Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Sep 28;74(Pt 10):1517–1520. doi: 10.1107/S205698901801335X

Crystal structure and Hirshfeld surface analysis and of 2-ammoniumylmeth­yl-1H-benzimidazol-3-ium chloride monohydrate

Pinar Sen a, Sevgi Kansiz b, Necmi Dege b, S Zeki Yildiz c, Galyna G Tsapyuk d,*
PMCID: PMC6176449  PMID: 30319814

In the crystal, the crystal packing is ordered via synergetic contributions from N—H⋯Cl, O—H⋯Cl and N—H⋯O hydrogen bonds, which together assemble the cations and anions into a three-dimensional framework.

Keywords: crystal structure, imidazol, ethanaminium, ethanaminium chloride, Hirshfeld surface

Abstract

The asymmetric unit of the title compound, C8H11N3 2+·2Cl·H2O, contains three organic cations, six chloride anions and three water mol­ecules of crystallization, which are connected by extensive hydrogen-bonding inter­actions into a three-dimensional supra­molecular architecture. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (37.4%), Cl⋯H/H⋯Cl (35.5%), C⋯H/H⋯C (9.5%) and C⋯C (6.9%) inter­actions.

Chemical context  

Heterocyclic compounds containing nitro­gen such as benzimidazoles and their derivatives have attracted attention because of their medicinal applications as anti­ulcer, anti­cancer, anti­fungal, anti­mycobacterial and anti-inflammatory agents (El-masry et al., 2000). Besides being important pharma­cophores, in particular amine-substituted benzimidazoles are good inter­mediates for the synthesis of different organic compounds (Maurya et al., 2007). General methods for the preparation of benzimidazoles involve the reaction of o-phenyl­enedi­amine and carb­oxy­lic acid or its derivatives under harsh dehydrating conditions or with aldehydes followed by oxidation (Peng et al., 2014).graphic file with name e-74-01517-scheme1.jpg

We report herein the compound 2-amino­methyl­benzimidazole di­hydro­chloride (ambmz·2HCl) prepared as described previously (Wu et al., 2008)

Structural commentary  

The asymmetric unit of the title compound contains three organic cations, six chloride anions and three water mol­ecules of crystallization, which are connected by O—H⋯Cl, N—H⋯O and N—H⋯Cl hydrogen bonds (Fig. 1). The r.m.s. deviations of the benzimidazolium ring systems are 0.0085 Å for N1/N2/C1–C7, 0.0076 Å for N4/N5/C9–C15, 0.0063 Å for N7/N8/C17–C23 with maximum deviations from planarity of 0.0169 (13) Å for atom C7, 0.0149 (13) Å for atom C15 and 0.0132 (13) Å for atom C23, respectively. The observed bond lengths are in good agreement with previously reported values (Cui, 2011).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 20% probability level.

Supra­molecular features  

The crystal packing of the title compound features extensive hydrogen bonding (Table 1 and Fig. and 2) involving all three O atoms and all nine N atoms. N5—H5A⋯Cl5, N8—H8⋯Cl4, N2—H2⋯Cl1ii, N9—H9C⋯Cl5vi and N6—H6B⋯Cl1v hydrogen bonds link the ions into chains along the c-axis direction. These chains are linked by O–H⋯Cl and N—H⋯O hydrogen bonds, generating a three-dimensional network (Fig. 2).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl4i 0.82 (2) 2.63 (2) 3.4431 (15) 168 (3)
O1—H2B⋯Cl2 0.81 (2) 2.36 (2) 3.1598 (18) 169 (3)
O2—H2C⋯Cl3 0.82 (2) 2.33 (2) 3.1244 (17) 165 (2)
O2—H2D⋯Cl1 0.81 (1) 2.64 (1) 3.4492 (15) 171 (3)
O3—H3D⋯Cl5ii 0.80 (2) 2.69 (2) 3.4586 (15) 164 (3)
O3—H3E⋯Cl6ii 0.82 (2) 2.32 (2) 3.1364 (18) 173 (3)
N1—H1⋯O1 0.83 (2) 1.92 (2) 2.746 (2) 174 (2)
N2—H2⋯Cl1iii 0.71 (2) 2.44 (2) 3.1519 (17) 175 (2)
N3—H3⋯Cl3 0.88 (3) 2.30 (3) 3.105 (2) 153 (2)
N3—H3A⋯Cl1 0.86 (4) 2.26 (3) 3.119 (2) 173 (3)
N3—H3B⋯Cl4iv 0.99 (3) 2.33 (2) 3.267 (2) 156.8 (19)
N4—H4A⋯O2 0.85 (2) 1.91 (2) 2.754 (2) 171 (2)
N5—H5A⋯Cl5 0.83 (2) 2.31 (2) 3.1205 (17) 165 (2)
N6—H6A⋯Cl2 0.87 (3) 2.33 (3) 3.107 (2) 150 (2)
N6—H6B⋯Cl1v 0.98 (3) 2.36 (2) 3.287 (2) 158.2 (18)
N6—H6C⋯Cl4i 0.79 (3) 2.35 (4) 3.1347 (19) 176 (3)
N7—H7⋯O3 0.85 (3) 1.89 (3) 2.742 (2) 175 (3)
N8—H8⋯Cl4 0.81 (2) 2.31 (2) 3.1049 (17) 172 (2)
N9—H9A⋯Cl6 0.83 (3) 2.35 (3) 3.100 (2) 151 (2)
N9—H9B⋯Cl5 0.80 (3) 2.32 (2) 3.120 (2) 176 (2)
N9—H9C⋯Cl5vi 0.99 (3) 2.34 (3) 3.270 (2) 157 (2)
C4—H4⋯Cl1i 0.92 (2) 2.81 (2) 3.535 (2) 136.7 (16)
C8—H8B⋯Cl3vii 0.93 (3) 2.65 (3) 3.544 (2) 162 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Figure 2.

Figure 2

The view of the crystal packing of the title compound. Dashed lines denote the hydrogen bonds.

Hirshfeld surface analysis  

The Hirshfeld surface analysis was performed using Crystal Explorer (Turner et al., 2017). The Hirshfeld surfaces, illus­trated in Fig. 3, and their associated two-dimensional fingerprint plots were used to qu­antify the various inter­molecular inter­actions in the synthesized complex. Red spots on the Hirshfeld surfaces indicate the inter­molecular contacts involved in strong hydrogen bonds and inter­atomic contacts (Gümüş et al., 2018; Kansız et al., 2018; Kansız & Dege, 2018). The red spots in Fig. 4 correspond to the H⋯Cl contacts resulting from the N—H⋯Cl and O—H⋯Cl hydrogen bonds. The Hirshfeld surfaces were mapped using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.518 (red) to 1.174 (blue) a.u..

Figure 3.

Figure 3

The Hirshfeld surface of the title compound mapped over d norm, d i and d e.

Figure 4.

Figure 4

Hirshfeld surface mapped over d norm to visualize the inter­molecular inter­actions of the title compound.

Fig. 5 shows the two-dimensional fingerprint plot of all the contacts contributing to the Hirshfeld surface represented in normal mode. Fig. 6 shows the two-dimensional fingerprint plots of the (d i, d e) points associated with various atoms. H⋯H contacts contribute 37.4% to the Hirshfeld surface. The graph for Cl⋯H/H⋯Cl shows the contacts between the chlorine atoms inside the Hirshfeld surface and the hydrogen atoms outside the surface and vice versa, and has two symmetrical wings on the left and right sides (35.5%). Further, there are C⋯H/H⋯C (9.5%), C⋯C (6.9%), O⋯H/H⋯O (4.1%) and N⋯H/H⋯N (3.4%) contacts.

Figure 5.

Figure 5

Fingerprint plot of all the contacts.

Figure 6.

Figure 6

Two-dimensional fingerprint plots with a d norm view of the H⋯H (37.4%), Cl⋯H/H⋯Cl (35.5%), C⋯H/H⋯C (9.5%) and C⋯C (6.9%) contacts in the title compound.

Synthesis and crystallization  

o-Phenyl­enedi­amine (10.8 g, 99.87 mmol) and glycine (10.00 g, 133.2 mmol) were dissolved in 5.5 M HCl (150 mL) . The reaction mixture was purged by argon at room temperature and heated up to reflux temperature for 12 h. The reaction was monitored by TLC. After completion of the reaction, the mixture was concentrated to 50 mL and kept at 269 K for 2 d. The crystals were filtered off and washed twice with acetone and dried to give the desired product (Fig. 7).

Figure 7.

Figure 7

The synthesis of the title compound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically with C—H distances of 0.93–0.97 Å. and refined as riding, with U iso(H) = 1.2U eq(C). N-bound H atoms were located in difference-Fourier maps and refined isotropically. The coordinates of the water H atoms were determined from a difference-Fourier map and refined isotropically subject to a restraint of O—H = 0.82 (4) Å.

Table 2. Experimental details.

Crystal data
Chemical formula C8H11N3 +·2Cl·H2
M r 238.11
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 6.9340 (4), 12.1198 (7), 19.2128 (11)
α, β, γ (°) 99.859 (5), 90.647 (5), 90.247 (5)
V3) 1590.64 (16)
Z 6
Radiation type Mo Kα
μ (mm−1) 0.58
Crystal size (mm) 0.57 × 0.50 × 0.46
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.788, 0.828
No. of measured, independent and observed [I > 2σ(I)] reflections 16045, 6254, 5000
R int 0.064
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.092, 0.96
No. of reflections 6254
No. of parameters 536
No. of restraints 9
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.34, −0.28

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXL2017/1 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901801335X/xu5941sup1.cif

e-74-01517-sup1.cif (599.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901801335X/xu5941Isup2.hkl

e-74-01517-Isup2.hkl (497.1KB, hkl)

Supporting information file. DOI: 10.1107/S205698901801335X/xu5941Isup3.cml

CCDC reference: 1868580

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Crystal data

C8H11N3+·2Cl·H2 Z = 6
Mr = 238.11 F(000) = 744
Triclinic, P1 Dx = 1.491 Mg m3
a = 6.9340 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.1198 (7) Å Cell parameters from 18110 reflections
c = 19.2128 (11) Å θ = 1.7–27.4°
α = 99.859 (5)° µ = 0.58 mm1
β = 90.647 (5)° T = 296 K
γ = 90.247 (5)° Prism, brown
V = 1590.64 (16) Å3 0.57 × 0.50 × 0.46 mm

Data collection

Stoe IPDS 2 diffractometer 6254 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 5000 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.064
rotation method scans θmax = 26.0°, θmin = 1.7°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) h = −8→8
Tmin = 0.788, Tmax = 0.828 k = −14→14
16045 measured reflections l = −23→23

Refinement

Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full All H-atom parameters refined
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.056P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092 (Δ/σ)max = 0.001
S = 0.96 Δρmax = 0.34 e Å3
6254 reflections Δρmin = −0.28 e Å3
536 parameters Extinction correction: SHELXL-2017/1 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
9 restraints Extinction coefficient: 0.0327 (17)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.44783 (7) 0.25544 (4) 0.93231 (2) 0.04012 (12)
Cl4 0.55220 (7) 0.93572 (4) 0.73215 (2) 0.03912 (12)
Cl5 0.44034 (7) 0.39635 (4) 0.59956 (2) 0.04089 (13)
Cl3 0.85067 (7) 0.04098 (4) 0.91238 (3) 0.04840 (14)
Cl6 −0.13546 (8) 0.60301 (5) 0.58937 (3) 0.05432 (15)
Cl2 1.13465 (8) 0.15568 (5) 0.74387 (3) 0.05337 (15)
O2 0.9557 (2) 0.29533 (13) 0.93050 (9) 0.0492 (3)
O1 1.0439 (2) −0.10288 (14) 0.73035 (9) 0.0517 (4)
N4 0.7622 (2) 0.41261 (12) 0.84094 (8) 0.0332 (3)
O3 0.0525 (2) 0.64579 (14) 0.39493 (9) 0.0553 (4)
N7 0.2335 (2) 0.81071 (13) 0.48888 (8) 0.0333 (3)
N5 0.6592 (2) 0.46067 (13) 0.74372 (9) 0.0347 (3)
N1 1.2273 (2) −0.21584 (13) 0.82407 (8) 0.0334 (3)
N2 1.3362 (2) −0.25722 (14) 0.92226 (9) 0.0376 (4)
N8 0.3400 (2) 0.90994 (13) 0.58704 (9) 0.0358 (3)
N6 0.7067 (3) 0.17781 (15) 0.79023 (10) 0.0427 (4)
N9 0.2868 (3) 0.60170 (15) 0.53791 (10) 0.0447 (4)
N3 1.2803 (3) 0.02017 (15) 0.86850 (10) 0.0421 (4)
C14 0.7037 (2) 0.55975 (14) 0.78881 (9) 0.0314 (4)
C22 0.2942 (2) 0.98527 (15) 0.54300 (9) 0.0323 (4)
C9 0.7708 (2) 0.52904 (14) 0.85148 (9) 0.0315 (4)
C15 0.6935 (2) 0.37525 (15) 0.77671 (9) 0.0335 (4)
C1 1.2214 (2) −0.33227 (14) 0.81587 (9) 0.0324 (4)
C17 0.2255 (2) 0.92225 (14) 0.48021 (9) 0.0319 (4)
C10 0.8268 (3) 0.60738 (16) 0.90934 (10) 0.0369 (4)
C18 0.1652 (2) 0.97150 (16) 0.42385 (10) 0.0355 (4)
C7 1.2981 (2) −0.17423 (15) 0.88773 (9) 0.0339 (4)
C2 1.1642 (3) −0.41361 (16) 0.75996 (10) 0.0377 (4)
C6 1.2930 (2) −0.35839 (15) 0.87927 (10) 0.0349 (4)
C13 0.6926 (3) 0.67112 (16) 0.78093 (11) 0.0385 (4)
C23 0.3047 (2) 0.80652 (15) 0.55283 (9) 0.0342 (4)
C20 0.2469 (3) 1.15029 (16) 0.49646 (11) 0.0392 (4)
C21 0.3055 (3) 1.10154 (16) 0.55279 (11) 0.0382 (4)
C12 0.7490 (3) 0.74911 (16) 0.83844 (11) 0.0394 (4)
C5 1.3092 (3) −0.46915 (17) 0.88878 (11) 0.0421 (4)
C19 0.1785 (3) 1.08684 (16) 0.43313 (10) 0.0389 (4)
C4 1.2532 (3) −0.54982 (17) 0.83351 (12) 0.0443 (5)
C11 0.8145 (3) 0.71817 (16) 0.90146 (11) 0.0401 (4)
C8 1.3424 (3) −0.05475 (17) 0.91637 (11) 0.0414 (4)
C16 0.6469 (3) 0.25681 (17) 0.74466 (11) 0.0428 (4)
C3 1.1819 (3) −0.52313 (17) 0.77020 (12) 0.0423 (4)
C24 0.3525 (3) 0.70519 (18) 0.58323 (12) 0.0458 (5)
H2 1.384 (3) −0.2526 (17) 0.9558 (11) 0.028 (5)*
H18 0.111 (3) 0.9325 (18) 0.3840 (12) 0.044 (6)*
H10 0.873 (3) 0.5879 (16) 0.9522 (11) 0.033 (5)*
H2A 1.108 (3) −0.3947 (17) 0.7161 (11) 0.039 (5)*
H11 0.854 (3) 0.7742 (19) 0.9433 (11) 0.046 (6)*
H19 0.136 (3) 1.1218 (17) 0.3927 (11) 0.039 (5)*
H20 0.255 (3) 1.223 (2) 0.5012 (12) 0.048 (6)*
H13 0.649 (3) 0.6891 (17) 0.7361 (11) 0.039 (5)*
H12 0.740 (3) 0.816 (2) 0.8342 (12) 0.050 (6)*
H21 0.350 (3) 1.1439 (19) 0.5987 (12) 0.047 (6)*
H5 1.355 (3) −0.4842 (19) 0.9333 (12) 0.050 (6)*
H4 1.264 (3) −0.6238 (19) 0.8385 (11) 0.040 (5)*
H5A 0.608 (3) 0.4556 (18) 0.7041 (12) 0.041 (6)*
H1 1.179 (3) −0.179 (2) 0.7956 (13) 0.055 (7)*
H4A 0.811 (3) 0.372 (2) 0.8683 (12) 0.052 (6)*
H8 0.393 (3) 0.9236 (17) 0.6251 (12) 0.036 (5)*
H24A 0.291 (3) 0.710 (2) 0.6289 (13) 0.058 (7)*
H24B 0.491 (5) 0.697 (3) 0.5884 (17) 0.101 (10)*
H7 0.183 (4) 0.757 (2) 0.4601 (14) 0.063 (7)*
H9A 0.167 (4) 0.600 (2) 0.5354 (13) 0.058 (7)*
H16A 0.518 (4) 0.253 (2) 0.7334 (15) 0.076 (8)*
H9B 0.325 (4) 0.551 (2) 0.5559 (13) 0.055 (7)*
H9C 0.336 (4) 0.593 (2) 0.4891 (16) 0.080 (9)*
H16B 0.709 (3) 0.2385 (19) 0.7019 (13) 0.052 (6)*
H3C 1.143 (3) −0.581 (2) 0.7340 (12) 0.050 (6)*
H8A 1.472 (4) −0.045 (2) 0.9269 (13) 0.061 (7)*
H8B 1.282 (4) −0.035 (2) 0.9596 (14) 0.066 (7)*
H6A 0.831 (4) 0.176 (2) 0.7947 (13) 0.061 (8)*
H6B 0.660 (3) 0.194 (2) 0.8388 (14) 0.059 (7)*
H6C 0.667 (4) 0.118 (3) 0.7738 (15) 0.065 (8)*
H2C 0.920 (3) 0.2322 (16) 0.9337 (14) 0.063 (8)*
H2D 1.072 (2) 0.289 (2) 0.9267 (17) 0.098 (12)*
H3A 1.316 (4) 0.087 (3) 0.8871 (16) 0.086 (10)*
H3B 1.330 (3) 0.000 (2) 0.8197 (14) 0.060 (7)*
H3 1.154 (4) 0.022 (2) 0.8652 (12) 0.056 (7)*
H3D −0.062 (3) 0.649 (3) 0.3941 (19) 0.106 (12)*
H3E 0.082 (4) 0.5804 (16) 0.3962 (15) 0.071 (9)*
H1A 0.926 (3) −0.102 (3) 0.7339 (18) 0.100 (12)*
H2B 1.076 (4) −0.0391 (16) 0.7286 (15) 0.069 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0439 (2) 0.0399 (2) 0.0360 (2) 0.00037 (18) −0.00373 (18) 0.00530 (18)
Cl4 0.0430 (2) 0.0388 (2) 0.0348 (2) −0.00156 (18) −0.00346 (18) 0.00436 (18)
Cl5 0.0447 (3) 0.0395 (2) 0.0378 (2) −0.00330 (18) −0.00542 (18) 0.00547 (18)
Cl3 0.0486 (3) 0.0458 (3) 0.0518 (3) −0.0026 (2) 0.0038 (2) 0.0112 (2)
Cl6 0.0503 (3) 0.0508 (3) 0.0615 (3) 0.0005 (2) −0.0013 (2) 0.0085 (2)
Cl2 0.0491 (3) 0.0519 (3) 0.0600 (3) −0.0049 (2) −0.0007 (2) 0.0126 (2)
O2 0.0490 (9) 0.0458 (9) 0.0538 (9) −0.0016 (7) −0.0076 (7) 0.0121 (7)
O1 0.0475 (9) 0.0546 (9) 0.0566 (9) −0.0045 (7) −0.0098 (7) 0.0209 (8)
N4 0.0346 (7) 0.0320 (7) 0.0337 (8) 0.0003 (6) −0.0023 (6) 0.0071 (6)
O3 0.0496 (9) 0.0456 (9) 0.0652 (10) 0.0011 (7) −0.0110 (8) −0.0056 (7)
N7 0.0323 (7) 0.0331 (8) 0.0331 (8) −0.0025 (6) −0.0008 (6) 0.0017 (6)
N5 0.0336 (8) 0.0387 (8) 0.0314 (8) 0.0013 (6) −0.0032 (6) 0.0047 (6)
N1 0.0317 (7) 0.0359 (8) 0.0341 (8) −0.0008 (6) −0.0022 (6) 0.0106 (6)
N2 0.0333 (8) 0.0494 (10) 0.0314 (9) −0.0017 (7) −0.0053 (7) 0.0107 (7)
N8 0.0342 (8) 0.0420 (9) 0.0298 (8) −0.0059 (6) −0.0038 (6) 0.0028 (6)
N6 0.0505 (11) 0.0310 (9) 0.0451 (10) −0.0057 (8) 0.0012 (8) 0.0025 (7)
N9 0.0501 (11) 0.0375 (9) 0.0485 (11) 0.0051 (8) 0.0010 (8) 0.0128 (8)
N3 0.0469 (10) 0.0358 (9) 0.0426 (10) −0.0042 (7) 0.0018 (8) 0.0034 (7)
C14 0.0264 (8) 0.0346 (9) 0.0331 (9) 0.0007 (6) 0.0018 (7) 0.0052 (7)
C22 0.0265 (8) 0.0378 (9) 0.0315 (9) −0.0035 (7) 0.0011 (7) 0.0027 (7)
C9 0.0275 (8) 0.0312 (8) 0.0357 (9) −0.0003 (6) 0.0023 (7) 0.0054 (7)
C15 0.0295 (8) 0.0347 (9) 0.0353 (9) 0.0001 (7) 0.0003 (7) 0.0029 (7)
C1 0.0266 (8) 0.0355 (9) 0.0361 (9) −0.0010 (7) 0.0026 (7) 0.0093 (7)
C17 0.0274 (8) 0.0337 (9) 0.0334 (9) −0.0023 (6) 0.0034 (7) 0.0019 (7)
C10 0.0349 (9) 0.0406 (10) 0.0343 (9) −0.0015 (7) 0.0003 (7) 0.0042 (8)
C18 0.0306 (8) 0.0423 (10) 0.0320 (9) −0.0003 (7) 0.0002 (7) 0.0016 (8)
C7 0.0287 (8) 0.0391 (9) 0.0343 (9) −0.0018 (7) 0.0006 (7) 0.0073 (7)
C2 0.0319 (9) 0.0440 (10) 0.0371 (10) −0.0025 (7) 0.0017 (7) 0.0066 (8)
C6 0.0269 (8) 0.0417 (10) 0.0378 (9) 0.0014 (7) 0.0008 (7) 0.0112 (8)
C13 0.0334 (9) 0.0399 (10) 0.0442 (11) 0.0032 (7) 0.0036 (8) 0.0130 (8)
C23 0.0291 (8) 0.0384 (9) 0.0353 (9) −0.0026 (7) 0.0008 (7) 0.0066 (7)
C20 0.0344 (9) 0.0343 (10) 0.0485 (11) −0.0028 (8) 0.0075 (8) 0.0051 (8)
C21 0.0318 (9) 0.0384 (10) 0.0408 (10) −0.0061 (7) 0.0020 (8) −0.0030 (8)
C12 0.0359 (9) 0.0307 (9) 0.0519 (12) 0.0024 (7) 0.0068 (8) 0.0076 (8)
C5 0.0339 (9) 0.0470 (11) 0.0498 (12) 0.0041 (8) 0.0033 (8) 0.0202 (9)
C19 0.0349 (9) 0.0419 (10) 0.0412 (10) 0.0012 (7) 0.0053 (8) 0.0100 (8)
C4 0.0354 (10) 0.0389 (10) 0.0608 (13) 0.0044 (8) 0.0106 (9) 0.0146 (10)
C11 0.0351 (9) 0.0367 (10) 0.0457 (11) −0.0036 (7) 0.0058 (8) −0.0013 (8)
C8 0.0423 (11) 0.0437 (11) 0.0362 (10) −0.0059 (8) −0.0033 (9) 0.0017 (8)
C16 0.0494 (12) 0.0369 (10) 0.0398 (11) −0.0013 (8) −0.0073 (9) −0.0001 (8)
C3 0.0349 (9) 0.0401 (10) 0.0509 (12) −0.0025 (8) 0.0069 (8) 0.0044 (9)
C24 0.0478 (11) 0.0460 (11) 0.0456 (12) −0.0031 (9) −0.0062 (9) 0.0141 (9)

Geometric parameters (Å, º)

O2—H2C 0.817 (16) C22—C17 1.391 (2)
O2—H2D 0.812 (17) C22—C21 1.391 (3)
O1—H1A 0.819 (17) C9—C10 1.383 (3)
O1—H2B 0.810 (16) C15—C16 1.494 (3)
N1—C7 1.328 (2) C1—C2 1.381 (3)
N1—C1 1.393 (2) C1—C6 1.396 (2)
N1—H1 0.83 (2) C17—C18 1.384 (2)
N2—C7 1.322 (2) C10—C11 1.380 (3)
N2—C6 1.386 (3) C10—H10 0.95 (2)
N2—H2 0.71 (2) C18—C19 1.381 (3)
N3—C8 1.461 (3) C18—H18 0.91 (2)
N3—H3A 0.87 (4) C7—C8 1.488 (3)
N3—H3B 0.99 (3) C2—C3 1.381 (3)
N3—H3 0.88 (3) C2—H2A 0.99 (2)
N4—C15 1.322 (2) C6—C5 1.390 (3)
N4—C9 1.392 (2) C13—C12 1.377 (3)
N4—H4A 0.85 (2) C13—H13 0.97 (2)
N5—C15 1.324 (2) C23—C24 1.484 (3)
N5—C14 1.386 (2) C20—C21 1.377 (3)
N5—H5A 0.83 (2) C20—C19 1.400 (3)
N6—C16 1.462 (3) C20—H20 0.87 (2)
N6—H6A 0.86 (3) C21—H21 0.99 (2)
N6—H6B 0.98 (3) C12—C11 1.399 (3)
N6—H6C 0.79 (3) C12—H12 0.83 (2)
O3—H3D 0.796 (17) C5—C4 1.366 (3)
O3—H3E 0.822 (16) C5—H5 0.96 (2)
N7—C23 1.328 (2) C19—H19 0.99 (2)
N7—C17 1.391 (2) C4—C3 1.397 (3)
N7—H7 0.85 (3) C4—H4 0.92 (2)
N8—C23 1.332 (2) C11—H11 0.99 (2)
N8—C22 1.383 (2) C8—H8A 0.92 (3)
N8—H8 0.80 (2) C8—H8B 0.93 (3)
N9—C24 1.467 (3) C16—H16A 0.92 (3)
N9—H9A 0.83 (3) C16—H16B 0.93 (2)
N9—H9B 0.80 (3) C3—H3C 0.93 (2)
N9—H9C 0.99 (3) C24—H24A 0.97 (2)
C14—C13 1.386 (2) C24—H24B 0.97 (3)
C14—C9 1.395 (2)
H2C—O2—H2D 104 (2) C19—C18—C17 116.33 (18)
H1A—O1—H2B 106 (2) C19—C18—H18 120.3 (14)
C15—N4—C9 108.99 (15) C17—C18—H18 123.2 (14)
C15—N4—H4A 124.8 (16) N2—C7—N1 109.33 (16)
C9—N4—H4A 125.4 (16) N2—C7—C8 123.45 (17)
H3D—O3—H3E 107 (2) N1—C7—C8 127.11 (16)
C23—N7—C17 108.55 (16) C3—C2—C1 116.08 (18)
C23—N7—H7 126.6 (17) C3—C2—H2A 121.8 (12)
C17—N7—H7 124.0 (17) C1—C2—H2A 122.0 (12)
C15—N5—C14 109.14 (15) N2—C6—C5 132.85 (18)
C15—N5—H5A 124.9 (15) N2—C6—C1 106.35 (15)
C14—N5—H5A 125.6 (15) C5—C6—C1 120.80 (18)
C7—N1—C1 109.27 (15) C12—C13—C14 116.35 (17)
C7—N1—H1 125.7 (17) C12—C13—H13 124.6 (12)
C1—N1—H1 124.5 (17) C14—C13—H13 119.1 (12)
C7—N2—C6 109.38 (16) N7—C23—N8 109.72 (16)
C7—N2—H2 126.4 (17) N7—C23—C24 127.55 (18)
C6—N2—H2 123.7 (17) N8—C23—C24 122.63 (17)
C23—N8—C22 108.85 (15) C21—C20—C19 122.08 (18)
C23—N8—H8 123.7 (15) C21—C20—H20 117.6 (16)
C22—N8—H8 127.0 (15) C19—C20—H20 120.3 (15)
C16—N6—H6A 111.4 (17) C20—C21—C22 116.12 (18)
C16—N6—H6B 115.5 (14) C20—C21—H21 124.1 (13)
H6A—N6—H6B 104 (2) C22—C21—H21 119.7 (13)
C16—N6—H6C 109 (2) C13—C12—C11 122.09 (18)
H6A—N6—H6C 110 (3) C13—C12—H12 116.6 (16)
H6B—N6—H6C 107 (2) C11—C12—H12 121.3 (16)
C24—N9—H9A 110.4 (18) C4—C5—C6 116.97 (18)
C24—N9—H9B 106.7 (18) C4—C5—H5 124.2 (14)
H9A—N9—H9B 109 (2) C6—C5—H5 118.8 (14)
C24—N9—H9C 113.6 (17) C18—C19—C20 121.68 (18)
H9A—N9—H9C 108 (2) C18—C19—H19 116.2 (12)
H9B—N9—H9C 109 (2) C20—C19—H19 122.1 (12)
C8—N3—H3A 108 (2) C5—C4—C3 121.94 (19)
C8—N3—H3B 114.2 (14) C5—C4—H4 118.4 (13)
H3A—N3—H3B 111 (2) C3—C4—H4 119.6 (13)
C8—N3—H3 111.0 (16) C10—C11—C12 121.71 (19)
H3A—N3—H3 106 (3) C10—C11—H11 115.9 (12)
H3B—N3—H3 107 (2) C12—C11—H11 122.3 (12)
C13—C14—N5 132.44 (17) N3—C8—C7 112.34 (16)
C13—C14—C9 121.46 (17) N3—C8—H8A 110.4 (16)
N5—C14—C9 106.11 (15) C7—C8—H8A 110.8 (16)
N8—C22—C17 106.45 (15) N3—C8—H8B 109.5 (16)
N8—C22—C21 131.74 (17) C7—C8—H8B 109.3 (16)
C17—C22—C21 121.81 (17) H8A—C8—H8B 104 (2)
C10—C9—N4 131.77 (16) N6—C16—C15 112.13 (17)
C10—C9—C14 122.19 (16) N6—C16—H16A 113.4 (18)
N4—C9—C14 106.02 (15) C15—C16—H16A 108.1 (18)
N4—C15—N5 109.73 (16) N6—C16—H16B 108.5 (14)
N4—C15—C16 127.44 (16) C15—C16—H16B 109.5 (15)
N5—C15—C16 122.72 (16) H16A—C16—H16B 105 (2)
C2—C1—N1 131.96 (16) C2—C3—C4 121.8 (2)
C2—C1—C6 122.37 (17) C2—C3—H3C 118.8 (14)
N1—C1—C6 105.66 (16) C4—C3—H3C 119.4 (14)
C18—C17—C22 121.97 (16) N9—C24—C23 112.39 (17)
C18—C17—N7 131.61 (17) N9—C24—H24A 108.5 (15)
C22—C17—N7 106.41 (15) C23—C24—H24A 109.0 (14)
C11—C10—C9 116.19 (17) N9—C24—H24B 105 (2)
C11—C10—H10 120.6 (12) C23—C24—H24B 112 (2)
C9—C10—H10 123.2 (12) H24A—C24—H24B 110 (2)
C15—N5—C14—C13 −179.30 (18) C7—N2—C6—C5 178.55 (18)
C15—N5—C14—C9 0.93 (19) C7—N2—C6—C1 −1.15 (19)
C23—N8—C22—C17 1.03 (19) C2—C1—C6—N2 179.60 (15)
C23—N8—C22—C21 −179.49 (17) N1—C1—C6—N2 0.52 (18)
C15—N4—C9—C10 178.27 (18) C2—C1—C6—C5 −0.1 (3)
C15—N4—C9—C14 −0.41 (18) N1—C1—C6—C5 −179.23 (15)
C13—C14—C9—C10 1.1 (3) N5—C14—C13—C12 179.48 (17)
N5—C14—C9—C10 −179.15 (15) C9—C14—C13—C12 −0.8 (2)
C13—C14—C9—N4 179.89 (15) C17—N7—C23—N8 1.29 (19)
N5—C14—C9—N4 −0.31 (18) C17—N7—C23—C24 −175.17 (18)
C9—N4—C15—N5 1.02 (19) C22—N8—C23—N7 −1.5 (2)
C9—N4—C15—C16 −175.38 (18) C22—N8—C23—C24 175.21 (16)
C14—N5—C15—N4 −1.22 (19) C19—C20—C21—C22 0.5 (3)
C14—N5—C15—C16 175.38 (16) N8—C22—C21—C20 179.87 (17)
C7—N1—C1—C2 −178.68 (18) C17—C22—C21—C20 −0.7 (2)
C7—N1—C1—C6 0.28 (18) C14—C13—C12—C11 0.2 (3)
N8—C22—C17—C18 179.76 (15) N2—C6—C5—C4 −179.37 (18)
C21—C22—C17—C18 0.2 (2) C1—C6—C5—C4 0.3 (3)
N8—C22—C17—N7 −0.25 (17) C17—C18—C19—C20 −0.8 (3)
C21—C22—C17—N7 −179.79 (15) C21—C20—C19—C18 0.3 (3)
C23—N7—C17—C18 179.37 (18) C6—C5—C4—C3 −0.3 (3)
C23—N7—C17—C22 −0.62 (18) C9—C10—C11—C12 0.0 (3)
N4—C9—C10—C11 −179.14 (17) C13—C12—C11—C10 0.2 (3)
C14—C9—C10—C11 −0.6 (2) N2—C7—C8—N3 −178.27 (17)
C22—C17—C18—C19 0.5 (2) N1—C7—C8—N3 6.0 (3)
N7—C17—C18—C19 −179.44 (17) N4—C15—C16—N6 −6.7 (3)
C6—N2—C7—N1 1.4 (2) N5—C15—C16—N6 177.37 (17)
C6—N2—C7—C8 −175.02 (16) C1—C2—C3—C4 0.1 (3)
C1—N1—C7—N2 −1.02 (19) C5—C4—C3—C2 0.1 (3)
C1—N1—C7—C8 175.20 (17) N7—C23—C24—N9 −8.3 (3)
N1—C1—C2—C3 178.75 (17) N8—C23—C24—N9 175.69 (17)
C6—C1—C2—C3 −0.1 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1A···Cl4i 0.82 (2) 2.63 (2) 3.4431 (15) 168 (3)
O1—H2B···Cl2 0.81 (2) 2.36 (2) 3.1598 (18) 169 (3)
O2—H2C···Cl3 0.82 (2) 2.33 (2) 3.1244 (17) 165 (2)
O2—H2D···Cl1 0.81 (1) 2.64 (1) 3.4492 (15) 171 (3)
O3—H3D···Cl5ii 0.80 (2) 2.69 (2) 3.4586 (15) 164 (3)
O3—H3E···Cl6ii 0.82 (2) 2.32 (2) 3.1364 (18) 173 (3)
N1—H1···O1 0.83 (2) 1.92 (2) 2.746 (2) 174 (2)
N2—H2···Cl1iii 0.71 (2) 2.44 (2) 3.1519 (17) 175 (2)
N3—H3···Cl3 0.88 (3) 2.30 (3) 3.105 (2) 153 (2)
N3—H3A···Cl1 0.86 (4) 2.26 (3) 3.119 (2) 173 (3)
N3—H3B···Cl4iv 0.99 (3) 2.33 (2) 3.267 (2) 156.8 (19)
N4—H4A···O2 0.85 (2) 1.91 (2) 2.754 (2) 171 (2)
N5—H5A···Cl5 0.83 (2) 2.31 (2) 3.1205 (17) 165 (2)
N6—H6A···Cl2 0.87 (3) 2.33 (3) 3.107 (2) 150 (2)
N6—H6B···Cl1v 0.98 (3) 2.36 (2) 3.287 (2) 158.2 (18)
N6—H6C···Cl4i 0.79 (3) 2.35 (4) 3.1347 (19) 176 (3)
N7—H7···O3 0.85 (3) 1.89 (3) 2.742 (2) 175 (3)
N8—H8···Cl4 0.81 (2) 2.31 (2) 3.1049 (17) 172 (2)
N9—H9A···Cl6 0.83 (3) 2.35 (3) 3.100 (2) 151 (2)
N9—H9B···Cl5 0.80 (3) 2.32 (2) 3.120 (2) 176 (2)
N9—H9C···Cl5vi 0.99 (3) 2.34 (3) 3.270 (2) 157 (2)
C4—H4···Cl1i 0.92 (2) 2.81 (2) 3.535 (2) 136.7 (16)
C8—H8B···Cl3vii 0.93 (3) 2.65 (3) 3.544 (2) 162 (2)

Symmetry codes: (i) x, y−1, z; (ii) −x, −y+1, −z+1; (iii) −x+3, −y, −z+2; (iv) x+1, y−1, z; (v) x−1, y, z; (vi) −x+1, −y+1, −z+1; (vii) −x+2, −y, −z+2.

References

  1. Cui, Y. (2011). Acta Cryst. E67, o625–o626. [DOI] [PMC free article] [PubMed]
  2. El-masry, A. H., Fahmy, H. H. & Ali Abdelwahed, S. (2000). Molecules, 5, 1429–1438.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280–290.
  5. Kansız, S., Almarhoon, Z. M. & Dege, N. (2018). Acta Cryst. E74, 217–220. [DOI] [PMC free article] [PubMed]
  6. Kansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42–51.
  7. Maurya, M. R., Chandrakar, A. K. & Chand, S. (2007). J. Mol. Catal. A Chem. 263, 227–237.
  8. Peng, P., Xiong, J., Mo, G., Zheng, J., Chen, R., Chen, X. & Wang, Z. (2014). Amino Acids, 46, 2427–2433. [DOI] [PubMed]
  9. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  12. Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth.
  13. Wu, H.-Y., Li, H., Zhu, B.-L., Wang, S.-R., Zhang, S.-M., Wu, S.-H. & Huang, W.-P. (2008). Transition Met. Chem. 33, 9–15.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901801335X/xu5941sup1.cif

e-74-01517-sup1.cif (599.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901801335X/xu5941Isup2.hkl

e-74-01517-Isup2.hkl (497.1KB, hkl)

Supporting information file. DOI: 10.1107/S205698901801335X/xu5941Isup3.cml

CCDC reference: 1868580

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES