Skip to main content
Applications in Plant Sciences logoLink to Applications in Plant Sciences
. 2018 Oct 23;6(10):e01189. doi: 10.1002/aps3.1189

Identification and development of microsatellite markers in Hamamelis mollis (Hamamelidaceae)

Qianyi Yin 1, Cuiying Huang 1, Yanshuang Huang 1, Sufang Chen 1, Huagu Ye 1, Qiang Fan 1,, Wenbo Liao 1,
PMCID: PMC6201723  PMID: 30386715

Abstract

Premise of the Study

Hamamelis mollis (Hamamelidaceae) is a Tertiary relict species endemic to southern China. Polymorphic microsatellite markers were developed to reveal the genetic diversity of this species.

Methods and Results

The genome of H. mollis was sequenced and de novo assembled into 642,351 contigs. A total of 72,097 paired primers were successfully designed from 80,282 simple sequence repeat (SSR) markers identified in 63,419 contigs. PCR amplification showed that 96 of the 136 synthesized primers could be successfully amplified, and 22 demonstrated polymorphism. The mean number of alleles, levels of observed heterozygosity, and levels of expected heterozygosity were 4.602 ± 0.140, 0.632 ± 0.020, and 0.696 ± 0.010, respectively. The majority of the 96 primer pairs could be amplified in at least one other Hamamelidaceae species, including Distylium myricoides (60), Loropetalum chinense (39), Exbucklandia populnea (24), and E. tonkinensis (24).

Conclusions

These microsatellite loci provide abundant genomic SSR markers to evaluate genetic diversity of this woody ornamental plant.

Keywords: conservation genetics, Hamamelidaceae, Hamamelis mollis, microsatellite marker, shotgun genome sequencing


Hamamelidaceae comprises six subfamilies and approximately 30 genera and 140 species distributed in subtropical to temperate regions of both the Old and New World (Li et al., 1999). The fossil record of Hamamelidaceae shows that the early members of this family were present during the Late Cretaceous of the Northern Hemisphere, yet many of them disappeared at higher latitudes due to global cooling during the Late Tertiary, which was further accelerated during Quaternary glaciation. Currently the family contains many isolated and diverse genera, most of which are Tertiary relicts (Zhang and Lu, 1995).

Subfam. Hamamelidoideae contains about 19 genera and 72 species. Within the subfamily, Hamamelis Gronov. ex L. consists of four to six species distributed disjunctly between eastern Asia (two species) and eastern North America (two to four species) (Wen and Shi, 1999). Fossil leaves of Hamamelis have been found from the Paleocene in both the Old and New World (Wolfe, 1966). The modern distribution of Hamamelis is much narrower at present than the wider past distribution indicated by the fossil record (Zhang and Lu, 1995). For example, H. mollis Oliv. is present today only in central and southern China (Zhang and Lu, 1995), where it occurs at elevations of 600–1600 m. It is often planted as an ornamental tree in China.

Knowledge of the genetic characteristics of species, such as genetic diversity and population structure, is vital for the management of effective conservation strategies for relict species. For subfam. Hamamelidoideae, some simple sequence repeat (SSR) markers have been developed for Fothergilla ×intermedia Ranney & Fantz (Hatmaker et al., 2015), Chunia bucklandioides H. T. Chang (Meng et al., 2016), Distylium lepidotum Nakai (Sugai and Setsuko, 2016), and Sinowilsonia henryi Hemsl. (Li et al., 2017), yet PCR amplifications have showed low transferability of these SSR markers to H. mollis (Q. Yin, S. Chen, Q. Fan, and W. Liao, unpublished). In this study, a total of 22 polymorphic genomic SSR markers were developed for H. mollis for further use in conservation measures. These are the first SSR primers designed for this species.

METHODS AND RESULTS

Fresh leaves were collected from one seedling of H. mollis sampled from Juqiushui, Hunan Province, China (Appendix 1), and transplanted to the greenhouse of Sun Yat‐sen University, Guangzhou, Guangdong Province, China. The cetyltrimethylammonium bromide (CTAB) method of Doyle and Doyle (1987) was used to extract total genomic DNA. The DNA library was constructed with the VAHTS Universal DNA Library Prep Kit for Illumina (Vazyme Biotech Co., Ltd., Nanjing, Jiangsu Province, China) according to the manufacturer's protocol and was subsequently sequenced with the HiSeq X Ten System (Illumina, San Diego, California, USA). This yielded a total of 25.45 million high‐quality 145‐bp paired reads. Reads were filtered using NGSQCToolkit_v2.3.3 (Patel and Jain, 2012) by removing low‐quality reads (i.e., containing unknown bases [N] or more than 10% of nucleotides with Q value ≤20). Filtered reads were de novo assembled into 642,351 contigs using Edena v3.131028 with the default parameters (Hernandez et al., 2008). The average length of the contigs was 541 bp and the N50 value was 311 bp. The filtered raw data and the assembled contigs were deposited in the National Center for Biotechnology Information's (NCBI) GenBank database (BioSample: SAMN09010486, BioProject: PRJNA454742, Sequence Read Archive: SRR7110723, Transcriptome Shotgun Assembly: GGNJ00000000).

The SSR repeat motifs containing two to six nucleotides across these contigs were identified using the MISA tool (Thiel et al., 2003) with the default parameters except that mononucleotide repeats were removed from analysis. A total of 95,585 SSRs were found across 75,595 contigs. Among these SSRs, the most common motifs were dinucleotide repeats (76.75%), followed by tri‐ (17.70%), tetra‐ (3.89%), penta‐ (1.15%), and hexanucleotide (0.51%) repeats. Primer 3.0 (Rozen and Skaletsky, 1999) was used to design SSR primers with default parameters. This yielded a total of 72,097 primer pairs across 63,419 contigs. Of these primer pairs, 136 with high, medium, and low repeats were selected randomly for further characterization.

A total of 80 individuals of H. mollis were collected from four natural populations in China (Appendix 1) to test the levels of polymorphism in the target SSR loci. The transferability of these SSR primers was also tested in four other species of Hamamelidaceae (eight individuals of each species; Appendix 1): Distylium myricoides Hemsl. (subfam. Hamamelidoideae), Loropetalum chinense (R. Br.) Oliv. (subfam. Hamamelidoideae), Exbucklandia populnea (R. Br. ex Griff.) R. W. Br. (subfam. Exbucklandioideae), and E. tonkinensis (Lecomte) H. T. Chang (subfam. Exbucklandioideae). DNA was extracted from silica‐dried leaves of all individuals using the CTAB method described above. In the first PCR trial, all 136 primer pairs were amplified for two individuals randomly selected from each population. PCR amplifications were performed according to Fan et al. (2013) and were inspected using 10% agarose gel electrophoresis. Among all primer pairs, 96 were successfully amplified across the eight test individuals with the expected product size (NCBI accessions: MH167492–MH167587). The Fragment Analyzer Automated CE System (Advanced Analytical Technologies [AATI], Ames, Iowa, USA) was used for genotyping, using the Quant‐iT PicoGreen dsDNA Reagent Kit (35–500 bp; Invitrogen, Carlsbad, California, USA). Fragment sizes were analyzed using PROSize version 2.0 (AATI). The results showed 22 polymorphic loci across all eight individuals (Table 1) and 74 monomorphic loci (Appendix 2).

Table 1.

Characteristics of 22 polymorphic EST‐SSR loci developed for Hamamelis mollis

Locus Primer sequences (5′–3′) Repeat motif Product size (bp) Allele size range (bp) T a (°C) GenBank accession no. Putative function
H4 F: ACACCTAATTCGCAGGCATC (AAAAAT)6 215 191–227 60 MH167495 Swertia tetraptera microsatellite ST40 sequence
R: ATGAAGTGGCATTCGGAAAC
H7 F: TTGATGGGTTTTGTGGGAAT (GAAAA)8 238 218–238 62 MH167497 PREDICTED: Glycine max homeobox‐leucine zipper protein HOX11‐like (LOC100805312), mRNA
R: TGAACCACGGAACAAAACAA
H11 F: TCAACCATGAGTGTGTACCTAGC (ATAC)11 243 231–247 60 MH167500 Chrysanthemum ×morifolium microsatellite JH‐1484 sequence
R: CCTCTAATCACAGGCAACCAA
H22 F: CATGGGTTACGGCTGTCTTT (ATC)15 237 217–250 60 MH167508 PREDICTED: Ziziphus jujuba uncharacterized LOC107420631 (LOC107420631), mRNA
R: TGCTGGTACTAACCTTGGGG
H52 F: ATGCCAAGGAGAGGGAAAAT (AAT)9 184 172–181 60 MH167529 NOT FOUND
R: GCTTTTTATGCTTTAGGTTTCTGC
H54 F: AAACCGAAAGAAAGCACAACA (AAT)9 222 208–219 60 MH167530 NOT FOUND
R: GGGTTTTAAGCTTGCCATGT
H57 F: CCTGGATAATGGAGAGCCAA (TC)23 242 226–242 60 MH167533 PREDICTED: Durio zibethinus amino acid transporter AVT1I‐like (LOC111317757), mRNA
R: TTTTTGTGTTGCATTACGTGC
H63 F: TATATGCGCAGTGGAGCAAA (GAGCAA)6 237 213–243 60 MH167537 NOT FOUND
R: TGCCCATTAACACTGGTTCA
H64 F: TCCAAGTAAAGGATCCGAACTC (CTTTTT)6 251 233–257 62 MH167538 NOT FOUND
R: TTGGCTATTGATGGTGCTTT
H67 F: GATTTTGTGCATGTTTCCCC (AGCCCA)5 236 212–242 60 MH167540 NOT FOUND
R: AGGGGGTATCGGTGATTGTT
H71 F: TGTCAACTGGAACATCAAGGA (AAATA)6 255 240–260 60 MH167543 NOT FOUND
R: TGTTTCTGAGTGTCCCAACCT
H77 F: CCAGCTTGGAGTACACATGG (AC)18 174 164–178 60 MH167548 NOT FOUND
R: GAGGGATGCCTTTAACACCA
H86 F: ATAGCAGAACCAGGCACCAG (AAG)12 274 265–283 65 MH167555 NOT FOUND
R: TTCATTAGTCACCGGAAGGC
H94 F: TGGAAAACGGACAGAGTGAA (AAAT)5 225 217–229 60 MH167560 NOT FOUND
R: GCCATTCATTGGCTTTTTGT
H99 F: ATCGCTAACCCGCTCCTAAT (CCAGG)6 250 220–250 60 MH167561 NOT FOUND
R: TTCAGCTAGCAAATAAGATTGACC
H103 F: GAATGCATGTGACTGATGGG (CTTTT)6 220 210–225 60 MH167563 NOT FOUND
R: TTGCTTTCCTTTTCCATTGC
H115 F: ATGGGCGAAAAAGATTGTTG (CTC)12(CTT)5 237 222–240 62 MH167570 NOT FOUND
R: GCCTTCACGTCCTCACAAAT
H122 F: GTTTGGACACGCTCGTCATA (AAT)8…(AAT)6 211 211–232 60 MH167575 NOT FOUND
R: CCATCTCTGTCCTTGCATGA
H126 F: TGAAAGAAACGTCACCCTCC (TCT)7…(GAA)5… (AAG)5 279 264–282 60 MH167579 Botryotinia fuckeliana T4 SupSuperContig_200r_370_1 genomic supercontig
R: GATCGTCATCATCACAACCG
H130 F: GGCCTTCCAACGGTCATATT (TTGAGT)5…(TTTGAG)5 258 263–282 62 MH167582 NOT FOUND
R: AGGGAGGCATGTCAATTCAT
H131 F: GGGAAAAAGAAGAAGGAGAAGG (AGA)10 255 246–270 60 MH167583 NOT FOUND
R: GCCTTGTTTGGCATTGAACT
H132 F: GCATTTGGTTGCGGTTAGAG (TAT)10 272 266–287 60 MH167584 NOT FOUND
R: TCTACCAGGGGTGGAAGAGA

T a = annealing temperature.

For these 22 polymorphic SSR loci, PCR amplification was performed for all individuals in the four populations of H. mollis. Linkage disequilibrium, departure from Hardy–Weinberg equilibrium (HWE), the average number of alleles per locus (A), the observed heterozygosity (H o), and the expected heterozygosity (H e) were calculated using GenAlEx version 6.5 (Peakall and Smouse, 2012). No pairs of loci showed linkage disequilibrium after a sequential Bonferroni correction for multiple tests, indicating that the 22 markers can be considered independent markers. Significant deviations from HWE were detected in five loci in the DLL population and four loci in the YS population (Table 2). In the DLL population, A ranged from three to eight, H e ranged from 0.515 to 0.838, and H o ranged from 0.000 to 1.000. In the TMS population, A ranged from three to eight, H e ranged from 0.445 to 0.829, and H o ranged from 0.000 to 0.858. In the WGS population, A ranged from three to seven, H e ranged from 0.445 to 0.788, and H o ranged from 0.000 to 0.850. In the YS population, A ranged from two to six, H e ranged from 0.320 to 0.788, and H o ranged from 0.000 to 0.950.

Table 2.

Polymorphism in 22 SSR loci across four populations of Hamamelis mollis.a

Locus DLL (n = 20) TMS (n = 20) WGS (n = 20) YS (n = 20)
A H o H e b A H o H e b A H o H e b A H o H e b
H4 4 0.65 0.744 5 0.50 0.641 7 0.55 0.715 5 0.60 0.734**
H7 3 0.45 0.540 5 0.70 0.759 5 0.65 0.731 5 0.70 0.773
H11 3 0.40 0.515 3 0.50 0.624 3 0.55 0.660 2 0.45 0.439
H22 8 0.55 0.853* 8 0.65 0.784 6 0.65 0.788 5 0.70 0.788*
H52 4 0.50 0.629 3 0.65 0.660 3 0.55 0.654 3 0.55 0.595
H54 5 0.45 0.665** 4 0.70 0.726 5 0.70 0.781 4 0.55 0.716
H57 7 0.60 0.775 5 0.86 0.761 6 0.70 0.775 3 0.65 0.635
H63 5 0.60 0.665 3 0.70 0.636 5 0.75 0.736 4 0.55 0.648*
H64 5 0.85 0.775 4 0.70 0.741 4 0.85 0.696 4 0.60 0.701
H67 6 0.65 0.771 6 0.65 0.749* 5 0.65 0.739 5 0.75 0.709
H71 3 0.55 0.614 4 0.55 0.671 4 0.70 0.729* 3 0.50 0.609
H77 7 0.60 0.838 7 0.65 0.759 5 0.60 0.726 5 0.55 0.741
H86 5 0.65 0.706 4 0.70 0.685 4 0.60 0.648 4 0.65 0.736
H94 4 0.55 0.644 3 0.60 0.651 4 0.55 0.643 3 0.65 0.629
H99 5 1.00 0.693* 5 0.90 0.709 4 0.80 0.705 5 0.65 0.673
H103 3 0.55 0.609 4 0.75 0.738 4 0.60 0.729 4 0.70 0.748
H115 7 0.55 0.719 6 0.75 0.765 6 0.65 0.813 5 0.80 0.738
H122 6 0.95 0.779* 6 0.85 0.829 7 0.85 0.808 6 0.95 0.765
H126 4 0.60 0.559 7 0.80 0.829 5 0.70 0.769 5 0.75 0.765
H130 3 0.00 0.645*** 3 0.00 0.445*** 3 0.00 0.445*** 2 0.00 0.320***
H131 5 0.55 0.756* 4 0.70 0.679 5 0.75 0.726 4 0.65 0.701
H132 4 0.85 0.686 5 0.75 0.711 5 0.75 0.735 4 0.80 0.636

A = number of alleles; H e = expected heterozygosity; H o = observed heterozygosity; n = number of individuals collected for each population.

aVoucher and locality information are available in Appendix 1.

bSignificant deviations from Hardy–Weinberg equilibrium after sequential Bonferroni corrections: *represents significance at the 5% nominal level; **represents significance at the 1% nominal level; ***represents significance at the 0.5% nominal level.

Finally, transferability tests indicated that the majority of the 96 loci could be amplified in at least one other Hamamelidaceae genus. Specifically, we found that 60, 39, 24, and 24 paired primers amplified in D. myricoides, L. chinensis, E. populnea, and E. tonkinensis, respectively, and 24 amplified in three of the four species (Table 3).

Table 3.

Cross‐amplification success and fragment size ranges (in base pairs) for 96 SSR markers in four Hamamelidaceae species.a

Locus Distylium myricoides Loropetalum chinense Exbucklandia populnea Exbucklandia tonkinensis
H1 159 177–183 171–177 189
H2
H3 234–240
H4 197 233
H5 155 101 125–137 131–143
H7
H8
H10 227
H11 203
H13
H14 232–240 224–228
H15 232–236
H17 208 172–176 192 192–196
H18 207
H19 218–224 248 197 197
H20 255
H22 268–271 196 190
H23 243 225–228 168 168
H25 292–295 303 253–256 262
H26 195–198 234 246 246
H27 254–263 278–281 293 272–275
H28 199
H33 254–258 266 286–290 294
H34 114
H36
H38 308–312 256–264
H39 276–280 237 241–245 245
H40 222 262
H41 246–250 202–206 214–218 210
H42 248
H43
H44 201
H46 277 265
H47 291–297 264–270
H48 287
H49 200–203
H50
H52 145 193
H54 199 234
H55
H56 188
H57 210
H58 208 232 174 174
H59 223
H62 245 203
H63 207–212
H64
H65 106–109 122
H67
H68 300–305 245
H70 297–302 282 242 242
H71 220
H72 242–252 232
H73 183
H74
H76 277–281 233
H77
H79
H80 212–216 164–166 154 154
H81 269 281–283 213 221–223
H83 125–129
H84 218 256 252–256
H85
H86
H88 154
H91 267–271
H92 233–241 225 225
H93 243–247
H94 197
H99
H100 131
H103
H105 214–219 244
H108 200
H110
H111 195–199 231–239 227 227–235
H112 242–250 212
H113
H115 204
H117 136–140 176
H118 299
H119 254–258 266–270
H121 233
H122 196–199
H123
H124
H125 235–238
H126
H127 275–281
H129 219
H130 221–233 245 251
H131
H132
H133
H135 241–250 292–195 301–307
H136 108 165

— = primers could not be amplified in any individual.

a

Voucher and locality information are available in Appendix 1.

CONCLUSIONS

We have developed a number of useful new primers for assessing genetic diversity in H. mollis and potentially numerous other Hamamelidaceae taxa. These loci will aid in future conservation genetics efforts across the family.

AUTHOR CONTRIBUTIONS

W.B.L. and Q.F. designed the research. Y.S.H. and H.G.Y. collected samples. C.Y.H. designed the primers. C.Y.H. and Q.Y.Y. generated the data. Q.Y.Y. and S.F.C. analyzed and interpreted the data. Q.Y.Y. wrote the manuscript, and S.F.C. modified the manuscript.

DATA ACCESSIBILITY

All genomic sequences of 136 pairs of primers were deposited in the National Center for Biotechnology Information (NCBI) GenBank database (MH167492MH167587). The filtered raw read data and the assembled contigs were also deposited in NCBI databases (BioSample: SAMN09010486, BioProject: PRJNA454742, Sequence Read Archive [SRA]: SRR7110723, Transcriptome Shotgun Assembly [TSA]: GGNJ00000000).

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (31670189, 31800175, 31570195), the Special Program for Science and Technology Basic Research of the Ministry of Science and Technology of China (2013FY111500), the Fourth National Survey on Chinese Material Medical Resources Program for State Administration of Traditional Chinese Medicine of the People's Republic of China (2017‐152‐003), the Fundamental Research Funds for the Central Universities (161gjc38), and the Chang Hungta Science Foundation of Sun Yat‐sen University.

Appendix 1. Voucher and locality information for populations of Hamamelis mollis and four related Hamamelidaceae species used in this study.

Species Voucher no.a Collection locality (Population) Geographic coordinates N
Hamamelis mollis Oliv. W. Y. Zhao et al. 16871b Yanling, Hunan, China 26°33'13.4”1” N, 114°04'51.55” E 1
Q. Fan et al. 15216c Yichang, Hubei, China (DLL) 31°04'15.37” N, 110°55'40.56” E 20
Q. Y. Yin et al. 17161c Lin'an, Zhejiang, China (TMS) 30°48'34.67” N, 120°55'55.06” E 20
Q. Y. Yin et al. 17277c Pingxiang, Jiangxi, China (WGS) 27°21’46.82”N, 113°46’3.50” E 20
Q. Y. Yin et al. 17193c Shaoguan, Guangdong, China (YS) 25°22’5.66”N, 114°35’32.30” E 20
Distylium myricoides Hemsl. X. J. Zhang et al. 17009 Yichun, Jiangxi, China 28°34’29.62”N, 114°35’32.30” E 8
Exbucklandia populnea (R. Br. ex Griff.) R. W. Br. W. Y. Zhao et al. 16235 Tongren, Guizhou, China 27°57'55.32” N, 108°36'46.67” E 8
Exbucklandia tonkinensis (Lecomte) H. T. Chang W. Y. Zhao et al. 16339 Zhaoqing, Guangdong, China 23°33'31.93” N, 111°57'52.00” E 8
Loropetalum chinense (R. Br.) Oliv. Q. Fan et al. 17439 Huangjiang, Guangxi, China 25°12’9.82”N, 108°38’23.94” E 8

Appendix 2. Characteristics of the 74 monomorphic SSR markers in Hamamelis mollis.

Locus Primer sequences (5′–3′) Repeat motif Expected allele size (bp) GenBank accession no.
H1 F: GTTGCTTTCGTGTTCGTCCT (CTCGTC)9 171 MH167492
R: GTTTGGTAAGGCAAGGGACA
H2 F: CCTCCATATCGTAGTCTACCGC (TTTTGA)8 255 MH167493
R: TTCTACCACACGTCACACCC
H3 F: CTCGACGACTTTTGGTGGAT (TTTCTC)7 246 MH167494
R: CCCAATGAGGCTTTGAAAAA
H5 F: AGCATTGAATGTTGCGTTTG (CTCTTC)5 119 MH167496
R: CTACGGGGGACAGCAGAATA
H8 F: TTTTGCCCTTTCTCTCCCTT (TTCTC)7 261 MH167498
R: TGTTTGGATTGAAGGAATTGG
H10 F: TGAAAGAGAAGGGAATGGCA (CTGCC)5 252 MH167499
R: TTTTTGTCCAATTCATGGCA
H13 F: TGTGGGGCGAGGATAAATAG (AAAT)9 232 MH167501
R: GGGGAGAGGACGAGGAATAG
H14 F: CCGTTGCAATCCCTGTAGTT (TTTC)8 248 MH167502
R: CAATTTTGGCTGCAATTCAA
H15 F: GTGGTAAAATTGGGTGCTGG (TTTA)7 216 MH167503
R: TCGTGGTCGTCTAAGTCACG
H17 F: ACTCTTGTTCCCCCACCTTT (ATTA)5 184 MH167504
R: GTAACCCAGGATGACCCCTT
H18 F: TATCCCTCGCTTGATTTTGC (ATA)19 195 MH167505
R: GCAATAGAGCTCGACGGTTC
H19 F: AGCAAGATGGAAGGAAGCAA (TTC)18 230 MH167506
R: AAACCTATCATGCATACTAACAATGAA
H20 F: GAAAGGCAACAGAGCTCGAC (TAT)17 279 MH167507
R: CCAACAGTCGGATCAATGTG
H23 F: TATCCACCCCACTCCAATTC (AAT)14 201 MH167509
R: CCATTTCTTGCAGGTTTGCT
H25 F: GCCTGGTTATTTTTGGAAACTT (ATA)9 277 MH167510
R: TGTGTGCGCACTTAGGTGAT
H26 F: GTGTCCGCACTTCATAGGGT (TTG)8 219 MH167511
R: CGCCTCCTTAACTGCATACC
H27 F: GCTCACTAACTCTGCCTGGG (CAT)5 266 MH167512
R: TTCCGGAAAGCCAGTCATAC
H28 F: ATTCTGCTTTGGACCTGCAT (ATT)5 172 MH167513
R: TGCTCATACAAATGTCCCAAA
H33 F: CCTTGGTTTCCCTCATTTCA (TC)19 272 MH167514
R: TGAATCTTGTGGTTCGTCCA
H34 F: TTTACTTGGGGACTTGGGAA (TA)10 100 MH167515
R: ACAAGAGTCCTGAAGTTTGAATGA
H36 F: CATAGTAAAAACACATTGAACACACTG (TA)7 257 MH167516
R: TTGACAGTAAAAATACTAAAAATGGTG
H38 F: CAACGGAATTCAAAAATCTCG (TTAT)9 276 MH167517
R: CGCTGCAATGTTCATACGAC
H39 F: CAACCCCTCTCCCCTCTAAA (TACA)9 253 MH167518
R: GGGTCCGTTGGTTTTAGCTT
H40 F: ACGGGTTTAAGCGCTAAGGT (TATG)8 246 MH167519
R: TTGAAGGGGAAAATGTGCTC
H41 F: AAGCCACATGCCAAGTTTTC (AAAC)7 222 MH167520
R: TTGTTTTGAAGGTTGGGTCA
H42 F: AAGGCATTGCTGTCATTTCC (TATG)7 274 MH167521
R: TCCTTCAAAGACCCCGTACA
H43 F: TCGAAGAAAAAGCTGGAAGC (TTC)15 177 MH167522
R: ACTTAGGTACCCATCCCTATCAT
H44 F: AAAAACAACACCCAACCCAT (TTA)15 183 MH167523
R: GGAGTTGGAATGCCTTTGTC
H46 F: TCAAAATTGATGTGGCACTAGC (ATT)14 232 MH167524
R: CAAGGGAATTTTGTTGGCAT
H47 F: TGGCATCATTTTACTTTCTAAGCA (TAA)14 279 MH167525
R: TGATGGGACTCAATCACTTTG
H48 F: CAAAGCCTCAATGATGACGA (TAA)14 264 MH167526
R: TGAAGGGTTCAAAAAGAGATGAA
H49 F: TCCTTTGCATACTAGGGAAATAAAA (AAG)13 188 MH167527
R: CTTGGAGTCCTTGGAGCTTG
H50 F: GAGGGAGCATAGCAAAGGTG (TTA)13 221 MH167528
R: TCAAATGTGGACCTTAAATCACTC
H55 F: TCTCCCGATTTGAGGGTATG (GA)25 217 MH167531
R: ACGTCATTGCGAGTCCTCTT
H56 F: CGAGAAAGGTCAAAGGTGGA (GA)25 164 MH167532
R: ATTGCAAAACGAAGCCTCTG
H58 F: TCTTAAAGGGTCAATGGGCA (TC)23 220 MH167534
R: AATCACACAACACCGCCTTT
H59 F: CGCTAATGCGCATCTGTACT (TC)23 245 MH167535
R: TTGGAAAACCTGCTCGATCT
H62 F: TGCCTTTGCTTGTTATGTTGTC (TTGCCT)7 227 MH167536
R: TCGATACCAAATGAGGGCAT
H65 F: TTGAAAGCAGGAAATGGACA (ATAAAA)5 127 MH167539
R: AAAGTAGTGACCCCCGTCCT
H68 F: AACCAATTGAAAAGAAAAGAACG (CTTTT)7 280 MH167541
R: GACTCCCTAATGTCGGCAAA
H70 F: GGTCAACAGAAATATGGCCC (TGAGT)6 272 MH167542
R: GATGCCTGTGGTCTCTGGAT
H72 F: TATCACGACTTTGTGCCTGC (TTTTC)5 222 MH167544
R: TGCTAGCAATGCTTTCCGAT
H73 F: GCCCGATAATCTCAACTGGA (TTTCT)5 203 MH167545
R: TGGCTGCCTAGCTAACACCT
H74 F: CATCCTTATCCACCCACCAC (TATTA)5 114 MH167546
R: AACGAAGGAGCGTAGTGTCG
H76 F: CATTGCCAAATTTGAGAGCA (AAAC)6 245 MH167547
R: TCTAAACAATTCGTTCGGGC
H79 F: TCCGATTAAAAACTGCCACC (CT)15 268 MH167549
R: ATATTTCCCAGCGTGTCAGG
H80 F: CTTTGCCTGAATGGCTGAAT (CT)15 182 MH167550
R: TTCAATAGGCAAGCAATCCC
H81 F: GTCGAGAACACTTCCATGCC (TG)24 251 MH167551
R: TACGTCACCCCGTAAGATCC
H83 F: TTGTGGTTCTTATGGCCCTC (AG)21 147 MH167552
R: AGCTTCACTTGCCTCATCGT
H84 F: CACACCTGCAAAATCACCAC (AG)21 240 MH167553
R: ATTTGATACATTGGCGAGGC
H85 F: CCTGCCGTTGCAATAACTCT (AT)11 169 MH167554
R: TGGTAGACATGGCATCCGTA
H88 F: ATGACCTTCAACAGGCACAT (TAT)16 181 MH167556
R: CATTGCAATCAAAATCGTTCA
H91 F: TAGTTGATTGGCTCCCTTGG (TCTA)7 239 MH167557
R: CCCTCTCGCTATGTTTCTGC
H92 F: CGTGGGATCAAGGGAAGTAG (CAAC)7 217 MH167558
R: GGATGTGACTGTGCTTCCAA
H93 F: GGGCAATGTCCCTTCTTGTA (AAAT)5 231 MH167559
R: AGAATTGTTAGGGCCGGTTT
H100 F: CTGCAAATCTTGGTTTGGCT (TTTCC)5 146 MH167562
R: AATTCCCCAGAAAAGGTTCG
H105 F: TTAGGCTCCGTTTGGTTGTC (AGGAA)5 234 MH167564
R: GTGGGAAAATTGTGGACCAA
H108 F: TTTGGTTGAGTGGGACTTGA (TTGG)8 228 MH167565
R: CAAGGGACTGGAGCTCAAAC
H110 F: TCAAGACCTTTTACTCCCAAAAA (AAAG)8 122 MH167566
R: AAAGAGCATCGTGGCTAAAGTC
H111 F: GCATTGGAGGAATACGGTTG (ACAT)7 219 MH167567
R: GGAGCAGAAATTCCACGAAC
H112 F: TGTCCTTTTGGTGTTTTCACA (TTTA)7 230 MH167568
R: AATTCACTGTCACCATCCCC
H113 F: TTCAGTTTCTTTGTTGGGGC (ACAT)7 219 MH167569
R: ATCCAACGCCTCCTAATCCT
H117 F: GAGTGCGTACACGGGTTCTT (TTC)6…(TTC)5 152 MH167571
R: CCCATCTAGTTCCTTCTCTTTGC
H118 F: GGGTGAAGATTTTGGATTCG (TA)9(CA)8 263 MH167572
R: AAATCACAGCCACAGAGTGAGA
H119 F: GCCCTATAGAGGTCACCTTCC (AC)12(AT)12 272 MH167573
R: CTCACCCGAAAGCCATAAAA
H121 F: TTTTGAGAACCAAAATAGAGTATAGCA (AAC)9(AAT)8 257 MH167574
R: TTGGAACTCATCAGTTTTTCCA
H123 F: ATCACTGCTAGTCCGCCACT (CTG)6GTTCTGG(TTC)8 155 MH167576
R: AGGAACCGGGAAAAGAAGAA
H124 F: GACGAGCGTACCCTTCAAAA (GAA)8…(AGA)7 156 MH167577
R: GCGACGCAGTGGTCTTCT
H125 F: GCCAAGTAGCCGACTTTGAA (TTA)10TTTAT(TTA)6 268 MH167578
R: CTGCTCAACTCAACAAAGCCT
H127 F: AGCCTCAAGGCATTACACCA (TCT)5TATTCTTA(TTC)7TTT(TTC)6 263 MH167580
R: GGTACCTATCCCTAGCATGGC
H129 F: ATGCAGAAATGCCCTTGCTA (ATT)9…(ATT)9 228 MH167581
R: GCAATTACAGGTAAAGCTAATCCAA
H133 F: AGAGGTGGTGTTCAAAACGG (TTA)10 200 MH167585
R: TGGCATACCTAAAATCCTAAATCA
H135 F: GGCTAAAGTGAGGTTTTGGC (ATT)14 277 MH167586
R: GCTCCGAGCTAACAAAGCAC
H136 F: TGCAACTAATCCTAACCTTTGAA (GAA)14 132 MH167587
R: AGGAGCAAAGGAGAAGGGAG

Yin, Q. , Huang C., Huang Y., Chen S., Ye H., Fan Q., and Liao W.. 2018. Identification and development of microsatellite markers in Hamamelis mollis (Hamamelidaceae). Applications in Plant Sciences 6(10): e1189.

Notes

N = number of individuals sampled.

1

Vouchers are deposited in Sun Yat‐sen University (SYS), Guangzhou, Guangdong Province, China.

2

Sample used in genome sequencing.

3

Samples used in SSR trials.

Contributor Information

Qiang Fan, Email: fanqiang@mail.sysu.edu.cn.

Wenbo Liao, Email: lsslwb@mail.sysu.edu.cn.

LITERATURE CITED

  1. Doyle, J. J. , and Doyle J. L.. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15. [Google Scholar]
  2. Fan, Q. , Chen S. F., Li M. W., He S. Y., Zhou R. C., and Liao W. B.. 2013. Development and characterization of microsatellite markers from the transcriptome of Firmiana danxiaensis (Malvaceae s.l.). Applications in Plant Sciences 1(12): 1300047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hatmaker, E. A. , Wadl P. A., Mantooth K., Scheffler B. E., Ownley B. H., and Trigiano R. N.. 2015. Development of microsatellites from Fothergilla ×intermedia (Hamamelidaceae) and cross transfer to four other genera within Hamamelidaceae. Applications in Plant Sciences 3(4): 1400123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hernandez, D. , Francois P., Farinelli L., Osteras M., and Schrenzel J.. 2008. De novo bacterial genome sequencing: Millions of very short reads assembled on a desktop computer. Genome Research 18: 802–809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Li, J. , Bogle A. L., and Klein A. S.. 1999. Phylogenetic relationships in the Hamamelidaceae: Evidence from the nucleotide sequences of the plastid gene matK. Plant Systematics and Evolution 218: 205–219. [Google Scholar]
  6. Li, Z. Z. , Tian H., and Zhang J. J.. 2017. Characterization and development of EST‐derived SSR markers in Sinowilsonia henryi (Hamamelidaceae). Applications in Plant Sciences 5(11): 1700080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Meng, K. K. , Li M. W., Fan Q., Tan W. Z., Sun J., Liao W. B., and Chen S. F.. 2016. Isolation and identification of EST‐SSR markers in Chunia bucklandioides (Hamamelidaceae). Applications in Plant Sciences 4(10): 1600064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Patel, R. K. , and Jain M.. 2012. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE 7: e30619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Peakall, R. , and Smouse P. E.. 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28: 2537–2539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rozen, S. , and Skaletsky H.. 1999. Primer3 on the WWW for general users and for biologist programmers In Misener S. and Krawetz S. A. [eds.], Methods in molecular biology, vol. 132: Bioinformatics: Methods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA. [DOI] [PubMed] [Google Scholar]
  11. Sugai, K. , and Setsuko S.. 2016. Novel microsatellite markers for Distylium lepidotum (Hamamelidaceae) endemic to the Ogasawara Islands. BMC Research Notes 9: 332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Thiel, T. , Michalek W., Varshney R. K., and Graner A.. 2003. Exploiting EST databases for the development and characterization of gene‐derived SSR‐markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 106: 411–422. [DOI] [PubMed] [Google Scholar]
  13. Wen, J. , and Shi S. H.. 1999. A phylogenetic and biogeographic study of Hamamelis, (Hamamelidaceae), an eastern Asian and eastern north American disjunctive genus. Biochemical Systematics and Ecology 27: 55–66. [Google Scholar]
  14. Wolfe, J. A. 1966. Tertiary plants from the Cook Inlet region, Alaska. U.S. Geological Survey Professional Paper 398‐B. U.S. Government Printing Office, Washington, D.C., USA.
  15. Zhang, Z. Y. , and Lu A. M.. 1995. Hamameidaceae: Geographic distribution, fossil history and origin. Acta Phytotaxonomica Sinica 33: 313–339. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

All genomic sequences of 136 pairs of primers were deposited in the National Center for Biotechnology Information (NCBI) GenBank database (MH167492MH167587). The filtered raw read data and the assembled contigs were also deposited in NCBI databases (BioSample: SAMN09010486, BioProject: PRJNA454742, Sequence Read Archive [SRA]: SRR7110723, Transcriptome Shotgun Assembly [TSA]: GGNJ00000000).


Articles from Applications in Plant Sciences are provided here courtesy of Wiley

RESOURCES