Skip to main content
Data in Brief logoLink to Data in Brief
. 2018 Oct 9;21:675–683. doi: 10.1016/j.dib.2018.10.010

Data from X-ray crystallographic analysis and DFT calculations on isomeric azo disperse dyes

Jihye Lim 1,1, Malgorzata Szymczyk 1, Nahid Mehraban 1, Yi Ding 1,2, Lisa Parrillo-Chapman 1, Ahmed El-Shafei 1, Harold S Freeman 1,
PMCID: PMC6202689  PMID: 30377652

Abstract

X-ray crystallography and DFT calculations were used to characterize the molecular nature and excited state properties of isomeric photostable azo dyes for textile fibers undergoing extensive sunlight exposure. Structural data in CIF files arising from X-ray analysis are reported and the complete files are deposited with the Cambridge Crystallographic Data Centre as CCDC 1548989 (https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1548989) and CCDC 1548990 (https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1548990). Data from calculating the vertical electronic excitation of 20 excited states for each dye and from calculating excited state oxidation potential (ESOP) and Frontier HOMO/LUMO isosurfaces are also presented. This data is related to the article “Molecular and excited state properties of isomeric scarlet disperse dyes” (Lim et al., 2018) [1].

Specifications table

Subject area Chemistry, Photophysics
More specific subject area Inkjet printing, Azo Dyes, Excited State Properties, X-ray Crystallography.
Type of data Table, Image (x-ray, TD-DFT calculations), Figure
How data was acquired X-ray Diffraction Analysis: Bruker-Nonius X8 Apex2 Diffractometer; DFT Calculations: Gaussian 09 (B3LYP and DGDZVP).
Data format Raw, analyzed.
Experimental factors Slow evaporation of CH2Cl2 solutions of dyes at room temperature gave thin plate-like single crystals that for X-ray analysis
Experimental features Excited structures determined using single point energy calculations. Vertical electronic excitations of 20 excited states were solved and excited state oxidation potentials were extracted.
Data source location North Carolina State University, Raleigh, NC, USA.
Data accessibility Data is with this article. X-ray: Cambridge Crystallographic Data Centre as CCDC 1548989 (https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1548989) and CCDC 1548990 (https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1548990).
Related research article Jihye Lim, Malgorzata Szymczyk, Nahid Mehraban, Yi Ding, Lisa Parrillo-Chapman, Ahmed El-Shafei, Harold S. Freeman, Molecular and excited state properties of isomeric scarlet disperse dyes, J. Molec. Struc., Vol. 1161, 254–261.

Value of the data

  • The data illustrate the reliability of current day molecular modeling methods for generating equilibrium geometries of monoazo dyes that are comparable to X-ray crystal structures.

  • The data show essential calculations for predicting the molecular and excited state properties of organic dyes.

  • The data are useful for further studies on the development of synthetic dyes having high photostability.

  • The data show key vertical electronic excitations of 20 excited states for each dye along with the oscillator strength and molecular orbitals involved.

1. Data

The data arise from X-ray crystallographic analysis and computational methods in the characterization of isomeric monoazo dyes Sc2 and Sc3 for textile fibers. The data are Supplementary material for the study describing the “Molecular and excited state properties of isomeric scarlet disperse dyes” [1].

The overlay of data from X-ray and computational analysis of dyes Sc2 and Sc3 is shown in Fig. 1, to demonstrate the ability of DFT-based calculations to accurately predict the structures of these monoazo dyes. Root-mean squared (RMS) values were 0.0053 for Sc2 and 0.0001 for Sc3. Other key crystallographic data for the two dyes are summarized in Tables 1 and 2, including the associated crystal systems, space groups, molecular volumes, number of molecules per unit cell, 2θmax values, and bond lengths. The latter values are especially helpful in establishing the tautomeric form (azo vs. hydrazone) of the dyes analyzed (cf. N1–N2, N2–C8, N4–C12 data) (Table 3).

Fig. 1.

Fig. 1

The X-ray structures (top) of Sc2 (a) and Sc3 (b) superimposed on the calculated structures (bottom).

Table 1.

Crystallographic data for the major components of the scarlet disperse dye.

Sc2 Sc3
Composition C20H14F3N7O2·0.5(CH2Cl2) C20H14F3N7O2
Formula Weight 483.84 441.38
Temperature (K) 100.01 100.04
Crystal system Monoclinic Triclinic
Space group P21/c P-1
a (Å) 20.753(2) 7.5946(2)
b (Å) 6.5429(8) 11.0682(3)
c (Å) 16.9106(19) 11.3236(3)
α (°) 90 80.9900(10)
β (°) 113.308(5) 88.6460(10)
ϒ (°) 90 81.4210(4)
Volume (Å3) 2108.8(4) 929.59(4)
Z 4 2
ρcalcg (g/cm3) 1.524 1.577
μ (mm-1) 0.243 0.128
F(000) 988 452
Crystal dimension (mm) 0.142 × 0.105 × 0.057 0.518 × 0.309 × 0.247
2θmax (°) 4.818–46.51 3.642–72.86
Reflections collected 7750 28,451
Independent reflections 2984 9000
Reflections observed 1711 7465
Number of variables 323 299
R1 [I > 2σ(I)] 0.0542 0.0405
wR2 [I > 2σ(I)] 0.1127 0.1152
wR1 [all data] 0.1171 0.0506
wR2 [all data] 0.1341 0.1241
Largest Diffraction peak/ hole (e3) 0.31/− 0.25 0.70/− 0.46
Max. shift in final cycles < 0.001 < 0.001

Table 2.

Bond lengths for SC2.

Atom Atom Length/Å Atom Atom Length/Å
F1 C7 1.341(5) C2 C7 1.503(5)
F2 C7 1.343(5) C3 C4 1.379(6)
F3 C7 1.346(4) C4 C5 1.383(5)
O1 N3 1.226(5) C5 C6 1.375(5)
O2 N3 1.236(4) C8 C9 1.419(5)
N1 N2 1.284(4) C8 C12 1.426(5)
N1 C1 1.419(5) C9 C10 1.377(5)
N2 C8 1.380(4) C9 C13 1.499(5)
N3 C4 1.464(5) C10 C11 1.430(5)
N4 C12 1.344(4) C10 C14 1.428(5)
N5 C11 1.326(4) C15 C16 1.389(5)
N5 C12 1.349(4) C15 C20 1.387(5)
N6 C11 1.358(4) C16 C17 1.383(6)
N6 C15 1.413(5) C17 C18 1.377(6)
N7 C14 1.154(5) C18 C19 1.384(6)
C1 C2 1.400(5) C19 C20 1.386(5)
C1 C6 1.397(5) Cl1 C1S 1.730(11)
C2 C3 1.384(5) Cl2 C1S 1.765(11)

Table 3.

Bond lengths for SC3.

Atom Atom Length/Å Atom Atom Length/Å
F1 C7 1.3451(9) C1 C6 1.4057(10)
F2 C7 1.3380(9) C2 C3 1.3868(9)
F3 C7 1.3399(8) C3 C4 1.3838(10)
O1 N3 1.2248(10) C4 C5 1.3910(10)
O2 N3 1.2243(10) C5 C6 1.3825(10)
N1 N2 1.2848(8) C8 C9 1.4176(9)
N1 C1 1.4134(9) C8 C12 1.4501(9)
N2 C8 1.3675(8) C9 C10 1.3852(9)
N3 C4 1.4579(9) C9 C13 1.5007(10)
N4 C11 1.3322(9) C10 C11 1.4329(10)
N4 C12 1.3351(8) C10 C14 1.4233(10)
N5 C14 1.1546(9) C15 C16 1.4013(10)
N6 C11 1.3341(9) C15 C20 1.3990(10)
N7 C12 1.3503(9) C16 C17 1.3911(10)
N7 C15 1.4127(9) C17 C18 1.3868(11)
C7 C2 1.5026(10) C18 C19 1.3910(11)
C1 C2 1.4084(9) C19 C20 1.3868(10)

Data for intermolecular H-bonding interactions between layers of molecules positioned parallel to each other are given in Fig. 2. The unit cell for Sc2 shows intermolecular H-bond distances between the NH2 and CN groups (2.418 Å). Also seen are short contacts corresponding to intermolecular hydrogen bonds for Sc3, namely the NO2 and NH2 groups (2.188 Å), and the NH2 and CN groups (2.512 Å).

