.022, 0.055, 1.07 0.022, 0.058, 1.21
No. of reflections 1326 698
No. of parameters 61 69
No. of restraints 1 2
H-atom treatment All H-atom parameters refined All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.75, −0.95 0.82, −1.98

Computer programs: COLLECT (Nonius, 2003), HKL DENZO and SCALEPACK (Otwinowski et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL2016 (Sheldrick, 2015), DIAMOND (Brandenburg, 2005) and publCIF (Westrip, 2010).

For the refinement of both compounds, the coordinates of RbFe(HPO4)2 (Lii & Wu, 1994) were used for the initial refinement steps. The hydrogen atoms were then located in difference-Fourier maps and added to the models. In both compounds O—H bonds were restrained to 0.9 ± 0.04 Å. In (NH4)Ga(HAsO4)2, several electron-density peaks between 0.4 and 0.75 e Å−3 were recognizable that could be attributed to the H atoms of the NH4 + cation. These peaks are located at the following coordinates for the N1 atom: 0.0170, 0.1329, 0.7450; 0.0641, 0.0560, 0.7414 and −0.0910, 0.0000, 0.7500. For the N2 atom, the coordinates are: 0.0478, −0.0330, 0.6635; −0.0655, −0.1106, 0.6786; 0.1301, 0.0094, 0.6695 and −0.0521, −0.0657, 0.6513. However, despite the use of restraints, no sensible coordination geometry for the H atoms around the N atoms could be found. Therefore, they were omitted from the model. As a result of the fact that there are 12 possible N—H⋯O bonds for each N atom, with only two symmetry-equivalent positions for N1 and four for N2, it seems reasonable to assume that the H-atom positions around the N atoms are, in both cases, highly disordered. The final residual electron density in (NH4)Ga(HAsO4)2 is < 1e Å−3.

The refinement of TlAl(HAsO4)2 revealed a considerable residual electron-density peak of 2.2 e Å−3 1.28 Å away from As and 1.61 Å away from the O1 site. The corresponding position can be generated by a mirror plane in (110) and therefore could be an alternative flipped As position (sharing the same O1 atom). Since the inclusion of the alternative position led to a considerable drop in R 1 and weighting parameters and the highest residual electron density dropped to < 1 e Å−3, this position was kept in the model. The occupancy of the alternative position AsB (Fig. 1 b, 2b) refined to only 2.1%, which makes it impossible to locate the alternative O ligand positions that should comprise the coordination sphere of the AsB position. For the final refinement, the displacement parameters of the AsB position were restrained to be the same as for the main As position and the sum of As was restrained to give a total occupancy of 1.00. We note that a similar alternative position was also found for isotypic CsIn(HAsO4)2 (Schwendtner & Kolitsch, 2017b ).

There was also considerable residual electron density of ±2 e Å −3 close to the two Tl positions, similar to what was encountered in the structurally related TlGa2As(HAsO4)6 (Schwendtner & Kolitsch, 2018d ). We tried a similar approach that had worked well for the aforementioned compound, viz. to remove the Tl atoms from their ideal, highly symmetrical positions in this structure type. We obtained a better refinement with a slightly off-centre position for Tl1, in line with a slight disorder (probably static), possibly in part or in whole due to the stereochemical activity of the lone electron pair on the Tl+ cations. So, although the Tl1 site is slightly offset from its ideal position (0, 0, 3/4), we unfortunately did not manage to get rid of the negative residual electron density of about −2 e Å−3 next to Tl2. The most positive residual electron density peak, however, dropped to < 1 e Å−3.

Supplementary Material

Crystal structure: contains datablock(s) NH4GaHAsO42, TlAlHAsO42. DOI: 10.1107/S2056989018013567/pk2608sup1.cif

e-74-01504-sup1.cif (400.5KB, cif)

Structure factors: contains datablock(s) NH4GaHAsO42. DOI: 10.1107/S2056989018013567/pk2608NH4GaHAsO42sup2.hkl

Structure factors: contains datablock(s) TlAlHAsO42. DOI: 10.1107/S2056989018013567/pk2608TlAlHAsO42sup3.hkl

CCDC references: 1869299, 1869298

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Ammonium gallium bis[hydrogen arsenate(V)] (NH4GaHAsO42). Crystal data

(NH4)Ga(HAsO4)2 Dx = 3.358 Mg m3
Mr = 367.62 Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:H Cell parameters from 2653 reflections
a = 8.380 (1) Å θ = 2.9–32.5°
c = 53.811 (11) Å µ = 12.83 mm1
V = 3272.6 (10) Å3 T = 293 K
Z = 18 Small pseudo-octahedral platelets, colourless
F(000) = 3132 0.08 × 0.07 × 0.03 mm

Ammonium gallium bis[hydrogen arsenate(V)] (NH4GaHAsO42). Data collection

Nonius KappaCCD single-crystal four-circle diffractometer 1156 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.024
φ and ω scans θmax = 32.5°, θmin = 2.9°
Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski et al., 2003) h = −12→12
Tmin = 0.427, Tmax = 0.700 k = −10→10
4834 measured reflections l = −80→81
1326 independent reflections

Ammonium gallium bis[hydrogen arsenate(V)] (NH4GaHAsO42). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 All H-atom parameters refined
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0273P)2 + 16.8283P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.003
1326 reflections Δρmax = 0.75 e Å3
61 parameters Δρmin = −0.95 e Å3
1 restraint Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00016 (3)

Ammonium gallium bis[hydrogen arsenate(V)] (NH4GaHAsO42). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Ammonium gallium bis[hydrogen arsenate(V)] (NH4GaHAsO42). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.000000 0.000000 0.750000 0.051 (2)
N2 0.000000 0.000000 0.66731 (10) 0.0487 (15)
Ga1 0.333333 0.666667 0.75382 (2) 0.00954 (10)
Ga2 0.333333 0.666667 0.666667 0.01164 (13)
As −0.42915 (3) −0.39386 (3) 0.71282 (2) 0.01072 (8)
O1 0.4557 (3) −0.4378 (3) 0.68635 (3) 0.0218 (4)
O2 −0.4457 (2) −0.2535 (2) 0.73337 (3) 0.0133 (3)
O3 −0.1958 (3) −0.2785 (3) 0.70541 (4) 0.0243 (4)
O4 0.4778 (2) −0.1224 (2) 0.77594 (3) 0.0127 (3)
H3 −0.161 (8) −0.353 (6) 0.7114 (9) 0.075 (18)*

Ammonium gallium bis[hydrogen arsenate(V)] (NH4GaHAsO42). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.062 (4) 0.062 (4) 0.029 (4) 0.0311 (18) 0.000 0.000
N2 0.060 (2) 0.060 (2) 0.026 (2) 0.0300 (12) 0.000 0.000
Ga1 0.01025 (13) 0.01025 (13) 0.00811 (19) 0.00513 (6) 0.000 0.000
Ga2 0.01394 (18) 0.01394 (18) 0.0070 (2) 0.00697 (9) 0.000 0.000
As 0.01365 (12) 0.01158 (12) 0.00927 (12) 0.00807 (9) 0.00172 (8) 0.00141 (7)
O1 0.0368 (11) 0.0281 (10) 0.0101 (7) 0.0234 (9) −0.0049 (7) −0.0010 (7)
O2 0.0137 (7) 0.0121 (7) 0.0135 (7) 0.0061 (6) 0.0030 (6) −0.0014 (6)
O3 0.0192 (9) 0.0220 (9) 0.0362 (12) 0.0137 (8) 0.0137 (8) 0.0126 (8)
O4 0.0136 (7) 0.0108 (7) 0.0153 (7) 0.0073 (6) −0.0026 (6) −0.0047 (6)

Ammonium gallium bis[hydrogen arsenate(V)] (NH4GaHAsO42). Geometric parameters (Å, º)

N1—O3 3.173 (3) N2—O3xii 3.557 (4)
N1—O3i 3.173 (3) N2—O3xiii 3.557 (4)
N1—O3ii 3.173 (3) N2—O3xiv 3.557 (4)
N1—O3iii 3.173 (3) Ga1—O2xv 1.9619 (16)
N1—O3iv 3.173 (3) Ga1—O2iii 1.9619 (17)
N1—O3v 3.173 (3) Ga1—O2xvi 1.9619 (17)
N1—O2 3.3657 (18) Ga1—O4v 1.9666 (17)
N1—O2ii 3.3657 (18) Ga1—O4xvii 1.9666 (17)
N1—O2iv 3.3657 (18) Ga1—O4xviii 1.9667 (16)
N1—O2iii 3.3657 (18) Ga2—O1viii 1.9588 (18)
N1—O2i 3.3657 (17) Ga2—O1xiv 1.9588 (19)
N1—O2v 3.3657 (17) Ga2—O1xix 1.9588 (18)
N2—O3v 2.918 (4) Ga2—O1v 1.9589 (18)
N2—O3iii 2.918 (4) Ga2—O1xviii 1.9589 (19)
N2—O3 2.918 (4) Ga2—O1xvii 1.9589 (18)
N2—O1vi 3.375 (3) As—O1xx 1.6555 (18)
N2—O1vii 3.375 (3) As—O2 1.6700 (16)
N2—O1viii 3.375 (3) As—O4ii 1.6783 (17)
N2—O4ix 3.493 (5) As—O3 1.740 (2)
N2—O4x 3.493 (5) O3—H3 0.87 (3)
N2—O4xi 3.493 (5)
O3—N1—O3i 162.83 (7) O2xv—Ga1—N1 119.85 (5)
O3—N1—O3ii 123.01 (7) O2iii—Ga1—N1 32.80 (5)
O3i—N1—O3ii 69.03 (6) O2xvi—Ga1—N1 105.75 (5)
O3—N1—O3iii 69.03 (6) O4v—Ga1—N1 77.33 (5)
O3i—N1—O3iii 102.44 (7) O4xvii—Ga1—N1 143.46 (5)
O3ii—N1—O3iii 162.83 (8) O4xviii—Ga1—N1 59.54 (5)
O3—N1—O3iv 102.44 (7) N2xxi—Ga1—N1 92.432 (5)
O3i—N1—O3iv 69.03 (6) N1xvii—Ga1—N1 119.821 (1)
O3ii—N1—O3iv 69.03 (6) O2xv—Ga1—N1xvi 105.75 (5)
O3iii—N1—O3iv 123.01 (7) O2iii—Ga1—N1xvi 119.85 (5)
O3—N1—O3v 69.03 (6) O2xvi—Ga1—N1xvi 32.80 (5)
O3i—N1—O3v 123.01 (8) O4v—Ga1—N1xvi 143.46 (5)
O3ii—N1—O3v 102.44 (7) O4xvii—Ga1—N1xvi 59.54 (5)
O3iii—N1—O3v 69.03 (6) O4xviii—Ga1—N1xvi 77.33 (5)
O3iv—N1—O3v 162.83 (7) N2xxi—Ga1—N1xvi 92.432 (5)
O3—N1—O2 48.11 (4) N1xvii—Ga1—N1xvi 119.821 (1)
O3i—N1—O2 115.51 (5) N1—Ga1—N1xvi 119.821 (1)
O3ii—N1—O2 126.51 (5) O1viii—Ga2—O1xiv 93.53 (7)
O3iii—N1—O2 70.41 (5) O1viii—Ga2—O1xix 93.53 (7)
O3iv—N1—O2 65.01 (5) O1xiv—Ga2—O1xix 93.53 (7)
O3v—N1—O2 113.56 (5) O1viii—Ga2—O1v 180.0
O3—N1—O2ii 126.52 (5) O1xiv—Ga2—O1v 86.47 (7)
O3i—N1—O2ii 70.41 (5) O1xix—Ga2—O1v 86.47 (7)
O3ii—N1—O2ii 48.11 (5) O1viii—Ga2—O1xviii 86.47 (7)
O3iii—N1—O2ii 115.51 (5) O1xiv—Ga2—O1xviii 180.0
O3iv—N1—O2ii 113.56 (5) O1xix—Ga2—O1xviii 86.47 (7)
O3v—N1—O2ii 65.01 (5) O1v—Ga2—O1xviii 93.53 (7)
O2—N1—O2ii 171.26 (6) O1viii—Ga2—O1xvii 86.47 (7)
O3—N1—O2iv 65.01 (5) O1xiv—Ga2—O1xvii 86.47 (7)
O3i—N1—O2iv 113.56 (5) O1xix—Ga2—O1xvii 180.0
O3ii—N1—O2iv 70.41 (5) O1v—Ga2—O1xvii 93.53 (7)
O3iii—N1—O2iv 126.51 (5) O1xviii—Ga2—O1xvii 93.53 (7)
O3iv—N1—O2iv 48.11 (4) O1viii—Ga2—N2xix 62.79 (8)
O3v—N1—O2iv 115.51 (5) O1xiv—Ga2—N2xix 67.00 (7)
O2—N1—O2iv 59.00 (6) O1xix—Ga2—N2xix 146.77 (8)
O2ii—N1—O2iv 113.20 (2) O1v—Ga2—N2xix 117.21 (8)
O3—N1—O2iii 113.56 (5) O1xviii—Ga2—N2xix 113.00 (7)
O3i—N1—O2iii 65.01 (5) O1xvii—Ga2—N2xix 33.23 (8)
O3ii—N1—O2iii 115.51 (5) O1viii—Ga2—N2xvii 117.21 (8)
O3iii—N1—O2iii 48.11 (5) O1xiv—Ga2—N2xvii 113.00 (7)
O3iv—N1—O2iii 126.51 (5) O1xix—Ga2—N2xvii 33.23 (8)
O3v—N1—O2iii 70.41 (5) O1v—Ga2—N2xvii 62.79 (8)
O2—N1—O2iii 113.20 (2) O1xviii—Ga2—N2xvii 66.99 (7)
O2ii—N1—O2iii 74.86 (6) O1xvii—Ga2—N2xvii 146.77 (8)
O2iv—N1—O2iii 171.26 (6) N2xix—Ga2—N2xvii 180.0
O3—N1—O2i 115.51 (5) O1viii—Ga2—N2 33.23 (8)
O3i—N1—O2i 48.11 (4) O1xiv—Ga2—N2 117.21 (8)
O3ii—N1—O2i 113.56 (5) O1xix—Ga2—N2 113.01 (8)
O3iii—N1—O2i 65.01 (5) O1v—Ga2—N2 146.77 (8)
O3iv—N1—O2i 70.41 (5) O1xviii—Ga2—N2 62.79 (8)
O3v—N1—O2i 126.51 (5) O1xvii—Ga2—N2 67.00 (8)
O2—N1—O2i 74.86 (6) N2xix—Ga2—N2 60.005 (2)
O2ii—N1—O2i 113.20 (2) N2xvii—Ga2—N2 119.995 (2)
O2iv—N1—O2i 113.20 (2) O1viii—Ga2—N2xvi 113.01 (7)
O2iii—N1—O2i 59.00 (6) O1xiv—Ga2—N2xvi 33.23 (8)
O3—N1—O2v 70.41 (5) O1xix—Ga2—N2xvi 117.21 (8)
O3i—N1—O2v 126.51 (5) O1v—Ga2—N2xvi 66.99 (7)
O3ii—N1—O2v 65.01 (5) O1xviii—Ga2—N2xvi 146.77 (8)
O3iii—N1—O2v 113.56 (5) O1xvii—Ga2—N2xvi 62.79 (8)
O3iv—N1—O2v 115.51 (5) N2xix—Ga2—N2xvi 60.005 (2)
O3v—N1—O2v 48.11 (4) N2xvii—Ga2—N2xvi 119.995 (2)
O2—N1—O2v 113.20 (2) N2—Ga2—N2xvi 119.995 (2)
O2ii—N1—O2v 59.00 (6) O1viii—Ga2—N2xxii 66.99 (7)
O2iv—N1—O2v 74.86 (6) O1xiv—Ga2—N2xxii 146.77 (8)
O2iii—N1—O2v 113.20 (2) O1xix—Ga2—N2xxii 62.79 (8)
O2i—N1—O2v 171.26 (6) O1v—Ga2—N2xxii 113.00 (7)
O3v—N2—O3iii 76.09 (13) O1xviii—Ga2—N2xxii 33.23 (8)
O3v—N2—O3 76.08 (13) O1xvii—Ga2—N2xxii 117.21 (8)
O3iii—N2—O3 76.08 (13) N2xix—Ga2—N2xxii 119.995 (2)
O3v—N2—O1vi 77.21 (6) N2xvii—Ga2—N2xxii 60.005 (2)
O3iii—N2—O1vi 152.44 (16) N2—Ga2—N2xxii 60.005 (2)
O3—N2—O1vi 91.02 (6) N2xvi—Ga2—N2xxii 180.0
O3v—N2—O1vii 152.44 (16) O1viii—Ga2—N2xxiii 146.77 (8)
O3iii—N2—O1vii 91.02 (6) O1xiv—Ga2—N2xxiii 62.79 (8)
O3—N2—O1vii 77.21 (6) O1xix—Ga2—N2xxiii 66.99 (8)
O1vi—N2—O1vii 110.03 (9) O1v—Ga2—N2xxiii 33.23 (8)
O3v—N2—O1viii 91.02 (6) O1xviii—Ga2—N2xxiii 117.21 (8)
O3iii—N2—O1viii 77.21 (6) O1xvii—Ga2—N2xxiii 113.00 (8)
O3—N2—O1viii 152.44 (16) N2xix—Ga2—N2xxiii 119.995 (2)
O1vi—N2—O1viii 110.03 (9) N2xvii—Ga2—N2xxiii 60.005 (2)
O1vii—N2—O1viii 110.03 (9) N2—Ga2—N2xxiii 180.0
O3v—N2—O4ix 111.48 (7) N2xvi—Ga2—N2xxiii 60.005 (2)
O3iii—N2—O4ix 156.43 (10) N2xxii—Ga2—N2xxiii 119.994 (2)
O3—N2—O4ix 126.99 (7) O1xx—As—O2 118.81 (9)
O1vi—N2—O4ix 45.41 (6) O1xx—As—O4ii 105.46 (9)
O1vii—N2—O4ix 90.09 (12) O2—As—O4ii 115.11 (9)
O1viii—N2—O4ix 80.30 (10) O1xx—As—O3 107.12 (11)
O3v—N2—O4x 156.43 (10) O2—As—O3 103.09 (10)
O3iii—N2—O4x 126.99 (7) O4ii—As—O3 106.35 (9)
O3—N2—O4x 111.48 (7) O1xx—As—N2xii 64.22 (8)
O1vi—N2—O4x 80.30 (10) O2—As—N2xii 173.25 (6)
O1vii—N2—O4x 45.41 (6) O4ii—As—N2xii 68.25 (8)
O1viii—N2—O4x 90.09 (12) O3—As—N2xii 70.17 (8)
O4ix—N2—O4x 45.67 (8) O1xx—As—N1 142.98 (8)
O3v—N2—O4xi 126.99 (7) O2—As—N1 56.21 (6)
O3iii—N2—O4xi 111.48 (7) O4ii—As—N1 108.99 (6)
O3—N2—O4xi 156.43 (10) O3—As—N1 50.09 (8)
O1vi—N2—O4xi 90.09 (12) N2xii—As—N1 117.48 (2)
O1vii—N2—O4xi 80.30 (10) O1xx—As—N2 81.32 (10)
O1viii—N2—O4xi 45.41 (6) O2—As—N2 99.84 (7)
O4ix—N2—O4xi 45.67 (8) O4ii—As—N2 133.25 (6)
O4x—N2—O4xi 45.67 (8) O3—As—N2 32.26 (8)
O3v—N2—O3xii 119.40 (8) N2xii—As—N2 74.310 (11)
O3iii—N2—O3xii 150.86 (8) N1—As—N2 65.36 (6)
O3—N2—O3xii 83.78 (6) O1xx—As—N1xxiv 88.02 (8)
O1vi—N2—O3xii 46.33 (6) O2—As—N1xxiv 94.12 (6)
O1vii—N2—O3xii 63.78 (7) O4ii—As—N1xxiv 40.77 (6)
O1viii—N2—O3xii 123.57 (16) O3—As—N1xxiv 147.10 (7)
O4ix—N2—O3xii 45.67 (7) N2xii—As—N1xxiv 92.00 (3)
O4x—N2—O3xii 43.44 (7) N1—As—N1xxiv 127.434 (12)
O4xi—N2—O3xii 80.03 (12) N2—As—N1xxiv 165.32 (5)
O3v—N2—O3xiii 83.77 (6) O1xx—As—N2xxiv 43.28 (9)
O3iii—N2—O3xiii 119.40 (8) O2—As—N2xxiv 127.15 (7)
O3—N2—O3xiii 150.86 (7) O4ii—As—N2xxiv 63.82 (7)
O1vi—N2—O3xiii 63.78 (7) O3—As—N2xxiv 128.79 (9)
O1vii—N2—O3xiii 123.57 (16) N2xii—As—N2xxiv 59.42 (2)
O1viii—N2—O3xiii 46.33 (6) N1—As—N2xxiv 172.65 (3)
O4ix—N2—O3xiii 43.44 (7) N2—As—N2xxiv 117.94 (11)
O4x—N2—O3xiii 80.03 (12) N1xxiv—As—N2xxiv 48.43 (5)
O4xi—N2—O3xiii 45.67 (7) Asxxv—O1—Ga2xxvi 137.99 (11)
O3xii—N2—O3xiii 88.14 (11) Asxxv—O1—N2vi 89.57 (11)
O3v—N2—O3xiv 150.86 (8) Ga2xxvi—O1—N2vi 128.22 (11)
O3iii—N2—O3xiv 83.77 (6) Asxxv—O1—N2xxv 76.36 (10)
O3—N2—O3xiv 119.40 (8) Ga2xxvi—O1—N2xxv 93.37 (8)
O1vi—N2—O3xiv 123.57 (16) N2vi—O1—N2xxv 76.98 (4)
O1vii—N2—O3xiv 46.33 (6) Asxxv—O1—N2xxvi 121.95 (10)
O1viii—N2—O3xiv 63.78 (7) Ga2xxvi—O1—N2xxvi 89.12 (8)
O4ix—N2—O3xiv 80.03 (12) N2vi—O1—N2xxvi 74.93 (4)
O4x—N2—O3xiv 45.67 (7) N2xxv—O1—N2xxvi 145.93 (11)
O4xi—N2—O3xiv 43.44 (7) As—O2—Ga1xxiv 121.85 (9)
O3xii—N2—O3xiv 88.14 (11) As—O2—N1 99.43 (7)
O3xiii—N2—O3xiv 88.14 (11) Ga1xxiv—O2—N1 128.79 (7)
O2xv—Ga1—O2iii 91.61 (7) As—O2—N2 60.17 (5)
O2xv—Ga1—O2xvi 91.61 (7) Ga1xxiv—O2—N2 163.08 (8)
O2iii—Ga1—O2xvi 91.61 (7) N1—O2—N2 63.03 (5)
O2xv—Ga1—O4v 88.91 (7) As—O3—N2 129.17 (11)
O2iii—Ga1—O4v 92.29 (8) As—O3—N1 105.03 (9)
O2xvi—Ga1—O4v 176.05 (7) N2—O3—N1 93.77 (9)
O2xv—Ga1—O4xvii 92.29 (8) As—O3—N2xii 82.43 (8)
O2iii—Ga1—O4xvii 176.05 (7) N2—O3—N2xii 96.22 (6)
O2xvi—Ga1—O4xvii 88.91 (7) N1—O3—N2xii 159.27 (9)
O4v—Ga1—O4xvii 87.16 (8) As—O3—H3 102 (4)
O2xv—Ga1—O4xviii 176.05 (7) N2—O3—H3 125 (4)
O2iii—Ga1—O4xviii 88.91 (7) N1—O3—H3 91 (3)
O2xvi—Ga1—O4xviii 92.29 (7) N2xii—O3—H3 69 (3)
O4v—Ga1—O4xviii 87.16 (8) Asii—O4—Ga1xxvi 130.02 (10)
O4xvii—Ga1—O4xviii 87.16 (8) Asii—O4—N2xxvii 85.25 (7)
O2xv—Ga1—N2xxi 124.12 (5) Ga1xxvi—O4—N2xxvii 100.62 (8)
O2iii—Ga1—N2xxi 124.12 (5) Asii—O4—N1xxv 124.11 (7)
O2xvi—Ga1—N2xxi 124.12 (5) Ga1xxvi—O4—N1xxv 96.68 (6)
O4v—Ga1—N2xxi 52.75 (5) N2xxvii—O4—N1xxv 118.40 (4)
O4xvii—Ga1—N2xxi 52.75 (5) Asii—O4—N1 51.75 (5)
O4xviii—Ga1—N2xxi 52.75 (5) Ga1xxvi—O4—N1 79.17 (5)
O2xv—Ga1—N1xvii 32.80 (5) N2xxvii—O4—N1 104.63 (4)
O2iii—Ga1—N1xvii 105.75 (5) N1xxv—O4—N1 136.70 (4)
O2xvi—Ga1—N1xvii 119.85 (5) Asii—O4—N2xxviii 98.66 (7)
O4v—Ga1—N1xvii 59.54 (5) Ga1xxvi—O4—N2xxviii 129.48 (6)
O4xvii—Ga1—N1xvii 77.33 (5) N2xxvii—O4—N2xxviii 66.70 (3)
O4xviii—Ga1—N1xvii 143.46 (5) N1xxv—O4—N2xxviii 57.01 (5)
N2xxi—Ga1—N1xvii 92.432 (5) N1—O4—N2xxviii 150.37 (5)

Symmetry codes: (i) xy, −y, −z+3/2; (ii) −x, −x+y, −z+3/2; (iii) −x+y, −x, z; (iv) y, x, −z+3/2; (v) −y, xy, z; (vi) −x+2/3, −y−2/3, −z+4/3; (vii) xy−4/3, x−2/3, −z+4/3; (viii) y+2/3, −x+y+4/3, −z+4/3; (ix) x−1/3, xy−2/3, z−1/6; (x) −y−1/3, −x+1/3, z−1/6; (xi) −x+y+2/3, y+1/3, z−1/6; (xii) −x−1/3, −y−2/3, −z+4/3; (xiii) y+2/3, −x+y+1/3, −z+4/3; (xiv) xy−1/3, x+1/3, −z+4/3; (xv) −y, xy+1, z; (xvi) x+1, y+1, z; (xvii) x, y+1, z; (xviii) −x+y+1, −x+1, z; (xix) −x+2/3, −y+1/3, −z+4/3; (xx) x−1, y, z; (xxi) −y+1/3, −x+2/3, z+1/6; (xxii) −x−1/3, −y+1/3, −z+4/3; (xxiii) −x+2/3, −y+4/3, −z+4/3; (xxiv) x−1, y−1, z; (xxv) x+1, y, z; (xxvi) x, y−1, z; (xxvii) −y+1/3, −x−1/3, z+1/6; (xxviii) y+1, x, −z+3/2.

Ammonium gallium bis[hydrogen arsenate(V)] (NH4GaHAsO42). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3···O4xxix 0.87 (3) 1.74 (3) 2.610 (3) 172 (6)

Symmetry code: (xxix) y, x−1, −z+3/2.

Thallium aluminium bis[hydrogen arsenate(V)] (TlAlHAsO42). Crystal data

TlAl(HAsO4)2 Dx = 4.849 Mg m3
Mr = 511.21 Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:H Cell parameters from 1004 reflections
a = 8.290 (1) Å θ = 2.9–30.0°
c = 52.940 (11) Å µ = 32.58 mm1
V = 3150.8 (10) Å3 T = 293 K
Z = 18 Small pseudo-octahedral platelets, colourless
F(000) = 4068 0.08 × 0.07 × 0.03 mm

Thallium aluminium bis[hydrogen arsenate(V)] (TlAlHAsO42). Data collection

Nonius KappaCCD single-crystal four-circle diffractometer 685 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.022
φ and ω scans θmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski et al., 2003) h = −10→10
Tmin = 0.180, Tmax = 0.441 k = −8→8
2478 measured reflections l = −64→64
698 independent reflections

Thallium aluminium bis[hydrogen arsenate(V)] (TlAlHAsO42). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 All H-atom parameters refined
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.023P)2 + 84.2452P] where P = (Fo2 + 2Fc2)/3
S = 1.21 (Δ/σ)max = 0.003
698 reflections Δρmax = 0.82 e Å3
69 parameters Δρmin = −1.98 e Å3
2 restraints Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00049 (3)

Thallium aluminium bis[hydrogen arsenate(V)] (TlAlHAsO42). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Thallium aluminium bis[hydrogen arsenate(V)] (TlAlHAsO42). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Tl1 0.000000 −0.019 (2) 0.750000 0.037 (2) 0.3333
Tl2 0.000000 0.000000 0.66885 (2) 0.0322 (2)
Al1 0.333333 0.666667 0.75439 (5) 0.0051 (5)
Al2 0.333333 0.666667 0.666667 0.0061 (7)
As −0.43603 (7) −0.39811 (7) 0.71289 (2) 0.00523 (19) 0.9790 (14)
AsB −0.596 (3) −0.559 (3) 0.7127 (4) 0.00523 (19) 0.0210 (14)
O1 0.4431 (5) −0.4433 (5) 0.68625 (6) 0.0120 (8)
O2 −0.4518 (5) −0.2576 (5) 0.73421 (6) 0.0080 (7)
O3 −0.2001 (5) −0.2792 (5) 0.70491 (8) 0.0144 (8)
O4 0.4791 (5) −0.1259 (5) 0.77571 (6) 0.0083 (7)
H3 −0.126 (8) −0.323 (8) 0.7074 (11) 0.010 (15)*

Thallium aluminium bis[hydrogen arsenate(V)] (TlAlHAsO42). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Tl1 0.0356 (8) 0.051 (5) 0.0190 (4) 0.0178 (4) −0.003 (2) −0.0015 (10)
Tl2 0.0411 (3) 0.0411 (3) 0.0145 (3) 0.02053 (13) 0.000 0.000
Al1 0.0069 (7) 0.0069 (7) 0.0014 (11) 0.0035 (4) 0.000 0.000
Al2 0.0085 (11) 0.0085 (11) 0.0014 (16) 0.0042 (5) 0.000 0.000
As 0.0081 (3) 0.0070 (3) 0.0019 (3) 0.0047 (2) 0.00051 (17) 0.00064 (17)
AsB 0.0081 (3) 0.0070 (3) 0.0019 (3) 0.0047 (2) 0.00051 (17) 0.00064 (17)
O1 0.0188 (19) 0.0166 (18) 0.0032 (15) 0.0109 (16) −0.0020 (14) −0.0009 (13)
O2 0.0077 (17) 0.0103 (16) 0.0045 (15) 0.0034 (14) 0.0021 (13) −0.0004 (13)
O3 0.0091 (18) 0.0168 (19) 0.0199 (19) 0.0085 (15) 0.0098 (15) 0.0102 (15)
O4 0.0119 (17) 0.0085 (17) 0.0049 (15) 0.0054 (14) −0.0011 (13) −0.0044 (13)

Thallium aluminium bis[hydrogen arsenate(V)] (TlAlHAsO42). Geometric parameters (Å, º)

Tl1—Tl1i 0.28 (3) Tl2—O3xiv 3.545 (4)
Tl1—Tl1ii 0.28 (3) Tl2—O3xv 3.545 (4)
Tl1—O3 3.085 (8) Tl2—AsBxiii 3.74 (2)
Tl1—O3iii 3.085 (8) Tl2—AsBxv 3.74 (2)
Tl1—O3iv 3.136 (5) Tl2—AsBxiv 3.74 (2)
Tl1—O3i 3.136 (5) Al1—O2xvi 1.895 (4)
Tl1—O2iv 3.233 (13) Al1—O2ii 1.895 (4)
Tl1—O2i 3.233 (13) Al1—O2xvii 1.895 (4)
Tl1—O3v 3.261 (12) Al1—O4xviii 1.901 (4)
Tl1—O3ii 3.261 (12) Al1—O4i 1.901 (4)
Tl1—O2iii 3.351 (4) Al1—O4xix 1.901 (4)
Tl1—O2 3.351 (4) Al2—O1ix 1.887 (4)
Tl1—O2ii 3.501 (15) Al2—O1xv 1.887 (4)
Tl1—O2v 3.501 (15) Al2—O1xx 1.887 (4)
Tl1—AsBvi 3.89 (3) Al2—O1i 1.887 (4)
Tl2—O3i 2.813 (4) Al2—O1xix 1.887 (4)
Tl2—O3ii 2.813 (4) Al2—O1xviii 1.887 (4)
Tl2—O3 2.813 (4) As—AsB 1.33 (2)
Tl2—O1vii 3.410 (4) As—O1xxi 1.661 (3)
Tl2—O1viii 3.410 (4) As—O2 1.674 (3)
Tl2—O1ix 3.410 (4) As—O4iii 1.679 (3)
Tl2—O4x 3.516 (3) As—O3 1.746 (4)
Tl2—O4xi 3.516 (3) AsB—O4iii 1.35 (2)
Tl2—O4xii 3.516 (3) AsB—O1xxi 1.64 (2)
Tl2—O3xiii 3.545 (4) AsB—O2xxii 2.12 (2)
Tl1i—Tl1—Tl1ii 60.00 (3) O1xix—Al2—O1xviii 92.71 (15)
Tl1i—Tl1—O3 127.2 (3) O1ix—Al2—Tl2xx 64.49 (12)
Tl1ii—Tl1—O3 98.0 (3) O1xv—Al2—Tl2xx 64.45 (11)
Tl1i—Tl1—O3iii 98.0 (3) O1xx—Al2—Tl2xx 145.30 (11)
Tl1ii—Tl1—O3iii 127.2 (2) O1i—Al2—Tl2xx 115.51 (12)
O3—Tl1—O3iii 129.1 (6) O1xix—Al2—Tl2xx 115.55 (11)
Tl1i—Tl1—O3iv 114.4 (3) O1xviii—Al2—Tl2xx 34.70 (11)
Tl1ii—Tl1—O3iv 77.0 (4) O1ix—Al2—Tl2xviii 115.51 (12)
O3—Tl1—O3iv 104.2 (3) O1xv—Al2—Tl2xviii 115.55 (11)
O3iii—Tl1—O3iv 70.24 (16) O1xx—Al2—Tl2xviii 34.70 (11)
Tl1i—Tl1—O3i 77.0 (3) O1i—Al2—Tl2xviii 64.49 (12)
Tl1ii—Tl1—O3i 114.4 (2) O1xix—Al2—Tl2xviii 64.45 (11)
O3—Tl1—O3i 70.24 (16) O1xviii—Al2—Tl2xviii 145.29 (11)
O3iii—Tl1—O3i 104.2 (3) Tl2xx—Al2—Tl2xviii 180.0
O3iv—Tl1—O3i 167.5 (6) O1ix—Al2—Tl2xvii 115.55 (11)
Tl1i—Tl1—O2iv 163.77 (15) O1xv—Al2—Tl2xvii 34.70 (11)
Tl1ii—Tl1—O2iv 112.8 (3) O1xx—Al2—Tl2xvii 115.51 (12)
O3—Tl1—O2iv 66.4 (3) O1i—Al2—Tl2xvii 64.45 (11)
O3iii—Tl1—O2iv 74.5 (3) O1xix—Al2—Tl2xvii 145.29 (11)
O3iv—Tl1—O2iv 49.68 (16) O1xviii—Al2—Tl2xvii 64.49 (12)
O3i—Tl1—O2iv 118.5 (5) Tl2xx—Al2—Tl2xvii 60.1
Tl1i—Tl1—O2i 112.84 (18) Tl2xviii—Al2—Tl2xvii 119.9
Tl1ii—Tl1—O2i 163.77 (10) O1ix—Al2—Tl2 34.70 (11)
O3—Tl1—O2i 74.5 (3) O1xv—Al2—Tl2 115.51 (12)
O3iii—Tl1—O2i 66.4 (3) O1xx—Al2—Tl2 115.55 (12)
O3iv—Tl1—O2i 118.5 (5) O1i—Al2—Tl2 145.29 (11)
O3i—Tl1—O2i 49.68 (16) O1xix—Al2—Tl2 64.49 (12)
O2iv—Tl1—O2i 77.8 (4) O1xviii—Al2—Tl2 64.45 (12)
Tl1i—Tl1—O3v 48.90 (18) Tl2xx—Al2—Tl2 60.1
Tl1ii—Tl1—O3v 61.10 (14) Tl2xviii—Al2—Tl2 119.942 (1)
O3—Tl1—O3v 158.5 (4) Tl2xvii—Al2—Tl2 119.9
O3iii—Tl1—O3v 68.60 (12) O1ix—Al2—Tl2xxiv 64.45 (11)
O3iv—Tl1—O3v 68.01 (16) O1xv—Al2—Tl2xxiv 145.30 (11)
O3i—Tl1—O3v 121.2 (3) O1xx—Al2—Tl2xxiv 64.49 (12)
O2iv—Tl1—O3v 115.03 (10) O1i—Al2—Tl2xxiv 115.55 (11)
O2i—Tl1—O3v 127.04 (11) O1xix—Al2—Tl2xxiv 34.70 (11)
Tl1i—Tl1—O3ii 61.1 (2) O1xviii—Al2—Tl2xxiv 115.51 (12)
Tl1ii—Tl1—O3ii 48.90 (16) Tl2xx—Al2—Tl2xxiv 119.9
O3—Tl1—O3ii 68.60 (12) Tl2xviii—Al2—Tl2xxiv 60.1
O3iii—Tl1—O3ii 158.5 (4) Tl2xvii—Al2—Tl2xxiv 180.0
O3iv—Tl1—O3ii 121.2 (3) Tl2—Al2—Tl2xxiv 60.1
O3i—Tl1—O3ii 68.01 (16) O1ix—Al2—Tl2xxv 145.30 (11)
O2iv—Tl1—O3ii 127.04 (11) O1xv—Al2—Tl2xxv 64.49 (12)
O2i—Tl1—O3ii 115.03 (10) O1xx—Al2—Tl2xxv 64.45 (12)
O3v—Tl1—O3ii 97.6 (5) O1i—Al2—Tl2xxv 34.70 (11)
Tl1i—Tl1—O2iii 62.8 (3) O1xix—Al2—Tl2xxv 115.51 (12)
Tl1ii—Tl1—O2iii 120.68 (19) O1xviii—Al2—Tl2xxv 115.55 (12)
O3—Tl1—O2iii 129.1 (3) Tl2xx—Al2—Tl2xxv 119.9
O3iii—Tl1—O2iii 48.95 (11) Tl2xviii—Al2—Tl2xxv 60.1
O3iv—Tl1—O2iii 115.18 (11) Tl2xvii—Al2—Tl2xxv 60.1
O3i—Tl1—O2iii 64.40 (9) Tl2—Al2—Tl2xxv 180.0
O2iv—Tl1—O2iii 117.7 (4) Tl2xxiv—Al2—Tl2xxv 119.9
O2i—Tl1—O2iii 59.15 (18) AsB—As—O1xxi 65.3 (9)
O3v—Tl1—O2iii 70.66 (15) AsB—As—O2 108.5 (9)
O3ii—Tl1—O2iii 111.8 (3) O1xxi—As—O2 118.77 (18)
Tl1i—Tl1—O2 120.7 (3) AsB—As—O4iii 51.8 (9)
Tl1ii—Tl1—O2 62.8 (4) O1xxi—As—O4iii 106.18 (18)
O3—Tl1—O2 48.94 (10) O2—As—O4iii 114.71 (17)
O3iii—Tl1—O2 129.1 (3) AsB—As—O3 147.0 (10)
O3iv—Tl1—O2 64.40 (9) O1xxi—As—O3 107.52 (19)
O3i—Tl1—O2 115.18 (11) O2—As—O3 103.03 (19)
O2iv—Tl1—O2 59.15 (17) O4iii—As—O3 105.63 (17)
O2i—Tl1—O2 117.7 (4) AsB—As—Tl2xiii 79.0 (9)
O3v—Tl1—O2 111.8 (3) O1xxi—As—Tl2xiii 65.02 (13)
O3ii—Tl1—O2 70.66 (15) O2—As—Tl2xiii 172.42 (13)
O2iii—Tl1—O2 176.5 (6) O4iii—As—Tl2xiii 68.63 (12)
Tl1i—Tl1—O2ii 14.95 (6) O3—As—Tl2xiii 69.39 (14)
Tl1ii—Tl1—O2ii 55.40 (8) AsB—As—Tl1ii 150.1 (9)
O3—Tl1—O2ii 112.4 (2) O1xxi—As—Tl1ii 142.74 (15)
O3iii—Tl1—O2ii 112.3 (2) O2—As—Tl1ii 54.3 (2)
O3iv—Tl1—O2ii 122.2 (4) O4iii—As—Tl1ii 109.18 (17)
O3i—Tl1—O2ii 70.1 (2) O3—As—Tl1ii 51.5 (2)
O2iv—Tl1—O2ii 168.2 (3) Tl2xiii—As—Tl1ii 118.4 (2)
O2i—Tl1—O2ii 113.58 (8) AsB—As—Tl1 149.5 (9)
O3v—Tl1—O2ii 61.5 (3) O1xxi—As—Tl1 144.6 (2)
O3ii—Tl1—O2ii 46.5 (2) O2—As—Tl1 57.8 (2)
O2iii—Tl1—O2ii 72.6 (2) O4iii—As—Tl1 106.1 (2)
O2—Tl1—O2ii 110.7 (4) O3—As—Tl1 49.19 (16)
Tl1i—Tl1—O2v 55.40 (16) Tl2xiii—As—Tl1 115.07 (16)
Tl1ii—Tl1—O2v 14.95 (6) Tl1ii—As—Tl1 4.1 (4)
O3—Tl1—O2v 112.3 (2) AsB—As—Tl1i 151.5 (9)
O3iii—Tl1—O2v 112.4 (2) O1xxi—As—Tl1i 142.12 (17)
O3iv—Tl1—O2v 70.1 (2) O2—As—Tl1i 56.77 (13)
O3i—Tl1—O2v 122.2 (4) O4iii—As—Tl1i 108.88 (15)
O2iv—Tl1—O2v 113.58 (7) O3—As—Tl1i 49.06 (16)
O2i—Tl1—O2v 168.2 (3) Tl2xiii—As—Tl1i 115.97 (5)
O3v—Tl1—O2v 46.5 (2) Tl1ii—As—Tl1i 2.5 (3)
O3ii—Tl1—O2v 61.5 (3) Tl1—As—Tl1i 2.8 (3)
O2iii—Tl1—O2v 110.7 (4) AsB—As—Tl2 145.5 (9)
O2—Tl1—O2v 72.6 (2) O1xxi—As—Tl2 83.71 (13)
O2ii—Tl1—O2v 55.3 (3) O2—As—Tl2 99.45 (13)
Tl1i—Tl1—AsBvi 135.2 (4) O4iii—As—Tl2 131.69 (12)
Tl1ii—Tl1—AsBvi 141.1 (4) O3—As—Tl2 30.29 (12)
O3—Tl1—AsBvi 43.1 (4) Tl2xiii—As—Tl2 74.034 (11)
O3iii—Tl1—AsBvi 89.5 (5) Tl1ii—As—Tl2 64.11 (8)
O3iv—Tl1—AsBvi 109.6 (5) Tl1—As—Tl2 63.95 (6)
O3i—Tl1—AsBvi 58.5 (4) Tl1i—As—Tl2 62.34 (12)
O2iv—Tl1—AsBvi 60.1 (4) AsB—As—Tl1xxvi 23.3 (9)
O2i—Tl1—AsBvi 33.0 (4) O1xxi—As—Tl1xxvi 87.98 (15)
O3v—Tl1—AsBvi 157.7 (4) O2—As—Tl1xxvi 93.41 (14)
O3ii—Tl1—AsBvi 101.9 (3) O4iii—As—Tl1xxvi 41.90 (12)
O2iii—Tl1—AsBvi 92.0 (4) O3—As—Tl1xxvi 147.50 (13)
O2—Tl1—AsBvi 85.0 (4) Tl2xiii—As—Tl1xxvi 93.30 (5)
O2ii—Tl1—AsBvi 127.8 (3) Tl1ii—As—Tl1xxvi 126.79 (12)
O2v—Tl1—AsBvi 155.4 (3) Tl1—As—Tl1xxvi 126.30 (17)
O3i—Tl2—O3ii 79.02 (13) Tl1i—As—Tl1xxvi 128.27 (4)
O3i—Tl2—O3 79.02 (13) Tl2—As—Tl1xxvi 166.91 (6)
O3ii—Tl2—O3 79.02 (13) AsB—As—Tl1xxii 22.1 (9)
O3i—Tl2—O1vii 75.43 (10) O1xxi—As—Tl1xxii 86.49 (17)
O3ii—Tl2—O1vii 154.16 (10) O2—As—Tl1xxii 93.06 (16)
O3—Tl2—O1vii 92.26 (10) O4iii—As—Tl1xxii 43.7 (2)
O3i—Tl2—O1viii 154.16 (10) O3—As—Tl1xxii 149.3 (2)
O3ii—Tl2—O1viii 92.26 (10) Tl2xiii—As—Tl1xxii 93.75 (10)
O3—Tl2—O1viii 75.43 (10) Tl1ii—As—Tl1xxii 127.913 (17)
O1vii—Tl2—O1viii 109.19 (6) Tl1—As—Tl1xxii 127.56 (3)
O3i—Tl2—O1ix 92.26 (10) Tl1i—As—Tl1xxii 129.46 (17)
O3ii—Tl2—O1ix 75.43 (10) Tl2—As—Tl1xxii 166.76 (4)
O3—Tl2—O1ix 154.15 (10) Tl1xxvi—As—Tl1xxii 1.9 (2)
O1vii—Tl2—O1ix 109.19 (6) As—AsB—O4iii 77.6 (12)
O1viii—Tl2—O1ix 109.19 (6) As—AsB—O1xxi 67.1 (10)
O3i—Tl2—O4x 110.02 (10) O4iii—AsB—O1xxi 126.4 (16)
O3ii—Tl2—O4x 153.52 (10) As—AsB—O2xxii 112.5 (13)
O3—Tl2—O4x 126.54 (10) O4iii—AsB—O2xxii 119.3 (13)
O1vii—Tl2—O4x 45.33 (8) O1xxi—AsB—O2xxii 111.1 (11)
O1viii—Tl2—O4x 88.61 (8) As—AsB—Tl2xiii 80.6 (10)
O1ix—Tl2—O4x 79.30 (8) O4iii—AsB—Tl2xiii 69.9 (9)
O3i—Tl2—O4xi 153.52 (10) O1xxi—AsB—Tl2xiii 65.6 (7)
O3ii—Tl2—O4xi 126.54 (10) O2xxii—AsB—Tl2xiii 164.8 (9)
O3—Tl2—O4xi 110.02 (11) As—AsB—Tl1xxvi 149.0 (12)
O1vii—Tl2—O4xi 79.30 (8) O4iii—AsB—Tl1xxvi 84.2 (10)
O1viii—Tl2—O4xi 45.33 (8) O1xxi—AsB—Tl1xxvi 142.5 (11)
O1ix—Tl2—O4xi 88.61 (8) O2xxii—AsB—Tl1xxvi 56.2 (5)
O4x—Tl2—O4xi 44.26 (9) Tl2xiii—AsB—Tl1xxvi 116.5 (6)
O3i—Tl2—O4xii 126.54 (11) As—AsB—Tl1xxii 150.8 (12)
O3ii—Tl2—O4xii 110.01 (10) O4iii—AsB—Tl1xxii 86.9 (10)
O3—Tl2—O4xii 153.52 (11) O1xxi—AsB—Tl1xxii 140.0 (11)
O1vii—Tl2—O4xii 88.61 (8) O2xxii—AsB—Tl1xxii 54.8 (5)
O1viii—Tl2—O4xii 79.30 (8) Tl2xiii—AsB—Tl1xxii 117.2 (6)
O1ix—Tl2—O4xii 45.33 (8) Tl1xxvi—AsB—Tl1xxii 2.7 (3)
O4x—Tl2—O4xii 44.26 (9) As—AsB—Tl1xxvii 150.4 (12)
O4xi—Tl2—O4xii 44.26 (9) O4iii—AsB—Tl1xxvii 83.6 (10)
O3i—Tl2—O3xiii 117.91 (14) O1xxi—AsB—Tl1xxvii 141.8 (11)
O3ii—Tl2—O3xiii 152.25 (13) O2xxii—AsB—Tl1xxvii 58.4 (6)
O3—Tl2—O3xiii 82.85 (11) Tl2xiii—AsB—Tl1xxvii 114.1 (6)
O1vii—Tl2—O3xiii 46.50 (9) Tl1xxvi—AsB—Tl1xxvii 2.4 (3)
O1viii—Tl2—O3xiii 62.74 (9) Tl1xxii—AsB—Tl1xxvii 3.9 (4)
O1ix—Tl2—O3xiii 122.31 (9) As—AsB—Tl2xxvii 146.6 (12)
O4x—Tl2—O3xiii 45.47 (8) O4iii—AsB—Tl2xxvii 112.1 (11)
O4xi—Tl2—O3xiii 42.94 (8) O1xxi—AsB—Tl2xxvii 82.8 (8)
O4xii—Tl2—O3xiii 78.63 (8) O2xxii—AsB—Tl2xxvii 91.1 (7)
O3i—Tl2—O3xiv 82.85 (11) Tl2xiii—AsB—Tl2xxvii 73.8 (4)
O3ii—Tl2—O3xiv 117.91 (14) Tl1xxvi—AsB—Tl2xxvii 64.0 (4)
O3—Tl2—O3xiv 152.25 (12) Tl1xxii—AsB—Tl2xxvii 62.3 (3)
O1vii—Tl2—O3xiv 62.74 (9) Tl1xxvii—AsB—Tl2xxvii 62.2 (3)
O1viii—Tl2—O3xiv 122.31 (9) As—AsB—Tl1ii 22.5 (7)
O1ix—Tl2—O3xiv 46.50 (9) O4iii—AsB—Tl1ii 66.6 (9)
O4x—Tl2—O3xiv 42.94 (9) O1xxi—AsB—Tl1ii 88.7 (8)
O4xi—Tl2—O3xiv 78.63 (8) O2xxii—AsB—Tl1ii 99.8 (7)
O4xii—Tl2—O3xiv 45.47 (8) Tl2xiii—AsB—Tl1ii 95.0 (5)
O3xiii—Tl2—O3xiv 87.33 (9) Tl1xxvi—AsB—Tl1ii 126.5 (5)
O3i—Tl2—O3xv 152.25 (13) Tl1xxii—AsB—Tl1ii 128.3 (5)
O3ii—Tl2—O3xv 82.85 (11) Tl1xxvii—AsB—Tl1ii 128.0 (5)
O3—Tl2—O3xv 117.91 (14) Tl2xxvii—AsB—Tl1ii 168.1 (5)
O1vii—Tl2—O3xv 122.31 (9) As—AsB—Tl1 22.9 (7)
O1viii—Tl2—O3xv 46.50 (9) O4iii—AsB—Tl1 63.7 (9)
O1ix—Tl2—O3xv 62.74 (9) O1xxi—AsB—Tl1 89.8 (9)
O4x—Tl2—O3xv 78.63 (8) O2xxii—AsB—Tl1 102.1 (7)
O4xi—Tl2—O3xv 45.47 (8) Tl2xiii—AsB—Tl1 92.8 (5)
O4xii—Tl2—O3xv 42.94 (8) Tl1xxvi—AsB—Tl1 126.1 (5)
O3xiii—Tl2—O3xv 87.33 (9) Tl1xxii—AsB—Tl1 128.1 (5)
O3xiv—Tl2—O3xv 87.33 (9) Tl1xxvii—AsB—Tl1 127.5 (5)
O3i—Tl2—AsBxiii 90.6 (3) Tl2xxvii—AsB—Tl1 166.5 (6)
O3ii—Tl2—AsBxiii 159.8 (4) Tl1ii—AsB—Tl1 3.1 (3)
O3—Tl2—AsBxiii 116.2 (4) As—AsB—Tl2 26.4 (7)
O1vii—Tl2—AsBxiii 25.9 (3) O4iii—AsB—Tl2 87.6 (10)
O1viii—Tl2—AsBxiii 104.1 (4) O1xxi—AsB—Tl2 44.9 (7)
O1ix—Tl2—AsBxiii 87.9 (4) O2xxii—AsB—Tl2 128.4 (8)
O4x—Tl2—AsBxiii 21.2 (3) Tl2xiii—AsB—Tl2 60.8 (3)
O4xi—Tl2—AsBxiii 63.0 (3) Tl1xxvi—AsB—Tl2 171.8 (6)
O4xii—Tl2—AsBxiii 62.7 (3) Tl1xxii—AsB—Tl2 174.5 (6)
O3xiii—Tl2—AsBxiii 47.7 (4) Tl1xxvii—AsB—Tl2 171.0 (6)
O3xiv—Tl2—AsBxiii 42.9 (4) Tl2xxvii—AsB—Tl2 120.2 (4)
O3xv—Tl2—AsBxiii 99.8 (3) Tl1ii—AsB—Tl2 48.6 (2)
O3i—Tl2—AsBxv 159.8 (4) Tl1—AsB—Tl2 48.5 (2)
O3ii—Tl2—AsBxv 116.2 (4) AsBxxviii—O1—Asxxviii 47.6 (8)
O3—Tl2—AsBxv 90.6 (4) AsBxxviii—O1—Al2xxix 138.8 (8)
O1vii—Tl2—AsBxv 87.9 (4) Asxxviii—O1—Al2xxix 137.7 (2)
O1viii—Tl2—AsBxv 25.9 (3) AsBxxviii—O1—Tl2vii 88.4 (8)
O1ix—Tl2—AsBxv 104.1 (3) Asxxviii—O1—Tl2vii 88.78 (15)
O4x—Tl2—AsBxv 62.7 (3) Al2xxix—O1—Tl2vii 126.91 (15)
O4xi—Tl2—AsBxv 21.2 (3) AsBxxviii—O1—Tl2xxix 75.1 (8)
O4xii—Tl2—AsBxv 63.0 (3) Asxxviii—O1—Tl2xxix 121.09 (16)
O3xiii—Tl2—AsBxv 42.9 (4) Al2xxix—O1—Tl2xxix 92.35 (12)
O3xiv—Tl2—AsBxv 99.8 (3) Tl2vii—O1—Tl2xxix 75.55 (7)
O3xv—Tl2—AsBxv 47.7 (4) AsBxxviii—O1—Tl2xxviii 119.6 (8)
AsBxiii—Tl2—AsBxv 78.5 (5) Asxxviii—O1—Tl2xxviii 73.85 (13)
O3i—Tl2—AsBxiv 116.2 (4) Al2xxix—O1—Tl2xxviii 92.31 (12)
O3ii—Tl2—AsBxiv 90.6 (4) Tl2vii—O1—Tl2xxviii 75.53 (7)
O3—Tl2—AsBxiv 159.8 (4) Tl2xxix—O1—Tl2xxviii 146.93 (9)
O1vii—Tl2—AsBxiv 104.1 (4) As—O2—Al1xxvii 122.5 (2)
O1viii—Tl2—AsBxiv 87.9 (4) As—O2—AsBxxx 104.8 (6)
O1ix—Tl2—AsBxiv 25.9 (3) Al1xxvii—O2—AsBxxx 102.5 (6)
O4x—Tl2—AsBxiv 63.0 (3) As—O2—Tl1ii 100.8 (2)
O4xi—Tl2—AsBxiv 62.7 (3) Al1xxvii—O2—Tl1ii 128.4 (2)
O4xii—Tl2—AsBxiv 21.2 (3) AsBxxx—O2—Tl1ii 90.8 (7)
O3xiii—Tl2—AsBxiv 99.8 (3) As—O2—Tl1 97.2 (3)
O3xiv—Tl2—AsBxiv 47.7 (4) Al1xxvii—O2—Tl1 130.04 (17)
O3xv—Tl2—AsBxiv 42.9 (4) AsBxxx—O2—Tl1 94.2 (7)
AsBxiii—Tl2—AsBxiv 78.5 (5) Tl1ii—O2—Tl1 4.4 (5)
AsBxv—Tl2—AsBxiv 78.5 (5) As—O2—Tl1i 99.66 (14)
O2xvi—Al1—O2ii 91.34 (17) Al1xxvii—O2—Tl1i 129.68 (16)
O2xvi—Al1—O2xvii 91.34 (17) AsBxxx—O2—Tl1i 90.6 (7)
O2ii—Al1—O2xvii 91.34 (17) Tl1ii—O2—Tl1i 1.27 (13)
O2xvi—Al1—O4xviii 92.20 (15) Tl1—O2—Tl1i 3.9 (4)
O2ii—Al1—O4xviii 176.43 (17) As—O2—Tl2 60.21 (10)
O2xvii—Al1—O4xviii 88.17 (15) Al1xxvii—O2—Tl2 163.54 (15)
O2xvi—Al1—O4i 88.17 (15) AsBxxx—O2—Tl2 62.4 (6)
O2ii—Al1—O4i 92.20 (16) Tl1ii—O2—Tl2 61.76 (9)
O2xvii—Al1—O4i 176.43 (18) Tl1—O2—Tl2 61.25 (6)
O4xviii—Al1—O4i 88.32 (17) Tl1i—O2—Tl2 60.58 (8)
O2xvi—Al1—O4xix 176.43 (17) As—O3—Tl2 131.46 (18)
O2ii—Al1—O4xix 88.16 (15) As—O3—Tl1 105.45 (17)
O2xvii—Al1—O4xix 92.20 (15) Tl2—O3—Tl1 93.5 (2)
O4xviii—Al1—O4xix 88.32 (17) As—O3—Tl1ii 102.7 (3)
O4i—Al1—O4xix 88.32 (17) Tl2—O3—Tl1ii 92.38 (13)
O2xvi—Al1—Tl2xxiii 124.31 (12) Tl1—O3—Tl1ii 5.0 (5)
O2ii—Al1—Tl2xxiii 124.31 (12) As—O3—Tl1i 107.1 (3)
O2xvii—Al1—Tl2xxiii 124.31 (12) Tl2—O3—Tl1i 89.8 (3)
O4xviii—Al1—Tl2xxiii 53.56 (12) Tl1—O3—Tl1i 3.9 (4)
O4i—Al1—Tl2xxiii 53.56 (12) Tl1ii—O3—Tl1i 4.5 (5)
O4xix—Al1—Tl2xxiii 53.56 (12) As—O3—Tl2xiii 83.17 (14)
O2xvi—Al1—Tl1xviii 32.98 (11) Tl2—O3—Tl2xiii 97.14 (11)
O2ii—Al1—Tl1xviii 104.20 (15) Tl1—O3—Tl2xiii 156.2 (3)
O2xvii—Al1—Tl1xviii 120.62 (14) Tl1ii—O3—Tl2xiii 161.0 (3)
O4xviii—Al1—Tl1xviii 79.07 (14) Tl1i—O3—Tl2xiii 158.83 (12)
O4i—Al1—Tl1xviii 57.99 (12) AsBiii—O4—Asiii 50.7 (10)
O4xix—Al1—Tl1xviii 143.97 (14) AsBiii—O4—Al1xxix 170.4 (10)
Tl2xxiii—Al1—Tl1xviii 92.86 (3) Asiii—O4—Al1xxix 130.5 (2)
O2xvi—Al1—Tl1i 120.61 (14) AsBiii—O4—Tl2xxxi 88.9 (9)
O2ii—Al1—Tl1i 32.98 (11) Asiii—O4—Tl2xxxi 84.96 (12)
O2xvii—Al1—Tl1i 104.20 (15) Al1xxix—O4—Tl2xxxi 100.65 (14)
O4xviii—Al1—Tl1i 143.97 (14) AsBiii—O4—Tl1xxxii 76.1 (10)
O4i—Al1—Tl1i 79.07 (14) Asiii—O4—Tl1xxxii 121.76 (16)
O4xix—Al1—Tl1i 57.99 (13) Al1xxix—O4—Tl1xxxii 98.16 (12)
Tl2xxiii—Al1—Tl1i 92.86 (3) Tl2xxxi—O4—Tl1xxxii 119.60 (14)
Tl1xviii—Al1—Tl1i 119.753 (11) AsBiii—O4—Tl1xxviii 77.7 (10)
O2xvi—Al1—Tl1xix 104.20 (16) Asiii—O4—Tl1xxviii 124.1 (3)
O2ii—Al1—Tl1xix 120.61 (14) Al1xxix—O4—Tl1xxviii 96.88 (19)
O2xvii—Al1—Tl1xix 32.98 (12) Tl2xxxi—O4—Tl1xxviii 117.56 (15)
O4xviii—Al1—Tl1xix 57.99 (13) Tl1xxxii—O4—Tl1xxviii 2.8 (3)
O4i—Al1—Tl1xix 143.97 (14) AsBiii—O4—Tl1xxxiii 74.5 (10)
O4xix—Al1—Tl1xix 79.07 (15) Asiii—O4—Tl1xxxiii 120.5 (2)
Tl2xxiii—Al1—Tl1xix 92.86 (4) Al1xxix—O4—Tl1xxxiii 99.8 (2)
Tl1xviii—Al1—Tl1xix 119.753 (7) Tl2xxxi—O4—Tl1xxxiii 118.95 (9)
Tl1i—Al1—Tl1xix 119.753 (6) Tl1xxxii—O4—Tl1xxxiii 1.61 (17)
O2xvi—Al1—Tl1xvi 32.35 (12) Tl1xxviii—O4—Tl1xxxiii 3.7 (4)
O2ii—Al1—Tl1xvi 106.6 (2) AsBiii—O4—Tl1 101.3 (10)
O2xvii—Al1—Tl1xvi 118.5 (2) Asiii—O4—Tl1 53.74 (18)
O4xviii—Al1—Tl1xvi 76.73 (19) Al1xxix—O4—Tl1 77.44 (19)
O4i—Al1—Tl1xvi 59.94 (18) Tl2xxxi—O4—Tl1 103.75 (9)
O4xix—Al1—Tl1xvi 144.77 (15) Tl1xxxii—O4—Tl1 136.34 (9)
Tl2xxiii—Al1—Tl1xvi 92.78 (3) Tl1xxviii—O4—Tl1 138.6 (2)
Tl1xviii—Al1—Tl1xvi 2.9 (3) Tl1xxxiii—O4—Tl1 136.76 (8)
Tl1i—Al1—Tl1xvi 122.7 (3) AsBiii—O4—Tl1i 98.2 (10)
Tl1xix—Al1—Tl1xvi 116.9 (3) Asiii—O4—Tl1i 51.25 (16)
O2xvi—Al1—Tl1ii 118.5 (2) Al1xxix—O4—Tl1i 80.3 (2)
O2ii—Al1—Tl1ii 32.35 (12) Tl2xxxi—O4—Tl1i 105.06 (14)
O2xvii—Al1—Tl1ii 106.6 (2) Tl1xxxii—O4—Tl1i 134.6 (3)
O4xviii—Al1—Tl1ii 144.77 (15) Tl1xxviii—O4—Tl1i 136.94 (8)
O4i—Al1—Tl1ii 76.7 (2) Tl1xxxiii—O4—Tl1i 134.9 (2)
O4xix—Al1—Tl1ii 59.94 (19) Tl1—O4—Tl1i 3.3 (4)
Tl2xxiii—Al1—Tl1ii 92.78 (3) AsBiii—O4—Tl2xxxiv 53.0 (10)
Tl1xviii—Al1—Tl1ii 116.9 (3) Asiii—O4—Tl2xxxiv 97.70 (13)
Tl1i—Al1—Tl1ii 2.9 (3) Al1xxix—O4—Tl2xxxiv 130.13 (14)
Tl1xix—Al1—Tl1ii 122.7 (3) Tl2xxxi—O4—Tl2xxxiv 67.31 (5)
Tl1xvi—Al1—Tl1ii 119.767 (7) Tl1xxxii—O4—Tl2xxxiv 56.91 (9)
O1ix—Al2—O1xv 92.72 (15) Tl1xxviii—O4—Tl2xxxiv 55.99 (5)
O1ix—Al2—O1xx 92.72 (15) Tl1xxxiii—O4—Tl2xxxiv 55.69 (6)
O1xv—Al2—O1xx 92.72 (15) Tl1—O4—Tl2xxxiv 151.34 (16)
O1ix—Al2—O1i 180.0 Tl1i—O4—Tl2xxxiv 148.95 (14)
O1xv—Al2—O1i 87.28 (15) AsBiii—O4—Tl1ii 99.9 (10)
O1xx—Al2—O1i 87.28 (15) Asiii—O4—Tl1ii 52.32 (10)
O1ix—Al2—O1xix 87.28 (15) Al1xxix—O4—Tl1ii 78.86 (11)
O1xv—Al2—O1xix 180.0 Tl2xxxi—O4—Tl1ii 103.45 (10)
O1xx—Al2—O1xix 87.28 (15) Tl1xxxii—O4—Tl1ii 136.45 (9)
O1i—Al2—O1xix 92.71 (15) Tl1xxviii—O4—Tl1ii 138.7 (2)
O1ix—Al2—O1xviii 87.28 (15) Tl1xxxiii—O4—Tl1ii 136.81 (8)
O1xv—Al2—O1xviii 87.28 (15) Tl1—O4—Tl1ii 1.42 (15)
O1xx—Al2—O1xviii 180.00 (17) Tl1i—O4—Tl1ii 2.3 (3)
O1i—Al2—O1xviii 92.71 (15) Tl2xxxiv—O4—Tl1ii 149.95 (8)

Symmetry codes: (i) −y, xy, z; (ii) −x+y, −x, z; (iii) −x, −x+y, −z+3/2; (iv) y, x, −z+3/2; (v) xy, −y, −z+3/2; (vi) −x+y, −x−1, z; (vii) −x+2/3, −y−2/3, −z+4/3; (viii) xy−4/3, x−2/3, −z+4/3; (ix) y+2/3, −x+y+4/3, −z+4/3; (x) x−1/3, xy−2/3, z−1/6; (xi) −y−1/3, −x+1/3, z−1/6; (xii) −x+y+2/3, y+1/3, z−1/6; (xiii) −x−1/3, −y−2/3, −z+4/3; (xiv) y+2/3, −x+y+1/3, −z+4/3; (xv) xy−1/3, x+1/3, −z+4/3; (xvi) −y, xy+1, z; (xvii) x+1, y+1, z; (xviii) x, y+1, z; (xix) −x+y+1, −x+1, z; (xx) −x+2/3, −y+1/3, −z+4/3; (xxi) x−1, y, z; (xxii) −x+y−1, −x−1, z; (xxiii) −y+1/3, −x+2/3, z+1/6; (xxiv) −x−1/3, −y+1/3, −z+4/3; (xxv) −x+2/3, −y+4/3, −z+4/3; (xxvi) −y−1, xy−1, z; (xxvii) x−1, y−1, z; (xxviii) x+1, y, z; (xxix) x, y−1, z; (xxx) −y−1, xy, z; (xxxi) −y+1/3, −x−1/3, z+1/6; (xxxii) −x+y+1, −x, z; (xxxiii) −y+1, xy, z; (xxxiv) y+1, x, −z+3/2.

Thallium aluminium bis[hydrogen arsenate(V)] (TlAlHAsO42). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3···O4xxxv 0.87 (4) 1.87 (5) 2.584 (5) 139 (6)

Symmetry code: (xxxv) y, x−1, −z+3/2.

Funding Statement

This work was funded by Doc fForte Fellowship of the Austrian Academy of Sciences to K. Schwendtner grant . Technische Universitat Wien grant .

References

  1. Brandenburg, K. (2005). DIAMOND. Bonn, Germany.
  2. Chouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017). Solid State Ionics, 301, 78–85.
  3. Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578. [DOI] [PMC free article] [PubMed]
  4. Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63–78.
  5. García-Rodríguez, L., Rute-Pérez, Á., Piñero, J. R. & González-Silgo, C. (2000). Acta Cryst. B56, 565–569. [DOI] [PubMed]
  6. Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799–1808.
  7. Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577–1580.
  8. Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, June 17–20, 1996, pp. 188–191. Cherry Hill, New Jersey. Fort Monmouth, NJ: US Army Research Laboratory.
  9. Nonius, B. V. (2003). COLLECT. Delft, The Netherlands.
  10. Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. [DOI] [PubMed]
  11. Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007). J. Solid State Chem. 180, 2942–2949.
  12. Ren, J., Ma, Z., He, C., Sa, R., Li, Q. & Wu, K. (2015). Comput. Mater. Sci. 106, 1–4.
  13. Schwendtner, K. (2006). J. Alloys Compd. 421, 57–63.
  14. Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria.
  15. Schwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i79–i83. [DOI] [PubMed]
  16. Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90–i93. [DOI] [PubMed]
  17. Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205–215. [DOI] [PubMed]
  18. Schwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17–i20. [DOI] [PubMed]
  19. Schwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399–409.
  20. Schwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600–608. [DOI] [PubMed]
  21. Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1580–1586. [DOI] [PMC free article] [PubMed]
  22. Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721–727. [DOI] [PubMed]
  23. Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. E74, 766–771. [DOI] [PMC free article] [PubMed]
  24. Schwendtner, K. & Kolitsch, U. (2018c). Acta Cryst. E74, 1244–1249. [DOI] [PMC free article] [PubMed]
  25. Schwendtner, K. & Kolitsch, U. (2018d). Acta Cryst. E74, 1163–1167. [DOI] [PMC free article] [PubMed]
  26. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  27. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  28. Sun, Y., Yang, Z., Hou, D. & Pan, S. (2017). RSC Adv. 7, 2804–2809.
  29. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  30. Wohlschlaeger, A., Lengauer, C. & Tillmanns, E. (2007). ICDD Grant-in-Aid. University of Vienna, Austria.
  31. Yakubovich, O. V. (1993). Kristallografiya, 38, 43–48.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) NH4GaHAsO42, TlAlHAsO42. DOI: 10.1107/S2056989018013567/pk2608sup1.cif

e-74-01504-sup1.cif (400.5KB, cif)

Structure factors: contains datablock(s) NH4GaHAsO42. DOI: 10.1107/S2056989018013567/pk2608NH4GaHAsO42sup2.hkl

Structure factors: contains datablock(s) TlAlHAsO42. DOI: 10.1107/S2056989018013567/pk2608TlAlHAsO42sup3.hkl

CCDC references: 1869299, 1869298

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES