Skip to main content
PLOS One logoLink to PLOS One
. 2018 Oct 26;13(10):e0205961. doi: 10.1371/journal.pone.0205961

Numerical characterization of regenerative axons growing along a spherical multifunctional scaffold after spinal cord injury

Weiping Zhu 1,*, Han Zhang 1, Xuning Chen 1, Kan Jin 1, Le Ning 1
Editor: Michael G Fehlings2
PMCID: PMC6203361  PMID: 30365562

Abstract

Spinal cord injury (SCI) followed by extensive cell loss, inflammation, and scarring, often permanently damages neurological function. Biomaterial scaffolds are promising but currently have limited applicability in SCI because after entering the scaffold, regenerating axons tend to become trapped and rarelyre-enter the host tissue, the reasons for which remain to be completely explored. Here, we propose a mathematical model and computer simulation for characterizing regenerative axons growing along a scaffold following SCI, and how their growth may be guided. The model assumed a solid, spherical, multifunctional, biomaterial scaffold, that would bridge the rostral and caudal stumps of a completely transected spinal cord in a rat model and would guide the rostral regenerative axons toward the caudal tissue. Other assumptions include the whole scaffold being coated with extracellular matrix components, and the caudal area being additionally seeded with chemoattractants. The chemical factors on and around the scaffold were formulated to several coupled variables, and the parameter values were derived fromexisting experimental data. Special attention was given to the effects of coating strength, seeding location, and seeding density, as well as the ramp slope of the scaffold, on axonal regeneration. In numerical simulations, a slimmer scaffold provided a small slope at the entry “on-ramp” area that improved the success rate of axonal regeneration. If success rates are high, an increased number of regenerative axons traverse through the narrow channels, causing congestion and lowering the growth rate. An increase in the number of severed axons (300–12000) did not significantly affect the growth rate, but it reduced the success rate of axonal regeneration. However, an increase in the seeding densities of the complexes on the whole scaffold, and that in the seeding densities of the chemoattractants on the caudal area, improved both the success and growth rates. However, an increase in the density of thecomplexes on the whole scaffold risks an over-eutrophic surface that harms axonal regeneration.Although theoretical predictions are yet to be validated directly by experiments, this theoretical tool can advance the treatment of SCI, and is also applicable to scaffolds with other architectures.

Introduction

Spinal cord injury (SCI) typically results in a permanent loss of neurological function below the level of the injury [1,2]. Recovery from SCI is poor owing to weak intrinsic growth capacity of axons and an inhibitory microenvironment, as well as a lack of suitable growth substrates and growth-stimulating factors, that limit axonal regeneration. Many efforts have been made to overcome these impediments [3,4,5,6,7], including implanting of cells [8,9] and/or biomaterials [10,11,12,13,14,15,16,17], delivery of growth factors and degradation of inhibitory matrix molecules [18,19,20,21,22,23,24,25], activation of an intrinsic growth program [26], and stabilization of growth cones and the axonal cytoskeleton [27]. Biomaterial scaffolds that can fill or bridge a lesion cavity, provide a substrate for cell seeding, offer physical guidance to regenerating axons or act as a vehicle for drug delivery are highly promising for cellular and molecular regenerative therapies [19]. However, the use of biomaterial scaffolds as a bridge for SCI repair is complicated; for instance, a popular biomaterial scaffold has tunnels/linear pores, which could guide regenerating axons along these tunnels [14,19]. However, significant congestion was observed at the entry points to the scaffold, which lowered the number of axons entering the pores [19]. If pores were coated or seeded with extracellular components (ECM) components [14] or cells [19], the axons were likely to enter the tunnels from both rostral and caudal ends, but became trappedwithin them [14], unless an additional injection of cells and/or growth factors close to either side of the bridge was administered [18,19], after which some of the trapped axons would be attracted to the injection site and re-enter host tissues [19]. These issues involve the architecture of the “on-ramp” and “off-ramp” parts of the bridge[3], and the concentration gradients of the molecules released from the cells around and seeded on the scaffold, and their influence on successful growth rates of regenerative axons have not yet been clarified.As an analytical tool, mathematics can be used to address many aspects of these issues, for example, the role of slopes at the on-ramp part of a scaffold. When a scaffold with linear pores is used, the axons whose growth cones face to the pores can easily enter the pores owing to the zero entry slope for them, whereas for axons beside the pores, an abrupt or infinite (mathematically) slope exists, which obstructs the axons and leads to congestion. Therefore, theoretical models which address the physical basis underlying the regulatory effect of ligand gradients on axonal growth cone motility are highly desirable, astheyhave been previously used for studying axonal growth during neural development [28,29,30,31]. Axonal growth or regrowth follow the same principle, both during development and following injury. A difference between them, however, has been observed in the level of factors present in their microenvironments [1,2]. Therefore, a theoretical model for axonal growth during development should be modified for studying SCI.Previously, in an initial study [32], we numerically demonstrated that SCI leaves a spherical glial scar. During therapeutic treatment with Schwann cell coating, regenerating axons were shown to grow across the scar and reach their target cellsunder certain conditions.

In this study, we assumed a solid, spherical, multifunctional, biomaterial scaffold that would bridge the rostral and caudal stumps of a completely transected spinal cord in a rat model and guide the regenerative rostral axons toward the caudal tissue (Fig 1). The rostral and caudal areas of the scaffold were referred to as the entry "on-ramp" area and the exit "off-ramp" area, respectively. The whole scaffold was coated with extracellular matrix components, and the caudal area (off-ramp) was additionally seeded with chemoattractants. In this context, the chemical factors on and around the scaffold were formulated to several coupled variables, and the parameter values were derived fromexisting experimental data. The effects of axonal regeneration on the on-ramp slope of the scaffold and biomedical modifications were numerically simulatedto provide a quantitative interconnection between axonal regeneration and the biophysical properties of the components for rational design of scaffolds in tissue engineering [33], as well as contribute to a better understanding of the biological processes involved. From this model and the simulations, we can learn what constitutes a good scaffold, good entry points for regenerative axons,and the resultant concentrations of the molecules from the microenvironment and the scaffold, and how the sources of the main attractants vary along the length of the scaffold in a monotonic curve. Moreover, our model can be modified to optimize scaffolds with other architectures, includingdifferences in size and shape, in concentration of molecules inside and around the scaffold, and before and after experiments.

Fig 1. Schematics of an injured spinal cord bridged by a spherical scaffold.

Fig 1

a) A complete transection of spinal cord with a gap bridged by a spherical scaffold between the rostral and caudal stumps. b) The scaffold architecture, coordinate system, and symbols employed in the mathematical models. The fabricated scaffold is assumed to be coated with hydroxylapatite (HA)/extracellular matrix (ECM) components (collagen I, fibronectin, and laminin I) and HA/LV-chondroitinase ABC (ChABC) over the whole surface (green). Additional HA/LV-NT-3/LV-brain-derived neurotrophic factor (BDNF) was coated on the off-ramp area (yellow).

Materials and methods

Materials and methods have been described primarily from the computational point of view.

Geometry of the scaffold

The scaffold is assumed to be a rotational ellipsoid in such a coordinate system that the z-axis is the rotational axis and is orthogonal to the x- and y-axes (Fig 1B), and the origin O (0, 0, 0) is at the ellipsoid center. The lateral and longitudinal semi-axes of the ellipsoid are denoted by ra and rb, respectively. When ra and rb are equal, the ellipsoid becomes a perfect sphere. Moreover, the rostral and caudal sides of the scaffold are defined as the entry on-ramp and exit off-ramp, respectively [3]. The longitudinal length of the on-ramp/off-ramp (measured from the scaffold end-point to where the rotational radius of the scaffold surface equals rR/rC) is rb/3. The length parameters (ra,rb, rC,rR, and others) are scaled to dimensionless values by the characteristic length L of the model. The parameter ra is controllable, and rb is fixed at 2 × rb× L = 3 mm (spanning the gap of the spinal cord). Three scaffolds were prepared: slim (ra×rb = 0.15×0.3), round (0.3×0.3), and stocky (0.45×0.3), labeled as No. 1, No. 2, and No. 3, respectively. For brevity, all scaffolds are referred to as “spherical”, noting that when the longitudinal size rb is fixed, the on-ramp/off-ramp slope is proportional to the lateral size ra. Correspondingly, the entry slopes of the slim, round, and stocky scaffolds are small, medium, and large, respectively. Therefore, when studying the effect of the entry slope of the scaffold on axonal regeneration, we need to vary ra in the model.

Assumptions about fabrication, coating, and seeds of the scaffold

In the currentstudy,processing a scaffold relates to setting the model parameters. There are several existing techniques available for fabrication and modification of the scaffold, for example the poly (D,L-lactide-co-glycolide) (PLG) with a gas-foaming/particulate-leaching process [14,24]. To prepare the coating and seeds of the scaffold, hydroxylapatite (HA) nanoparticles (Sigma-Aldrich) were suspended in phosphate-buffered saline and sonicated for 1 min to dissociate the aggregates [14,24]. The nanoparticles were then complexed with several ECM components (forming HA/ECMs), including collagen I (BD Biosciences, San Jose, CA), fibronectin (Sigma-Aldrich, St. Louis, MO), and laminin I (Trevigen, Gaithersburg, MD) [22]. Lentivirus was used to encode the neurotrophic factors NT-3 (HA/LV-NT-3) and BDNF (HA/LV-BDNF) [24] and the ChABC gene (HA/LV-ChABC) [21,23,24]. The HA/ECMs and HA/virus complexes were then incubated for 10 min at 4°C and deposited onto the scaffold surface using Stripper pipette tips (Mid-Atlantic Diagnostics, Mount Laurel, NJ). The HA/ECMs and HA/LV-ChABC were coated over the entire surface, whereas HA/LV-NT-3 and HA/LV-BDNF were only deposited on theoff-ramp surface of the bridge. Although HA could firm the coating and/or seeds on the PLG material surface [24], it probably stimulates bone formation [34]; therefore, it would be best to avoid the overuse of HA. In addition, the prepared scaffold should be placed on dry ice until implantation. This scaffold could then beused to replace previous scaffolds used in a rat model for SCI repair [10,11,16], to bridgea gap of approximately 3 mm. The scaffold was considered to perform the following functions:the factors seeded on the bridge surface were localized and sustained; the on-ramp slope introduced the rostral regenerative axons onto the scaffold; the secreted ChABC cleared the growth pathways; the ECM components kept the axons on target; and the gradients of the secreted NT-3 and BDNF guided the growing rostral axons along the correct path while blocking the caudal axons.

Scaffold surface equation and constraints for growth cones

Geometrically, the scaffold is an ellipsoid that rotates about its z-axis (Fig 1B). The surface equation reads as follows:

(R/ra)2+(z/rb)2=1,withR=x2+y2. (1)

Here, x, y, and z are the coordinates of a point on the surfaceand R is the distance from that point to the z-axis.

When an axon grows along the scaffold surface, the growth cone can be considered as a particle moving on the surface. The ECM molecules coated on the scaffold are assumed to strongly adhere to the membrane proteins of the growth cones, tethering them to the scaffold. In other words, the movements of the growth cones are constrained by Eq (1). Taking the time derivative of both sides of Eq (1), the constraint conditions of the growth cone velocity can then be obtained as follows:

VR=(ra/rb)2Vzz/R,VR=dR/dt,Vz=dz/dt, (2)
Vx=dx/dt=VRx/R,Vy=dy/dt=VRy/R, (3)

where Vx, Vy, and Vz are the velocity components of a growth cone in the x-, y-, and z-directions, respectively, and VR is the velocity component along the rotational radius R. In Eq (2), Vz is the longitudinal velocity of the growth cone, which defines the drawing speed or growth rate of the axons. When Vz>0, the axon is elongating. Otherwise it is retracting. VR is the lateral velocity of the growth cone. When Vz>0 and z<0, VR>0 and the growth cone progresses from the on-ramp of the scaffold. Conversely, when Vz>0 and z>0, VR<0 and the growth cone advances to the off-ramp. In the next two subsections, we describe the drawing force and locomotive guidance of the growth cone along the scaffold.

Equations for axonal growth

Many pieces of evidence have shown that axonal growth cones move because of chemotactic processes, biased toward (attractive chemotaxis) or away from (repulsive chemotaxis) the chemical source [35,36,37]. The chemicals that attract and repel regenerative axons are found on and around the multifunctional scaffold (this is hereafter assumed to be the case in the implanted status), and will be classified in the next subsection. The chemotactic force, which defines the attractive or repulsive action on a growth cone, is proportional to the gradient of the diffusible molecules released from the chemical source [29,32,37,38,39,40,41]. The growth cone can be regarded as a particle whose persistent velocity determines the growth rate of an axon. As axonal growth is particularly slow (approximately 0.01 μms−1) [35,36,37], the acceleration or inertial force can be neglected [24]. Stochastic factors can also be neglected because the chemotactic movement is highly consistent [29]. Therefore, the velocity of the growth cone is directly proportional to the chemotactic force:

drkAdt=1μFkA,k=1,2,,NA, (4)
FkA=i=13λipi,pi=ρi|ΔrkA|ρ,ρ=i=13ρi,i=1,2,3, (5)

where k and NA are the number and total number of regenerative axons/growth cones, respectively. rkA (=xkAi+ykAj+zkAk, where i, j, and kare the unit vectors in the Cartesian coordinate system) is the position of the k-th growth cone at time t. μ is the dynamic viscosity coefficient. FkA (=FxkAi+FykAj+FzkAk) is the result of the chemotactic forces from all types of chemotactic-related molecules (CRMs) acting on the k-th growth cone at t. The CRMs will be classified into three types in the next subsection, where i is the number of types of CRMs, and subscript idenotes the i-th type of CRMs (CRMs-i). The chemotactic force [Eq (5)] is defined as a dimensionless vector (pi) with a proportionality constant (λi). In this equation, ρi is the concentration of CRMs-i at rkA and t; ∇ρi is the gradient of ρi (where ∇ = i∂/∂x+j∂/∂y+k∂/∂z is the Hamiltonian operator); |ΔrkA|=Δx2+Δy2+Δy2 is the scalar difference of rkA across the width of the k-th growth cone; and ρ is the sum of ρi over all types of CRMs. Note that the scalar of pi [Eq (5)] simplifies to Δρi/ρ, which expresses the relative difference of ρi, with Δρi being the absolute difference of ρi across the distance |ΔrkA|. In practice, the average width of the growth cone can be considered as |ΔrkA| ~ 10μm [29,38]. Therefore, the gradient and relative difference of the chemotactic concentration are mathematically linked through pi. The corresponding proportionality constant λi then acquires a clear physical meaning of force per unit length. This model considerably reduces the growth-rate distortion of the growth cone when close to the target cells. Note that in the one-dimensional single-component problem [29,38,39], pi reduces to p = Δρ/ρ, which defines the concentration gradient in some biophysical areas.

Finally, from Eqs (2), (4) and (5), the drawing speed Vz of the k-th axon can be expressed as follows:

Vzk=dzkAdt=1μFzkA,k=1,2,,NA, (6)
FzkA=i=13λiρizΔzρ,ρ=i=13ρi, (7)

where Δz is the cone’s width along the z-axis. The other symbols have been defined in Eqs (4) and (5).

Evolution equations for the chemotactic-related molecules

Based on the chemical coarse-graining concept, the chemotactic-related molecules (CRMs) on and around the multifunctional scaffold can be classified into three types. The first group (denoted as Type 1 or CRMs-1) comprises the chemoattractants for axonal growth, such as NT-3 and BDNF [35,36], secreted by seeded HA/LV-NT-3 and HA/LV-BDNF at the off-ramp area (Fig 1B; yellow). The second group (Type 2 or CRMs-2) comprises the chemorepellents Nogo-60, myelin-associated glycoprotein (MAG), and oligodendrocyte-myelin glycoprotein (OMG) released or upregulated in response to the injured tissues [42,43,44,45]; and the remnant chondroitin sulfate proteoglycans (CSPGs) that are not neutralized by ChABC [1,2,9], secreted by seeded HA/LV-ChABC over the entire scaffold surface. Finally, the third group (Type 3 or CRMs-3) includes molecules released from coated HA/ECM components (collagen I, fibronectin, and laminin I) on the scaffold, which support axonal growth [24,35,36]. The mixed concentrations of CRMs-1, CRMs-2, and CRMs-3 are denoted by ρ1, ρ2, and ρ3, respectively. Among these groups, CRMs-1 plays the leading role in promoting axonal regeneration, CRMs-2 inhibits axonal growth, and CRMs-3 plays a supplementary role in stabilizing axonal growth. In addition, CRMs-1 and CRMs-2/3 might crosstalk via signal transduction [46]. The diffusions and reactions of ρ1, ρ2, and ρ3 obey Fick’s first law [28,29]. Considering these CRM mechanisms in SCI regeneration, the evolution equations for ρ1, ρ2, and ρ3 are given as follows:

ρ1t=D12ρ1k1ρ1+j=1NTσ1δ(rrjT), (8)
ρ2t=D22ρ2k2ρ2+k=1NAσ2(ρ1)δ(rrkA), (9)
ρ3t=D32ρ3k3ρ3+k=1NAσ3(ρ1)δ(rrkA). (10)

In Eqs (8)–(10), ρi(i = 1,2,3) are functions of both time (t≥0) and space (on and around themultifunctional scaffold), each point is represented by a position vector, r = xi+yj+zk, where x, y, and z are the coordinates and i, j, and k are their corresponding unit vectors in the Cartesian coordinate system. ∇2 = ∂2/∂x2+∂2/∂y2+∂2/∂z2 is the Laplace operator. Di and ki are the diffusion and attenuation coefficients of ρi, respectively. ∑ denotes the summation of all point-source terms. δ(⋅) is the Dirac delta function, defined as δ(0) = 1 and δ(else) = 0. NA is the total number of severed axons before their repair. NT is the total number of CRMs-1 point sources, whichdepends on the density of HA/LV-NT-3 and HA/LV-BDNF seeded in the off-ramp area (Fig 1B; yellow) and on the chemical coarse-graining model. rjT (immobile) is the position of the j-thpoint source of CRMs-1 (where j = 1, 2, …, NT), and rkA is the time-dependent position of the k-th growth cone capped on the regenerating axons (k = 1, 2, …, NA). σ1, σ2(ρ1), and σ3(ρ1) are the point-source release rates of CRMs-1, CRMs-2, and CRMs-3, respectively. Note that σ2(ρ1) and σ3(ρ1) are the functions of ρ1, which indicates crosstalk or interactions betweenCRMs-1, CRMs-2, or CRMs-3. We can reduce the functions to σ2 = σ20(1−RL) and σ3 = σ30RL with RL = ρ1/(Kd+ρ1), where σ20 and σ30 are the normal release rates of CRMs-2 and CRMs-3 point sources, respectively, and Kd is the dissociation constant [32,38]. RL defines receptor-ligand associativity on the growth cone membrane. σ20(1−RL) and σ30RL reflect the competitive relationship between CRMs-2 and CRMs-3. Eqs (8)–(10) are multi-component dynamic reaction-diffusion equations with nonlinear coupling of the point sources.

Numerical methods

Eqs (1)–(10) comprise the mathematical model of regenerative axons growing along the spherical multifunctional scaffold where their status is as shown in Fig 1A or Fig 2A–2C. The source terms in Eqs (9) and (10) are nonlinearly coupled with Eq (8) and Eqs (4)–(7) through point rkA that tracks the growth cone. Therefore, Eqs (4)–(10) comprise a set of coupled nonlinear differential equations that can only be solved numerically.

Fig 2. Three test scaffolds of different lateral sizes and some products.

Fig 2

a)–c)The scaffolds and attached regenerated axons are separated and extracted from the models after calculation. In scaffolds No. 1, No. 2, and No. 3, the lateral semi-axis is ra = 0.15, 0.3, and 0.45 (or 0.75, 1.50, and 2.25 mm), respectively. The longitudinal semi-axis is rb = 0.3(or 1.5 mm) in all cases, and the number of severed axons is NA = 300 in each calculation. The green bubbles with number NT = 300 and density γ1 = 0.1 μm−2 embedded in the upper part (or the caudal/off-ramp) of each scaffold represent the coarsening point sources (or target cells) for CRMs-1 (two other seed types with densities γ2 = γ3 = 0.1 μm−2 also cover the whole surface of each scaffold but are not shown). The green longitudinal lines (slightly fascicled) stemming from the lower part (the rostral/on-ramp) of each scaffold represent the regenerated axons (numbering 0.78 NA, 0.7 NA, and 0.58 NA in a, b, and c, respectively, corresponding to axonal regeneration success rates of 0.78, 0.7, and 0.58, respectively). d)–g) Results related to a typical regenerating axon taken from the calculation of scaffold No. 1 (qualitatively similar results are obtained for the other two scaffolds). At the beginning, when the axon is at the on-ramp, its growth is unstable and some retraction is observed (d and e) because the concentrations of the positive factors CRMs-1 (f) and CRMs-3 are low (g; green), while those of the inhibitoryfactors are high (g; red). This situation is reversed as the axon approached the off-ramp.

The model is solved using three methods in three steps. The first step solves Eqs (8)–(10) for ρ1, ρ2, and ρ3 using the lattice Boltzmann method (LBM) [47,48,49,50]. Using a central difference and interpolation scheme, the second step solves the gradients of ρ1, ρ2, and ρ3 at the growth cone, and the axonal growth rates, using Eqs (6) and (7) and Eqs (2) and (3). Finally, the axonal growth path is obtained by integrating Eqs (6) and (7) and Eqs (2) and (3) using Euler’s method.

In the numerical simulation, we changed the lateral size of the scaffold (i.e., we changed the slope of the on-ramp/off-ramp) and the seeding densities of the HA/ECM components HA/LV-ChABC, HA/LV-NT-3, and HA/LV-BDNF. The simulation recorded the growth rates of the regenerating axons, and tested whether the regenerating axons could grow across the scaffold and finally connect with their targets.

Consideration of the parameter values

Based on data from in vitro experiments [35,36,37], we can estimate the order of magnitude of each parameter. The estimates are as follows: growth cone width |ΔrkA| is approximately 10–20μm; axonal growth rate is approximately 0.01μms-1;and the diffusion coefficient D1 and dissociation constant Kd of CRMs-1 (e.g. NGFs) are approximately 10–50μm2s-1and 1nM, respectively. In addition, the range of concentrations for NGFs is ~(0.01–10)Kd, and the minimum relative concentration difference to which the growth cone can respond [35,36,37,38,39], |Δρi/ρi|, is ~1%. However, the values of many parameters cannot be recognized, including the point-source release rate σi, the attenuation coefficients ki, the force proportionality constant λi, and the viscosity coefficient μ. Given that the diffusion velocity k1D1/k1 of CRMs-1 should exceed the constant velocity of the growth cone, the absolute concentration should satisfy ρ1Kd and the relative concentration difference should satisfy |Δρ1/ρ1|=|ΔrkA|/D1/k11% at the diffusion radius D1/k1. Under these conditions, the attenuation coefficient was estimated as k−1≥2.0×10−6. At the point source, we should have ρ1 = eKd+σ1/k−1≤10 Kd so that we can estimate the point-source release rate as σ1 = 1.82×10−5−3.64×10−4 nMs-1. From ρ1=Kdexp(1rmax/D1/k1)0.01Kd, the most effective diffusion radius was then estimated as rmax = 5.6 D1/k1. Finally, in the concentration field based on the above data, the axonal growth rate was assumed to be 0.0025–0.05μms-1. After many numerical trials, the number of λ1/μ was approximated as 1. The parameter values of CRMs-2 and CRMs-3 were set based on those of CRMs-1. All parameter values are listed in Table 1.

Table 1. Parameters used in simulations.

Symbols Definitions Values From
Acone ventral area of a growth cone 100 μm2 [36,37,38,39]
AC area of the caudal region of the scaffold related to scaffold size Fig 1
D1 diffusion coefficient of CRMs-1 50 μm2s−1 [38], Eq (8)
D2 diffusion coefficient of CRMs-2 10 μm2s−1 Eq (9)
D3 diffusion coefficient of CRMs-3 10 μm2s−1 Eq (10)
k−1 attenuation coefficient of CRMs-1 1.25×10−3s-1 Eq (8)
k−2 attenuation coefficient of CRMs-2 2.5×10−3s-1 Eq (9)
k−3 attenuation coefficient of CRMs-3 2.5×10−3s-1 Eq (10)
Kd dissociation constant of CRMs-1/2/3 1 nM [38], Eqs (9) and (10)
L side length of the computation domain 5000 μm Fig 1
NA total/equivalent number of severed axons 300–12000 Eqs (9) and (10)
NT total/equivalent number of target cells 300–12000 Eq (8)
ra semi-axes of ellipsoid/scaffold 0.15–0.45, scaled by L Fig 1B
rb semi-axes of ellipsoid/scaffold 0.3, scaled by L Fig 1B
rC maximum rotational radius of scaffold caudal 0.75ra Fig 1B
rR maximum rotational radius of scaffold rostral 0.75ra Fig 1B
|ΔrkA| width of a growth cone 10 μm [38], Eq (5)
γ10 normal density of the point source of CRMs-1 0.1 μm-2 Eq (8)
γ20 normal density of the point source of CRMs-2 0.1 μm-2 Eq (9)
γ30 normal density of the point source of CRMs-3 0.1 μm-2 Eq (10)
λ1 force proportionality constant of CRMs-1 1 nN μm-1 Eq (5)
λ2 force proportionality constant of CRMs-2 1 nN μm-1 Eq (5)
λ3 force proportionality constant of CRMs-3 1 nN μm-1 Eq (5)
μ dynamic viscosity coefficient 1 nN μm-2s Eq (4)
σ1 normal release rate of a CRMs-1 point source 6.75×10−5nMs-1 Eq (8)
σ20 normal release rate of a CRMs-2 point source 6.75×10−5nMs-1 Eq (9)
σ30 normal release rate of a CRMs-3 point source 6.75×10−5nMs-1 Eq (10)
σeq1 equivalent σ1 γ1ACσ1/NA Eq (8)
σeq2 equivalent σ2 γ2Aconeσ2 Eq (9)
σeq3 equivalent σ3 γ3Aconeσ3 Eq (10)
η1 density scale factor for CRMs-1 η1=γ1/γ10, controllable Eq (8)
η2 density scale factor for CRMs-2 η2=γ2/γ20, controllable Eq (9)
η3 density scale factor for CRMs-3 η3=γ3/γ30, controllable Eq (10)

Equivalent number of seeds on the scaffold and the point-source release rate

To save computational resources, we employed coarse-grained processing, i.e., making up an equivalent number of seeds (point sources) for calculation that was smaller than that of seeding on the scaffold during fabrication. Because the fabrication process controls the densities of HA/ECMs/LV-ChABC, HA/LV-NT-3, and HA/LV-BDNF seeded on the scaffold, the densities of the point sources of CRMs-1, CRMs-2, and CRMs-3 can be quantified as γ1=η1γ10, γ2=η2γ20, and γ3=η1γ30, respectively, where γ10, γ20, and γ30 are the normal point-source densities of CRMs-1, CRMs-2, and CRMs-3 (in μms-2) respectively, and η1, η2, and η3 are their respective controllable scale factors. The areas of the scaffold off-ramp (caudal side) and the ventral portion of a growth cone are denoted by AC and Acone, respectively. Thus, the total number of CRMs-1 point sources in the off-ramp area is γ1AC, i.e., NT = γ1AC in Eq (8). Meanwhile, the total numbers of CRMs-2 and CRMs-3 connected to a single growth cone are γ2Acone and γ3Acone, respectively. In Eqs (9) and (10), NAis the total number of axons severed in an injury event. In a complete transection rat model, NA might exceed 104 (estimated from the cross-sectional area ratio of an axon to the spinal cord). Because the exact value NA was unavailable, we ranged NA from 300 to 12000 in the simulations. Correspondingly, NT and σ1 in Eq (8) were replaced by their equivalent values NeqT and σeq1, respectively. Considering NeqT = NA and applying the mass conservation principle, we obtained σeq1 = γ1ACσ1/NA, where AC/NA = AC/NeqT represents the area occupied by each equivalent point source. Here, the point sources were assumed to be evenly distributed on the off-ramp of the scaffold. Similarly, σ2 and σ3in Eqs (9) and (10) were replaced by their equivalent values σeq2 = γ2Aconeσ2 and σeq3 = γ3Aconeσ3, respectively, where Acone represents the area on the scaffold surface covered by one moving growth cone at that moment and γ2Acone and γ3Acone represent the original numbers of CRMs-2 and CRMs-3 point sources on one Acone, respectively. After an equivalent transformation, each Acone includes two point sources: a CRMs-2 point source with release rate σeq2 and a CRMs-3 point source with release rate σeq3. Both releases activate at the location of the cone and deactivate when the cone departs. This activation-deactivation process of the point sources is modeled by the Dirac delta function δ(⋅) in Eqs (8)–(10).

In the simulations, we confined the architecture and mathematics of the model to a cubical compartment with side length L = 5000 μm and imposed absolute boundary conditions. The D3Q15 mode [32,47] with a 64 ×64 ×64 lattice was applied to LBM simulations. MATLAB 7.11.0 (The MathWorks, Inc.) was employed to programthesimulations and run them on ThinkServer TD350 (Lenovo Group Ltd). All parameters used in the simulations are summarized in Table 1.

Results

Before describing the simulation results, we provide the following definitions. A severed axon is considered to have successfully regenerated when it has regrown along the scaffold surface from the on-ramp to the off-ramp within 2 weeks of treatment. The success rate of axonal regeneration is the number ratio of successfully regenerated axons to all severed axons in the injury event (calculated by the current mathematical model). The growth rate of the regenerated axons is the average longitudinal extension velocity of all successfully regenerated axons (calculated as (k=1NAVzk)/NA, where Vzk is defined in Eq (6), and NA=NA× success rate). The growth rate should exceed 0.0025 μms-1 (1.5 mm per week) but should not exceed the physiological limit (~0.05 μms-1). The effective growth rate of the axons is the product of their success and growth rates, i.e., the longitudinal extension velocity averaged over all severed axons in the injury and repair process. It is given by (k=1NAVzk)/NA.

Influence of the number of severed axons on regeneration

The number of severed axons NA usually depends on the damage event. As previously mentioned, the maximum number of severed axons might be in the order of 10−4. In the following computer simulations, we varied NA from 300 to 12000 and observed the consequent changes in the growth and success rates of post-SCI axonal regeneration. Next, we considered three scaffolds (No. 1, No. 2, and No. 3, sized at ra×rb = 0.15×0.3, 0.3×0.3, and 0.45×0.3, respectively) and determined the most efficient size for axonal regeneration. For this purpose, we investigated how the slope of the on-ramp/off-ramp of the scaffold affects axonal regeneration. In this section, the density scale factors of the CRMs-1, CRMs-2, and CRMs-3 point sources on the scaffolds were considered as η1 = η2 = η3 = 1. In other words, the seed densities were constant and set to the same value (specifically, γ1 = γ2 = γ3 = 0.1 μm−2; see Table 1 and the subsection “Equivalent number of seeds on the scaffold and the point-source release rate” for details). All other parameter values are listed in Table 1. To clarify the scope and level of the model and the developed method, we first discuss the special case of NA = 300. Fig 2 demonstrates the growth path and velocity of the regenerative axons and the CRM concentrations around the growth cone. By increasing NA from 300 to 12000 at irregular intervals, we obtained a series of results similar to those demonstrated in Fig 2. These results are shown in Fig 3, which reveals how the number of severed axons influences axonal regeneration.

Fig 3. Influence of the number of severed axons on axonal regeneration.

Fig 3

a) Growth rate of regenerating axons, b) success rate of axonal regeneration, c) effective growth rate, d) concentration of CRMs-1, and e) concentration ratio of CRMs-3 to CRMs-2, plotted as functions of log10 NA, where NA is the number of severed axons. The curves in each panel were obtained on scaffold No. 1 (0.15 × 0.3), No. 2 (0.3 × 0.3), and No. 3 (0.45 × 0.3), respectively. f) Longitudinal coordinates in panel b averaged over the number of horizontal coordinates on scaffolds No. 1, No. 2, and No. 3 (left to right). Error bars indicate the standard deviations.

Fig 3A shows the effect of the number of severed axons NA on the growth rate of the regenerating axons on each scaffold. Each point in the curves indicates the average growth rate of the surviving axons that grew along the scaffold from the on-ramp to the off-ramp. Axons that died or failed halfway were excluded. The error bars indicate the standard deviations of the averages. NA does not significantly affect the growth rate provided that the axons can successfully regenerate. Moreover, the growth rate is proportional to the lateral size of the scaffold.

In Fig 3B, the success rate of axonal regeneration decreases with increasing NA. When NA was moderately large (<9000), the slim scaffold achieved a high success rate. When NA = 300, the success rate was approximately 35% higher on scaffold No. 1 than on scaffold No. 3; however, when NA = 12000, the lateral size effect of the scaffold disappeared and the success rates on all three scaffolds declined to <30%. As the number of severed axons increased from 300 to 12000 on scaffold No. 1, the success rate was reduced by a factor of 3. From Fig 3A and 3B, we infer that a small on-ramp slope (i.e., a slim scaffold) increases the success rate of axonal regeneration up to a certain number of severed axons. When too many regenerative axons pass over the narrow bridge, the congestion lowers the growth rate. If success rate is more important than growth rate, the slim scaffold would be the first choice.

Fig 3C shows the effective growth rate of the axons (the product of the growth rate in Fig 3A and the success rate in Fig 3B as NAincreases). Each point in the curves represents the growth rate of all regenerated axons, averaged over all severed axons, in the injury and repair process. The effective growth rate is a comprehensive index of axial sprouting and growth of axons after an SCI. Again, the slim scaffold is advantageous for axonal regeneration when NA≤6000.

In Fig 3D, the concentration of CRMs-1 sensed by the regenerating axons was relatively robust to both NA and the lateral size ra of the scaffold. However, the concentration ratio of CRMs-3 to CRMs-2 sensed by the regenerating axons heavily depended on both NA and ra (Fig 3E). Note that NA and ra are also highly correlated with the success rate of axonal regeneration (Fig 3B) and the effective axonal growth rate (Fig 3C). This suggests that the concentration ratio of CRMs-3 to CRMs-2 deserves more attention than it currently receives in SCI treatments.

Fig 3F averages the longitudinal coordinates in Fig 3B over the number of horizontal coordinates on scaffolds No. 1, No. 2, and No. 3. Again, the slim scaffold is beneficial for SCI treatments. In other words, irrespective of the number of severed axons, the slim scaffold is always the first choice for bridging. Therefore, the next two sections are devoted to scaffold No. 1 (slim scaffold with size 0.15×0.3).

Influence of CRMs-1 point-source density on regeneration

This analysis was performed on scaffold No. 1 (ra×rb = 0.15×0.3). The prototype of the CRMs-1 point source is HA/LV-NT-3 and HA/LV-BDNF seeded on the off-ramp (Fig 1B,yellow) of the scaffold during fabrication (see subsection “Coating and seeds for the scaffold”). In each test, the seeding density of CRMs-1was γ1=η1γ10 (γ10 = 0.1 μm−2; see Table 1), where η1 was increased from 0 to 100 at irregular intervals. Alternatively, the CRMs-2 point source includes various inhibitory components, for example MAG induced by debris from the myelin sheath resulting from when axons were damaged, and CSPGs remaining on the scaffold surface, which cannot be easily controlled. Here, the density of the CRMs-2 point source was graduated through six levels: γ2=η2γ20 (γ20 = γ10 = 0.1 μm−2, with η2 = 0, 1, 5, 10, 50, and 100). The density of the CRMs-3 point source was then expressed as γ3=η3γ30. CRMs-3 represents the HA/ECM components (collagen I, fibronectin, and laminin I) coated on the whole surface of the scaffold during fabrication. Therefore, we set η3 = 1 (or γ3=γ30 = 0.1 μm−2, a constant). The number of severed axons can be selected from the feasible range (300–12000). Considering the available computer resources, we maintained NA to be constant at 1200. Under these conditions, we performed the calculation and obtained Fig 4.

Fig 4. Influence of CRM1-1 point-source density on axonal regeneration.

Fig 4

a) Growth rate of regenerated axons, b) success rate of axonal regeneration, and c) effective growth rate of axons as functions of the density (η1) of the CRMs-1 point source. Results are plotted for different densities (η2) of the CRMs-2 point source. The test scaffold is sized as ra×rb = 0.15×0.3, the CRMs-3 point source density is η3 = 1, and the number of severed axons is NA = 1200. d) Success rate of axonal regeneration averaged over η1 = 0−100 for each η2.

Fig 4A shows the growth rates of the regenerating axons as functions of density (η1) of the CRMs-1 point source for different densities (η2) of the CRMs-2 point source. Axonal growth is driven by the concentration gradient of CRMs-1 (∇ρ1) and is supported and inhibited by ∇ρ3 and ∇ρ2, respectively. Note that ρ2 and ρ3 are coupled to ρ1 through Eqs (8)–(10). Therefore, the growth rates of the regenerating axons are not simply proportional to η1 but change nonlinearly with increasing η1. Moreover, their extreme values depend on η2. Note that the growth rate was always lowest when η2 = 0, i.e., when no inhibitors were present in the injured microenvironment. This suggests that some remaining inhibitors (e.g., 0<η2≤1) are required to increase the growth rate. However, when η1>15 and η2>5, the growth rates were quite similar, suggesting that once the inhibitor level has exceeded a certain threshold, simply increasing the promoter levels is ineffective for increasing the growth rate.

Fig 4B shows the success rate of axon regeneration with increasing density (η1) of the CRMs-1 point source. First, when η2 = 0, i.e., when no inhibitor was present in the injured microenvironment, the success rate was 100% for all η1, except when η1 = 0 (i.e., when the success rate was 0). Next, for any fixed η1>0, increasing η2 decreased the success rate. Finally, when η1 was sufficiently high, the success rate of axonal regeneration exceeded 92%, regardless of η2. This suggests that reducing the inhibitor while increasing the promoter improves the success rate of axonal regeneration. The latter may be more important than the former because even if η2 reached 0, η1>0 would be required for axonal growth. However, as previously mentioned, a high success rate implies overcrowding of the growing axons on the scaffold, which eventually causes congestion and lowers the axonal growth rate. If the growth rate is excessively low, the axons might abort the growth process (in practice, growth cessation is due to unexpected causes) or an opportunistic time window for subsequent treatments may be missed. Therefore, when predicting axonal regeneration, the success rate must be balanced against the growth rate of the regenerating axons.

Fig 4C shows the effective growth rate of the axons. As previously mentioned, this index represents the sprouting and growth of the injured axons. Additionally, it is the product of the growth rates in Fig 4A and the success rates in Fig 4B. The effective growth rates were higher for η1>5 and η2 = 1 than for η2 = 0. If η1>50 could be achieved in practice, three treatments (η1>5and η2 = 1, η1>30 and η2 = 5, and η1>50 and η2 = 10) are preferred over the η2 = 0 treatment, and increasing η1 is much easier than achieving η2 = 0.

Fig 4D shows the average success rates of axonal regeneration over all η1 (0–100) for each η2. Regardless of η1, the success rates on scaffold No. 1 decreased with increasing η2 and the marginal effect was large for small η2. Again, this result highlights that reducing the inhibitors in the microenvironment is important for axonal regeneration. Note that when η2 = 0, the average success rate should be less than one (below 100%) because the success rate at η1 = 0 was zero. Thus, its logarithm (horizontal axis in Fig 4B) could not be defined. However, owing to non-zero η1 a unity success rate was achieved (Fig 4B).

Influence of CRMs-3 on axonal regeneration

Finally, we numerically test the hypothesis that an over-eutrophic scaffold surface harms axonal regeneration.

The analysis was performed on scaffold No. 1 (ra×rb = 0.15×0.3), and assumed a constant number of severed axons (NA = 1200). The prototype of the CRMs-3 point source comprises HA/ECM components (collagen I, fibronectin, and laminin I) coated on the whole surface of the scaffold, as described previously. The coating density of CRMs-3, expressed as γ3=η3γ30 with γ30 = 0.1 μm−2(see Table 1), can be set during fabrication. In each test, density η3 was increased from 0 to 100 at irregular intervals. The CRMs-1 and CMRs-2 point-source densities were set as γ1=η1γ10 (with γ10 = 0.1 μm−2 and η1 = 1) and γ2=η2γ20 (with γ20 = 0.1 μm−2 and η2 = 0, 1, 5, 10, 50, and 100), respectively. The calculation results under these conditions are presented in Fig 5.

Fig 5. Influence of CRMs1-3 point-source density on axonal regeneration.

Fig 5

a) Growth rate of regenerating axons, b) success rate of axonal regeneration, and c) effective growth rate of axons as functions of CRMs-3 point-source densityfor different densities (η2) of the CRMs-2 point source. The test scaffold is sized as ra×rb = 0.15×0.3, the CRMs-1 point-source density is η1 = 1, and the number of severed axons is NA = 1200. d) Success rate of axonal regeneration averaged over η3 = 0−100 for each η2.

As shown in Fig 5A, the growth rates of the regenerating axons decreased with increasing η3 of the CRMs-3 point-source density, regardless of η2. Over a wide range of lower η3 values, the growth rates remained stable for all η2, except for η2 = 0. However, beyond a threshold η3 value, which increased with increasing η2, growth sharply declined. This supports the hypothesis that an over-eutrophic scaffold surface impedes axonal growth, and that certain inhibitors might naturalize the over-eutrophic effect and weaken or delay the harm.

Fig 5B shows the success rates of axonal regeneration varying as functions of η3 for each η2. When η2 = 0, i.e., when no inhibitor was present in the injured microenvironment, the success rate remained at 100% till the point when η3 = 60, and then dropped sharply to 16.67% at η3 = 70. Subsequently, the success rate fell to zero. At non-zero η2, the success rates first slowly ascended with increasing η3, then rose sharply before dropping to a low level, and finally reached zero. When η2 was high, the success rate curve began at a low level and ascended very slowly, forming a low plateau. For η2≥50, the success rate peaked only when η3 exceeded 100. This suggests that the use of an over-eutrophic scaffold surface to improve the success rate of axonal regeneration is inefficient and risks destabilization of the regeneration process.

Fig 5C plots the effective growth rate of the axons as functions of η3 for each η2. Applying an over-eutrophic scaffold surface to promote the sprouting and growth of axons after an SCI might be inefficient or even counterproductive.

Fig 5D shows the average success rates of axonal regeneration over η3 = 0−100 for each η2. Regardless of η3, the success rates decreased with increasing η2 on identical scaffolds and the marginal effect was greater at low η2 than at high η2. As discussed earlier, this result highlights the fact that reducing inhibitors in the microenvironment is important for axonal regeneration.

Discussion

This study specifically aimed to create a microenvironment for axonal regrowth after SCI by mathematically changing the location of seeding on the scaffold, the density of the cells/factors seeded, and the size and shape of the scaffold. Therefore, we assumed a solid, spherical, multifunctional, biomaterial scaffold that bridges the rostral and caudal stumps of a completely transected spinal cord in a rat model for the calculations.

We assumed the body of the scaffold was made of PLG, the whole surface was coated with HA/ECMs and HA/LV-ChABC, and its off-ramp at the caudal area was additionally seeded with HA/LV-NT-3 and HA/LV-BDNF. These factors perform several functions. First, the on-ramp slope at the rostral area of the scaffold steers the growth cones of the regenerative axons onto the scaffold smoothly. Second, the factors seeded on the scaffold surface can be localized and sustained over a reasonably long period of time. The HA/ECM components adhere to the growth cones on the scaffold, supporting regenerative axons. HA/LV-ChABC secretes ChABC, which degrades CSPGs, inhibitory components from the glial scarsurrounding the injured tissue. The NT-3 and BDNF molecules released from HA/LV-NT-3 and HA/LV-BDNF at the off-ramp area can diffuse to the on-ramp area; this gradient can then guide the axonsat the rostral stump to grow along the outer surface of the scaffold and enter the caudal stump area, while also preventing the axons regenerating at the caudal stump from growing toward the rostral stump until they connect with axons emerging from the on-ramp area. That is, the scaffold forms a one-way bridge from the rostral to the caudal side, with a gentle slope of entry. From a mathematical point of view, the profile curve of the scaffold results in a small and continuous tangent slope, and the resulting concentration of all factors (promoters and inhibitors) on and around the scaffold, and varying along the span of the scaffold from one side to another, causes a monotonic increase. Provided that the scaffold is implanted upside down, the gradient of the resulting concentration or the direction of growth of axons will be reversed correspondingly, inferring from previous observations [18] that axons grow toward a site where additional cells have been injected, so either side of the bridge could be used as an injection site.Note that no matter which side of the bridge is used as the entry point, both motor and sensory neurons axons can cross the bridge because axons of both motor and sensory origins have previously been found within a tunneled scaffold [14].

Several scaffolds for SCI have previously been described [3,4,5,6,7], such as cell grafts [8,9], tubes or conduits [10], and cylinders with tunnels/linear pores or filled with fibers, either randomly or in alignment. Of these, cell grafts comprise natural soft tissues, with conduits that are empty or contain soft matrices and/or cells, and with a wide diameter, making it easy for regenerative axons to enter them, with no need to consider an entry slope. However, axons which entered these grafts were often trapped in them and rarely re-entered the host tissue. It was commonly believed that fine physical guidance was required within the cell grafts and conduits. Therefore, cylinders with tracks (a rolled-up nanofiber sheet or film) [10,11] or tunnels (via modeling) [14,19], combined with seeding of cells/factors [12,13,14,15,16,18,19], emerged and mostly replaced the use of cell grafts and conduits. However, not only did regenerative axons still get trapped in the guideways [10,11,12,13,14,15,16], but congestion was also observed at the entries [19]. This trapping, according to the current study, is caused by the over-eutrophication in and/or on the scaffold, and the lack of additional chemotactic factors close to either side of the scaffold. Even if these factors are uniformly distributed throughout whole scaffold during fabrication, because the factors diffuse easily from the two ends of the scaffold, they reach the middle of the scaffold after a period of time, which attracts regenerating axons from both ends to the middle. Therefore, the scaffold becomes a two-way channel, leading the axons to grow toward each other, probably resulting in their intersection. However, there is little direct evidence to show that such intersected axons can form synaptic connections. In this situation,the factors on the scaffold are more likely to be a barrier against the regenerating axons. Fortunately, the axons can sometimes break through this barrier [19], as was simulated in this study, and re-enter the host tissue. This is typically due to additional chemotactic factors being set close to either the caudal [19] or rostral stumps [18]. Alternatively, factors (known or unknown) contained in and/or on the scaffold might form (intentionally or unintentionally) a consistent gradient along the span of the bridge; there may also be a small probability that some unknown factors from host tissues form a beneficial gradient for axonal regeneration. Based on the typical situation [19], we inferred that, according to the principle of chemotaxis of axons, only if the peak of the barrier is much lower than the summit formed by the chemotactic factors at either end, the axons can break through the barrier.

However, another barrier that exists for scaffolds with tracks or tunnels is the entry obstruction that lowers the number of axons entering into the spaces or pores of the scaffoldbecause of the absence of a uniform entry slope. For tunneled scaffolds [14, 19], the slope of entry is small or zero only for those axons whose growth cones face to the pores, where the axonal incidence angle α = 0 (i.e., the slope = tan(0) = 0); whereas for the other axons at the entry, the slope is abrupt or infinite, due to α = ±π/2 (i.e., slope = tan(±π/2) = ±∞). This prevents the axons from regenerating straight ahead and reduces the number of axons entering the tunnels. Pore size is another parameter that affects the ability of axons to pass through a scaffold, and while investigating optimal pore size is difficult, the present model can be modified to study this. Once the number of axons entering a scaffold is small, the number of axons exiting will be much lower, according to previous observations [19]. The present spherical scaffold described by us is not only simple but also, at least theoretically, lacks the shortcomings inherent in other porous scaffolds.

The proposed scaffold could be used to replace previous scaffolds used in rat models for SCI repair [10,11,16], to bridgea gap of approximately 3 mm. It is worth noting that the present scaffold might offer additional possibilities. The complexesseeded on the caudal area that express NT-3 and BDNF, as well as being diffusible chemoattractants for attracting axonal growth cones, have enhanced oligodendrocyte survival and axon myelination [24,51,52,53]. NT-3 and BDNF may also enhance a number of other processes. For instance, BDNF has been associated with a reduction in the inflammatory response, including a reduction in astrocyte numbers [54], which further aids axon regeneration. Whilefabrication of our scaffold might be difficult, and the use of hydroxylapatite (HA) is probably not the best choice due to the risk ofMilwaukee shoulder [34], we do provide a prospective direction for SCI repair.

Our mathematical model embodies the geometry, chemistry, and physics of the system under investigation. The shape and size of the scaffold provide the geometrical boundary conditions that constrain the growth cone’s movement or the regenerative axon growth. While the inclusion of all chemical factors in a single model is difficult, a coarse-grained method can be used to obtain a balance between the reduction in the number of factors and the retention of the chemical properties. That is, the CRMs on and around the scaffold (assuming it has been implanted) were classified into three types with different chemical properties: the CRMs-1 group comprised chemoattractants of axonal growth (NT-3/BDNF secreted by seeded HA/LV-NT-3 and HA/LV-BDNF at the off-ramp area); the CRMs-2 group comprised chemorepellents of axonal growth (compounds produced by the injured tissue, such as Nogo-60, MAG, and OMG, and the remnant CSPGs that are not neutralized by ChABC released from seeded HA/LV-ChABC); and the CRMs-3 group comprised molecules released from the coated HA/ECM components, which support axonal growth. Among these groups, CRMs-1 plays the leading role in axonal regeneration, whereas CRMs-2 and CRMs-3 provide a balanced and coordinated effect, and interact with CRMs-1 (for which, CRMs-2/3 was formulated as a function of CRMs-1). The physical and biophysical aspects of the model are the Fickian diffusions and reactions of the CRMs and the chemotaxis of the axonal growth cone motility. Under CRMs-1 and CRMs-3 gradients, the regenerative axons elongate toward the target cells, whereas under the CRMs-2 gradient, they retract.A similar chemotaxis pattern has been validated via experiments [35,36,37], and mathematicallymodeledfor studying axonal growth in neural development [28,29,30,31]. Note that axonal growth/regrowth follows the same processes observed experimentally both in development and injury, in vivo and in vitro, because in both cases the experiments always initially cause damage to the nerve cells, for instance during surgery or separation. The difference between them, however, is in the degree of damage, and in the age of the experimental subjects. Therefore, a theoretical model for axonal growth during development can be modified for studying SCI. In fact, the present model is mathematically similar to those described in the literature [28,29,30,31].

By applying our mathematical model to the theorized scaffold, we numerically studied the influence of the number of severed axons; the slope of the on-ramp of the scaffold (which is related to the lateral size of the scaffold); and the concentrations and gradients of the CRMs (which are related by their seeding densities to the survival and growth of the regenerative axons).

Axonal regeneration was evaluated based on the growth and success rates of the regenerated axons. A severed axon has successfully regenerated when it has regrown along the scaffold surface from the on-ramp to the off-ramp within 2 weeks of the treatment. The success rate defines the number ratio of the successfully regenerated axons to all axons severed in an injury event. The growth rate is the average longitudinal extension velocity of the successfully regenerated axons.

It should be noted, however, that our model is highly idealized, for example, the basis data we used for the calculation of growth cone velocity were not derived from trauma tissue, which might be spatially different in physics and chemistry, and not be reflected by CRMs-2. The intersections and/or tangles between regenerating axons and the energy expenditure for axonal growth were not modeled in the current study. The cut to generate a spinal cord injury should not be too wide (>1 cm) for using this model to predict SCI because the effective diffusion distance of CRMs-1 might be limited to approximately 1 cm by Fick’s first law, on which this model is based. Only an in vivo verification will show whether these equations will hold.

Conclusions

A solid, spherical, multifunctional, biomaterial scaffold is assumed to bridge the rostral and caudal stumps of the spinal cord in a completely transected rat model, thereby promoting the entry of regenerative axons from the rostral stump into the caudal stump tissue at the opposite side of the scaffold.

Three scaffold shapes (slim, round, and stocky) were investigated in our simulations. Among them, the slim shape benefited axonal regeneration the most by presenting a small slope at the on-ramp area. However, if the success rate becomes too high, numerous regenerative axons crowd into a narrow area, causing congestion and resulting in a reduced growth rate. The stocky scaffold induced the opposite effect, and the round scaffold induced intermediate effects. When success rate is more important than growth rate, the slim scaffold should be the first choice.

The number of severed axons in an injury event (between 300 and 12000) does not significantly affect the growth rate of the regenerated axons, but does influence the success rate of axonal regeneration (particularly, the success rate decreases with increasing number of severed axons).

Among the three types of chemical treatments, raising the CRMs-1 (NT-3 and BDNF) level while reducing the CRMs-2 level (CSPGs and other chemorepellents) benefited the success and growth rates of axonal regeneration the most. Physically, the CRMs-1 level was increased by increasing the seeding density of HA/LV-NT-3 and HA/LV-BDNF on the off-ramp of the scaffold, whereas the CRMs-2 level was reduced by increasing the seeding density of HA/LV-ChABC over the entire scaffold surface. However, raising the CRMs-3 (ECM components) level by increasing the density of HA/ECM components over the entire scaffold surface may create an over-eutrophic surface that harms axonal regeneration.

The theoretical predictions made in this study need to be experimentally validated in the future. In principle, the current tool can be easily modified for predictions regarding scaffolds with other architectures.

Data Availability

All data generated or analysed during this study are included in this published article.

Funding Statement

This work was supported by the National Natural Sciences Foundation of China Grant No. 31370940.

References

  • 1.Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull. 1999; 49: 377–391. [DOI] [PubMed] [Google Scholar]
  • 2.Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci. 2004;5: 146–156. 10.1038/nrn1326 [DOI] [PubMed] [Google Scholar]
  • 3.Geller HM, Fawcett JW. Building a bridge: engineering spinal cord repair. Exp Neurol. 2002;174: 125–136. 10.1006/exnr.2002.7865 [DOI] [PubMed] [Google Scholar]
  • 4.Zhang N, Yan H, Wen X. Tissue-engineering approaches for axonal guidance. Brain Res Rev 2005;49:48–64. 10.1016/j.brainresrev.2004.11.002 [DOI] [PubMed] [Google Scholar]
  • 5.Li GN, Hoffman-Kim D. Tissue-engineered platforms of axon guidance. Tissue Eng Part B Rev. 2008;14: 33–51. 10.1089/teb.2007.0181 [DOI] [PubMed] [Google Scholar]
  • 6.Fortun J, Hill CE, Bunge MB. Combinatorial strategies with Schwann cell transplantation to improve repair of the injured spinal cord. Neurosci Lett. 2009;456: 124–132. 10.1016/j.neulet.2008.08.092 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Kim M, Park SR, Choi BH. Biomaterial scaffolds used for the regeneration of spinal cord injury (SCI), Histol Histopathol.2014;29: 1395–1408. doi: 10.14670/HH-29.1395 [DOI] [PubMed] [Google Scholar]
  • 8.David S, Aguayo AJ. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 1981;214: 931–933. [DOI] [PubMed] [Google Scholar]
  • 9.Kanno H, Pressman Y, Moody A, Berg R, Muir EM, Rogers JH, et al. Combination of engineered Schwann cell grafts to secrete neurotrophin and chondroitinase promotes axonal regeneration and locomotion after spinal cord injury. J Neurosci. 2014;34(5): 1838–1855. 10.1523/JNEUROSCI.2661-13.2014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Hurtado A, Cregg JM, Wang HB, Wendell DF, Oudega M, Gilbert RJ, McDonald JW. Robust CNS regeneration after complete spinal cord transection using aligned poly-L-lactic acid microfibers. Biomaterials 2011; 32:6068–6079. 10.1016/j.biomaterials.2011.05.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Joo NY, Knowles JC, Lee GS, Kim JW, Kim HW,Son YJ, Hyun JK. Effects of phosphate glass fiber-collagen scaffolds on functional recovery of completely transected rat spinal cords. Acta Biomaterialia 2012;8: 1802–1812. 10.1016/j.actbio.2012.01.026 [DOI] [PubMed] [Google Scholar]
  • 12.Lee JH, Lee JY, Yang SH, Lee EJ, Kim HW. Carbon nanotube–collagen three-dimensional culture of mesenchymal stem cells promotes expression of neural phenotypes and secretion of neurotrophic factors. Acta Biomaterialia 2014;10: 4425–4436. 10.1016/j.actbio.2014.06.023 [DOI] [PubMed] [Google Scholar]
  • 13.Ahn HS, Hwang JY, Kim MS, Lee JY, Kim JW, Kim SH, et al. Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve. Acta Biomaterialia 2015;13: 324–334 10.1016/j.actbio.2014.11.026 [DOI] [PubMed] [Google Scholar]
  • 14.Tuinstra HM, Margul DJ, Goodman AG, Boehler RM, Holland SJ, Zelivyanskaya ML. Long-term characterization of axon regeneration and matrix changes using multiple channel bridges for spinal cord regeneration. Tissue Engineering Part A 2014;20: 1027–1037. 10.1089/ten.TEA.2013.0111 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Han S, Wang B, Jin W, Xiao Z, Li X, Ding W, et al. The linear-ordered collagen scaffold-BDNF complex significantly promotes functional recovery after completely transected spinal cord injury in canine. Biomaterials 2015;41: 89–96. 10.1016/j.biomaterials.2014.11.031 [DOI] [PubMed] [Google Scholar]
  • 16.Liu C, Huang Y, Pang M, Yang Y, Li S, Liu L, et al. Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds. PLoS One 2015; 10.1371/journal.pone.0117709 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Chedly J, Soares S, Montembault A, von Boxberg Y, Veron-Ravaille M,Mouffle C, et al. Physical chitosan microhydrogels as scaffolds for spinal cord injury restoration and axon regeneration. Biomaterials 2017;138: 91–107. 10.1016/j.biomaterials.2017.05.024 [DOI] [PubMed] [Google Scholar]
  • 18.Bunge MB. Novel combination strategies to repair the injured mammalian spinal cord. J Spinal Cord Med. 2008;31: 262–269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Liu S, Sandner B, Schackel T, Nicholson L, Chtarto A, Tenenbaum L, et al. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury. Acta Biomaterialia 2017;60: 167–180 10.1016/j.actbio.2017.07.024 [DOI] [PubMed] [Google Scholar]
  • 20.Houchin-Ray T, Swift LA, Jang JH, Shea LD. Patterned PLG substrates for localized DNA delivery and directed neurite extension. Biomaterials 2007; 28: 2603–2611. 10.1016/j.biomaterials.2007.01.042 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Hendriks WTJ, Eggers R, Verhaagen J, Boer GJ. Gene transfer to the spinal cord neural scar with lentiviral vectors: predominant transgene expression in astrocytes but not in meningeal cells. J Neurosci Res. 2007;85: 3041–3052. 10.1002/jnr.21432 [DOI] [PubMed] [Google Scholar]
  • 22.Laporte LD, Yan AL, Shea LD. Local gene delivery from ECM-coated poly(lactide-co- glycolide) multiple channel bridges after spinal cord injury. Biomaterials 2009;30: 2361–2368. 10.1016/j.biomaterials.2008.12.051 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Zhao RR, Muir EM, Alves JN, Rickman H, Allan AY, Kwok JC, et al. Lentiviral vectors express chondroitinase ABC in cortical projections and promote sprouting of injured corticospinal axons. J Neurosci Methods 2011;201: 228–238. 10.1016/j.jneumeth.2011.08.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Tuinstra HM, Aviles MO, Shin S, Holland SJ, Zelivyanskaya ML, Fast AG, et al. Multifunctional, multichannel bridges that deliver neurotrophin encoding lentivirus for regeneration following spinal cord injury. Biomaterials 2012;33: 1618–1626. 10.1016/j.biomaterials.2011.11.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Boehler RM, Shin S, Fast AG, Gower RM, Shea LD. A PLG/HAp composite scaffold for lentivirus delivery. Biomaterials 2013;34: 5431e5438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Blesch A, Lu P, Tsukada S, Alto LT, Roet K, Coppola G. Conditioning lesions before or after spinal cord injury recruit broad genetic mechanisms that sustain axonal regeneration: superiority to campmediated effects. Exp Neurol. 2012;235:162–173. 10.1016/j.expneurol.2011.12.037 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Ruschel J, Hellal F, Flynn KC, Dupraz S, Elliott DA, Tedeschi A. Axonal regeneration systemic administration of epothilone B promotes axon regeneration after spinal cord injury, Science 2015;348 (6232): 347–352. 10.1126/science.aaa2958 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Hentschel HG, Ooyen AV. Models of axon guidance and bundling during development. Proc R Soc B Biol Sci. 1999; 266(1434): 2231–2238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Ooyen AV. Using theoretical models to analyse neural development. Nat Rev Neurosci. 2011;12: 311–326. 10.1038/nrn3031 [DOI] [PubMed] [Google Scholar]
  • 30.Mortimer D, Feldner J, Vaughan T, Vetter I, Pujic Z, Rosoff WJ, et al. A Bayesian model predicts the response of axons to molecular gradients. PNAS 2009;106(25):10296–10301. 10.1073/pnas.0900715106 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Nguyen H, Dayan P, Pujic Z, Cooper-White J, Goodhill GJ. A mathematical model explains saturating axon guidance responses to molecular gradients. eLife 2016;5: e12248 10.7554/eLife.12248 [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 32.Chen X, Zhu W. A mathematical model of regenerative axon growing along glial scar after spinal cord injury. Computational and Mathematical Methods in Medicine 2016; Article ID 3030454, 9 pages. 10.1155/2016/3030454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Sarvestani S A, Jabbari E. Analysis of Cell Locomotion on Ligand Gradient Substrates. BiotechnolBioeng. 2009;103: 424–429. [DOI] [PubMed] [Google Scholar]
  • 34.Atzeni F, Sarzi-Puttini P, Bevilacqu M. Calcium deposition and dssociated chronic diseases (atherosclerosis, diffuse idiopathic skeletal hyperostosis, and others). Rheum Dis Clin N Am. 2006; 32: 413–426. [DOI] [PubMed] [Google Scholar]
  • 35.Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science 1996; 274(5290): 1123–1133. [DOI] [PubMed] [Google Scholar]
  • 36.Dickson BJ. Molecular Mechanisms of Axon Guidance. Science 2002;298(5600): 1959–1964. 10.1126/science.1072165 [DOI] [PubMed] [Google Scholar]
  • 37.Rosoff WJ, Urbach JS, Esrick MA, McAllister RG, Richards LJ, Goodhill GJ. A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients. Nat neurosci. 2004;7(6): 678–682. 10.1038/nn1259 [DOI] [PubMed] [Google Scholar]
  • 38.Goodhill GJ. Diffusion in axon guidance. Eur J Neurosci. 1997; 9(7): 1414–1421. [DOI] [PubMed] [Google Scholar]
  • 39.Goodhill GJ. Mathematical guidance for axons. Trends in Neurosci. 1998; 21(6): 226–231. [DOI] [PubMed] [Google Scholar]
  • 40.Wensch J, Sommeijer B. Parallel simulation of axon growth in the nervous system. Parallel Comput. 2004;30(2): 163–186. [Google Scholar]
  • 41.Krottje JK, Ooyen AV. A mathematical framework for modeling axon guidance. Bull Math Biol. 2007;69(1): 3–31. 10.1007/s11538-006-9142-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Bregman BS, Coumans JV, Dai HN, Kuhn PL, Lynskey J, McAtee M, Sandhu F. Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury. Prog Brain Res. 2002;137(2):257–273. [DOI] [PubMed] [Google Scholar]
  • 43.GrandPré T, Nakamura F, Vartanian T, Strittmatter SM. Identification of the Nogo inhibitor of axon regeneration as a reticulon protein. Nature 2000;403(6768): 439–444. 10.1038/35000226 [DOI] [PubMed] [Google Scholar]
  • 44.Brittis P, Flanagan J. Nogo domains and a Nogo receptor implications for axon regeneration. Neuron 2001;30(1): 11–l4. [DOI] [PubMed] [Google Scholar]
  • 45.Wang KC, Kim JA, Sivasankaran R, Sega R, He Z. P75 interacts with the Nogo receptors as a co-receptor for Nogo, MAG and OMgp. Nature 2002;420(7): 74–78. [DOI] [PubMed] [Google Scholar]
  • 46.Tang BL. Inhibitors of neuronal regeneration: mediators and signaling mechanisms. Neurochem Int. 2003;42(3): 189–203. [DOI] [PubMed] [Google Scholar]
  • 47.Qian YH, Succi S, Orszag SA. Recent advances in lattice Boltzmann computing. Ann Rev Comp Phys. 1995;10: 195–242. [Google Scholar]
  • 48.Chen S, Doolen GD. Lattice Boltzmann method for fluid flows. Ann Rev Flu Mech. 1998;30(5): 329–364. [Google Scholar]
  • 49.Shi B, Deng B, Du R, Chen X. A new scheme for source term in LBGK model for convection-diffusion equation. Comp Math Appl. 2008;55(7): 1568–1575. [Google Scholar]
  • 50.Feng S, Zhu W. Bidirectional molecular transport shapes cell polarization in a two-dimensional model of eukaryotic chemotaxis. J Theor Biol. 2014;363: 235–246. 10.1016/j.jtbi.2014.08.033 [DOI] [PubMed] [Google Scholar]
  • 51.McTigue DM, Horner PJ, Stokes BT, Gage FH. Neurotrophin-3 and brainderived neurotrophic factor induce oligodendrocyte proliferation and myelinationof regenerating axons in the contused adult rat spinal cord. J Neurosci.1998;18: 5354–5365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Sasaki M, Radtke C, Tan AM, Zhao P, Hamada H, Houkin K, et al. BDNF hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J Neurosci. 2009;29: 14932–14941. 10.1523/JNEUROSCI.2769-09.2009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Girard C, Bemelmans AP, Dufour N, Mallet J, Bachelin C, Nait-Oumesmar B, et al. Grafts of brain-derived neurotrophic factor and neurotrophin 3-transduced primate Schwann cells lead to functional recovery of the demyelinated mouse spinal cord. J Neurosci. 2005;25: 7924–7933. 10.1523/JNEUROSCI.4890-04.2005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Jain A, Kim YT, McKeon RJ, Bellamkonda RV. In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials 2006;27: 497–504. 10.1016/j.biomaterials.2005.07.008 [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

All data generated or analysed during this study are included in this published article.


Articles from PLoS ONE are provided here courtesy of PLOS

RESOURCES