Fig. 2.

Fig. 2

Unit cells showing intermolecular interactions (Å) between molecules of Sc2 (a) and Sc3 (b).

Calculation of vertical electronic excitation energies for 20 excited states along with the oscillator strength (f) and molecular orbitals involved for each dye led to the raw data shown in Tables 4 and 5 for Sc2 and Sc3. From these data the excited state oxidation potential (ESOP) for each dye can be extracted.

Table 4.

Calculated excitation energies and oscillator strengths for the 20 excited states of Sc2.

Excited State 1: Singlet-A 2.3593 eV 525.52 nm f = 1.0963
111 ->114 0.16845
113 ->114 0.68009
Excited State 2: Singlet-A 2.4599 eV 504.02 nm f = 0.0772
111 ->114 0.61550
111 ->115 − 0.18095
112 ->114 − 0.19991
113 ->114 − 0.19321
Excited State 3: Singlet-A 3.0046 eV 412.65 nm f = 0.0698
111 ->114 0.22058
112 ->114 0.66351
Excited State 4: Singlet-A 3.3435 eV 370.82 nm f = 0.2245
109 ->114 0.12672
113 ->115 0.68917
Excited State 5: Singlet-A 3.4878 eV 355.48 nm f = 0.0107
110 ->114 0.70043
Excited State 6: Singlet-A 3.6637 eV 338.41 nm f = 0.0109
105 ->114 0.14783
111 ->114 0.18820
111 ->115 0.60693
112 ->115 − 0.22758
Excited State 7: Singlet-A 3.7276 eV 332.61 nm f = 0.0050
105 ->114 0.59143
105 ->115 0.31989
109 ->114 0.10910
111 ->115 − 0.13494
Excited State 8: Singlet-A 3.7570 eV 330.01 nm f = 0.0971
109 ->114 0.65678
113 ->115 − 0.11278
Excited State 9: Singlet-A 3.9326 eV 315.28 nm f = 0.0126
108 ->114 0.54817
112 ->115 − 0.11815
113 ->116 0.23227
113 ->117 − 0.31543
Excited State 10: Singlet-A 3.9699 eV 312.31 nm f = 0.0747
108 ->114 0.12487
109 ->114 − 0.13850
111 ->115 0.14977
112 ->115 0.42170
113 ->116 0.36207
113 ->117 0.32511
Excited State 11: Singlet-A 4.0260 eV 307.96 nm f = 0.0300
111 ->115 0.17399
112 ->115 0.47223
113 ->116 − 0.27249
113 ->117 − 0.39237
Excited State 12: Singlet-A 4.0562 eV 305.67 nm f = 0.0019
107 ->114 0.66738
107 ->115 − 0.17285
Excited State 13: Singlet-A 4.2097 eV 294.52 nm f = 0.0568
108 ->114 − 0.39065
113 ->116 0.46544
113 ->117 − 0.34136


 

 

 

 


Excited State 14: Singlet-A 4.2568 eV 291.26 nm f = 0.0003
103 ->114 0.62259
103 ->115 0.32497
Excited State 15: Singlet-A 4.4996 eV 275.54 nm f = 0.0045
110 ->115 0.67093
113 ->119 − 0.15611
Excited State 16: Singlet-A 4.5874 eV 270.27 nm f = 0.0100
106 ->114 0.54991
111 ->116 − 0.24554
113 ->118 0.31130
Excited State 17: Singlet-A 4.5933 eV 269.92 nm f = 0.0026
106 ->114 0.17037
111 ->116 0.44354
111 ->117 0.40398
112 ->116 − 0.20839
112 ->117 − 0.20558
Excited State 18: Singlet-A 4.6084 eV 269.04 nm f = 0.0008
106 ->114 − 0.11476
111 ->116 − 0.40558
111 ->117 0.50411
112 ->116 0.16311
112 ->117 − 0.15477
Excited State 19: Singlet-A 4.6379 eV 267.33 nm f = 0.1619
106 ->114 − 0.30153
113 ->118 0.60206
Excited State 20: Singlet-A 4.7032 eV 263.62 nm f = 0.0287
109 ->115 0.63757
111 ->116 0.10091
112 ->117 0.14383

Table 5.

Calculated excitation energies and oscillator strengths for the 20 excited states of Sc3.

Excited State 1: Singlet-A 2.3700 eV 523.13 nm f = 0.5373
111 ->114 0.11383
112 ->114 − 0.18480
113 ->114 0.66822
Excited State 2: Singlet-A 2.4473 eV 506.61 nm f = 0.1416
111 ->114 0.50266
111 ->115 − 0.16373
112 ->114 − 0.39149
113 ->114 − 0.21595
Excited State 3: Singlet-A 3.0048 eV 412.61 nm f = 0.4636
111 ->114 0.42774
112 ->114 0.54660
Excited State 4: Singlet-A 3.3508 eV 370.01 nm f = 0.0122
110 ->114 0.64733
111 ->114 − 0.10057
113 ->115 0.24591
Excited State 5: Singlet-A 3.3624 eV 368.74 nm f = 0.0530
110 ->114 − 0.24661
113 ->115 0.64269
Excited State 6: Singlet-A 3.6418 eV 340.45 nm f = 0.0038
111 ->114 − 0.17595
111 ->115 − 0.44934
112 ->115 0.47335
Excited State 7: Singlet-A 3.7276 eV 332.61 nm f = 0.0003
105 ->114 0.60898
105 ->115 0.33006
Excited State 8: Singlet-A 3.8726 eV 320.16 nm f = 0.0456
107 ->114 − 0.17843
109 ->114 0.61937
111 ->115 − 0.15064
113 ->116 − 0.15214
113 ->117 − 0.10277
Excited State 9: Singlet-A 3.9310 eV 315.40 nm f = 0.0241
107 ->114 0.39742
108 ->114 0.35278
111 ->115 − 0.11320
112 ->115 − 0.10887
113 ->116 − 0.27464
113 ->117 0.30370
Excited State 10: Singlet-A 3.9832 eV 311.27 nm f = 0.0557
108 ->114 0.20907
109 ->114 0.26135
111 ->115 0.33755
112 ->115 0.32994
113 ->116 0.35017
113 ->117 0.13756
Excited State 11: Singlet-A 4.0392 eV 306.95 nm f = 0.5148
107 ->114 0.13790
111 ->115 − 0.29550
112 ->115 − 0.32129
113 ->116 0.49368
113 ->117 0.12655
Excited State 12: Singlet-A 4.1265 eV 300.46 nm f = 0.0008
106 ->114 0.64834
106 ->115 − 0.17133
108 ->114 0.12260
Excited State 13: Singlet-A 4.1991 eV 295.27 nm f = 0.0884
108 ->114 − 0.40583
113 ->116 − 0.10829
113 ->117 0.53076
Excited State 14: Singlet-A 4.2585 eV 291.14 nm f = 0.0006
103 ->114 0.62158
103 ->115 0.32547
Excited State 15: Singlet-A 4.2974 eV 288.51 nm f = 0.0161
106 ->114 0.10519
107 ->114 0.48658
108 ->114 − 0.34478
109 ->114 0.10188
113 ->117 − 0.26919
Excited State 16: Singlet-A 4.3887 eV 282.51 nm f = 0.0007
106 ->114 0.10513
110 ->115 0.65507
111 ->116 − 0.10839
112 ->116 0.15738
Excited State 17: Singlet-A 4.4058 eV 281.41 nm f = 0.0203
110 ->115 − 0.19596
111 ->116 − 0.33235
112 ->116 0.57520
Excited State 18: Singlet-A 4.5811 eV 270.64 nm f = 0.0046
111 ->117 − 0.46157
112 ->117 0.51752
Excited State 19: Singlet-A 4.6346 eV 267.52 nm f = 0.1259
111 ->116 0.59135
112 ->116 0.32627
Excited State 20: Singlet-A 4.8246 eV 256.98 nm f = 0.0022
110 ->116 0.43307
110 ->120 0.13187
112 ->118 − 0.16383
113 ->118 0.48759

2. Experimental design, materials, and methods

Single crystal X-ray diffraction analysis was conducted using a Bruker–Nonius X8 Apex2 diffractometer. The frame integration was performed with the program SAINT. The resulting raw data was scaled and absorption corrected using a multi-scan averaging of symmetry equivalent data using SIRPOW [2]. Structures were solved using the program SHELXT [3].

Slow evaporation of CH2Cl2 solutions of Sc2 and Sc3 at room temperature gave thin plate-like single crystals that were suitable for X-ray crystallographic analysis. The equilibrium molecular geometries (EMGs) of Sc1, Sc2 and Sc3 were calculated in the neutral forms using density functional theory (DFT) employing the generalized gradient approximation (GGA) at the hybrid exchange-correlation energy functional 3-Parameter (Exchange), Lee et al. (B3LYP) [4], [5] and the full-electron basis set Density Gauss double-zeta with polarization functions (DGDZVP) [6], [7], implemented in Gaussian 09. The X-ray structures of Sc2 and Sc3 were superimposed on the corresponding calculated molecular geometries and the RMS was calculated in each case. The isosurfaces of the HOMO and LUMO were extracted for each dye from the corresponding checkpoint files. In addition, TD-DFT calculations were performed on the EMGs and the geometry of the excited state structure was calculated using single point energy calculations for each dye. Vertical electronic excitation energies for 20 excited states were calculated for each dye and the excited state oxidation potential (ESOP) for each dye was extracted.

Acknowledgments

The authors thank the Walmart Innovation Fund (Grant no. 558811) for financial support and the Department of Chemistry at North Carolina State University for use of the Apex2 diffractometer.

Footnotes

Transparency document

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.10.010.

Transparency document. Supplementary material

Supplementary material

mmc1.docx (12.5KB, docx)

References

  • 1.Lim J., Szymczyk M., Mehraban N., Ding Y., Parrillo-Chapman L., El-Shafei A., Freeman H. Molecular and excited state properties of isomeric scarlet disperse dyes. J. Mol. Struct. 2018;1161:254–261. [Google Scholar]
  • 2.Altomare A., Cascarano G., Giacovazzo C., Guagliardi A., Burla M., Polidori G. SIRPOW. 92–a program for automatic solution of crystal structures by direct methods optimized for powder data. J. Appl. Cryst. 1994;27:435–436. [Google Scholar]
  • 3.Bruker . Bruker Analytical X-ray Instruments Inc.; Madison, Wisconsin, USA: 2000. Structure Determination Programs. Version 6.10, SHELXTL. [Google Scholar]
  • 4.Lee C.T., Yang W.T., Parr R.G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens Matter. 1988;37:785–789. doi: 10.1103/physrevb.37.785. [DOI] [PubMed] [Google Scholar]
  • 5.Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/physreva.38.3098. [DOI] [PubMed] [Google Scholar]
  • 6.Godbout N., Salahub D.R., Andzelm J., Wimmer E. Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Can. J. Chem. 1992;70:560–571. [Google Scholar]
  • 7.Sosa C., Andzelm J., Elkin B.C., Wimmer E., Dobbs K.D., Dixon D.A. A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds. J. Phys. Chem. 1992;96:6630–6636. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary material

mmc1.docx (12.5KB, docx)

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES