Skip to main content
Beilstein Journal of Organic Chemistry logoLink to Beilstein Journal of Organic Chemistry
. 2018 Oct 4;14:2572–2579. doi: 10.3762/bjoc.14.234

Gold-catalyzed post-Ugi alkyne hydroarylation for the synthesis of 2-quinolones

Xiaochen Du 1,#, Jianjun Huang 1,#, Anton A Nechaev 2, Ruwei Yao 1, Jing Gong 1, Erik V Van der Eycken 2,3, Olga P Pereshivko 1,, Vsevolod A Peshkov 1,4,§,
Editor: Jeffrey Aubé
PMCID: PMC6204774  PMID: 30410618

Abstract

A series of propargylamides containing an electron-rich benzene ring was prepared through the Ugi reaction of 3,5-dimethoxyaniline with various propiolic acids, aldehydes and isocyanides. Subjecting these adducts to a gold-catalyzed intramolecular alkyne hydroarylation process allowed to efficiently construct the 2-quinolone core bearing a branched substituent on the nitrogen atom.

Keywords: gold catalysis, hydroarylation, 2-quinolones, Ugi reaction

Introduction

Quinoline and its oxidized derivatives, 2-quinolone and 4-quinolone, are the core structural elements of many natural products and pharmaceutical agents [13]. In particular, 2-quinolone derivatives show a broad range of biological activities including antiviral [47], antimicrobial [89], antiparasitic [1011], anti-inflammatory [1213] and anticancer [9,1319]. In addition, 2-quinolones were identified as promising entities for the treatment of neuropathic pain [2022] and erectile dysfunction [23]. Therefore, the elaboration of practical methodologies for the synthesis [24] and functionalization [2529] of the 2-quinolone scaffold has become a budding research trend. In the last decade, a great number of efficient approaches has been developed utilizing transition metal-catalyzed [3032], Lewis acid-mediated [33], and radical cyclizations [34] of various aniline derivatives with most recent strategies focusing on the implementation of transition metal-catalyzed C–H activation methods [3536].

One of the common approaches towards 2-quinolones 2 involves the intramolecular Friedel–Crafts hydroarylation [3738] of N-arylamides of 3-substituted propynoic acids 1 (Scheme 1). It was found that the use of superstoichiometric amounts of strong Brønsted [3941] or Lewis [4041] acids give good results on substrates with non-activated N-aryl groups such as 1a, while substrate 1b bearing an additional electron-donating group on the N-aryl fragment gave a poorer outcome under similar settings (Scheme 1a). Consequently, several catalytic methods were developed to extend the scope of this Friedel–Crafts process to substrates such as 1c and 1d featuring highly electron-rich N-aryl moieties (Scheme 1b) [4244]. Finally, following the success of the above procedures, two asymmetric versions were designed to provide access to axially chiral 2-quinolone-based heterobiaryls such as 2e (Scheme 1c) [4546].

Scheme 1.

Scheme 1

Synthesis of 2-quinolones 2 through intramolecular Friedel–Crafts hydroarylation of N-aryl propargylamides 1.

One substantial drawbacks of the previous methodologies is that they do lack an exploration of the substituent diversity on the nitrogen atom. We decided to address this issue by employing propargylamides 7 obtained by a four-component Ugi reaction of propiolic acids 3, aldehydes 4, isocyanides 5 and 3,5-dimethoxyaniline (6a) (Scheme 2). We anticipated that the resulting adducts 7 would readily produce 2-quinolones 8 bearing a branched substituent on the nitrogen atom through an intramolecular gold-catalyzed alkyne hydroarylation reaction (Scheme 2). It should be noted, that heterocyclic syntheses through post-Ugi transformations have been under extensive exploration for the last two decades [4749], especially in terms of gold-catalyzed Friedel–Crafts-type cyclizations involving attack of electron-rich arenes on the triple bonds, leading to the formation of a great number of fused [5053] and spirocyclic structures [5459]. In addition, Ugi adducts have already been successfully utilized for the diversity-oriented synthesis of 2-quinolones using either intramolecular Heck reaction [60] or Knoevenagel condensation [6162].

Scheme 2.

Scheme 2

Strategy towards 2-quinolones 8 bearing a branched substituent on the nitrogen atom.

Results and Discussion

We began our study with the preparation of the model substrate 7a through the Ugi reaction of tetrolic acid (3a), benzaldehyde (4a), tert-butyl isocyanide (5a) and 3,5-dimethoxyaniline (6a). Next, the cycloisomerization of 7a was investigated in order to identify the optimal conditions. At first, we attempted two reactions using 5 mol % of the standard AuPPh3Cl/AgOTf precatalytic combination in conventional chlorinated solvents such as deuterated chloroform and dichloromethane (Table 1, entries 1 and 2). The latter proved to be a better choice affording the targeted 2-quinolone 8a in up to 90% yield (Tabel 1, entry 2). Using AgOTf in the absence of gold slowed down the reaction leading to decreased yields of 8a even at an elevated temperature of 60 °C (Table 1, entries 3–5). Conducting the AuPPh3Cl/AgOTf-catalyzed reaction in trifluoroethanol (TFE) led to improved results producing 8a in up to 97% yield (Table 1, entry 6). Thus, this greener alternative [63] to chlorinated solvents was selected as the solvent of choice for the further exploration. Changing the silver counterpart to AgPF6 did not affect the reaction outcome yielding 8a in 96% (Table 1, entry 7). Using AgOTf or AuPPh3Cl as sole catalyst did not provide satisfactory results (Table 1, entries 8–10). In particular, the AgOTf-catalyzed reaction conducted at 60 °C produced substantial amounts of trifluoroethanol adduct 9a (Table 1, entry 8), while the AuPPh3Cl-catalyzed reaction suffered from a slow conversion rate of starting 7a (Table 1, entries 9 and 10).

Table 1.

Screening of the conditions for the intramolecular hydroarylation of the Ugi adduct 7a.a

graphic file with name Beilstein_J_Org_Chem-14-2572-i001.jpg

Entry Catalyst (x mol %) Solvent Temp., °C Time, h Conversion of 7a, %b Yield of 8a, %b Yield of 9a, %b

1 AuPPh3Cl/AgOTf (5) CDCl3 rt 12 94 84
2 AuPPh3Cl/AgOTf (5) DCM rt 12 100 90
3 AgOTf (5) CDCl3 rt 12 40 30
4 AgOTf (5) CDCl3 60 °C 4 70 58
5 AgOTf (5 + 5)c CDCl3 60 °C 6 90 74
6 AuPPh3Cl/AgOTf (5) CF3CH2OH rt 12 100 97 (96)d trace
7 AuPPh3Cl/AgPF6 (5) CF3CH2OH rt 12 100 96
8 AgOTf (5 + 5)c CF3CH2OH 60 °C 6 100 86 11
9 AuPPh3Cl (5) CF3CH2OH rt 12 13 12
10 AuPPh3Cl (5) CF3CH2OH 60 °C 12 79 76

aReaction conditions: 7a (0.2 mmol), solvent (2 mL), under air. bDetermined by 1H NMR using 3,4,5-trimethoxybenzaldehyde as an internal standard. cThe first portion of catalyst was added at the beginning of reaction, while the second portion was added after 3 h. dIsolated yield for a 0.5 mmol scale reaction is given in parenthesis.

Next, we attempted to delineate the scope of our methodology (Figure 1). Exploring different 3-substituted propiolic acids 3 in combination with 4a, 5a and 6a gave moderate results for the Ugi reaction and good to excellent efficiency for the gold-catalyzed cyclization (Figure 1, products 8a–c). As for the aldehyde component 4, both (hetero)aromatic and aliphatic ones were found to be tolerable (Figure 1, products 8d–k), although for the electron-deficient aromatic aldehydes only low yields were achieved during the Ugi step. Yet, the subsequent gold-catalyzed cyclization worked well delivering the 2-quinolones 8f–h in up to 93% yield. Besides, several aliphatic and aromatic isocyanates 5 have been successfully employed for the preparation of 2-quinolones 8l–n. Finally, we decided to investigate the reactions of Ugi adducts 7o–r derived from various electron-rich anilines 6. The gold-catalyzed cyclization of 3,4,5-trimethoxyaniline-derived substrate 7o proceeded at the elevated temperature of 50 °C producing 2-quinolone 8o in 89% yield. The cyclizations of 7p–r required further optimization of the reaction conditions (Tables 2–4) and were complicated due the formation of regioisomeric products. After all, 2-quinolones 8p and 8q were isolated in good yields from gold-catalyzed reactions in hexafluoroisopropanol (HFIP), while 2-quinolone 8r was obtained as a mixture with isomer 8r’.

Figure 1.

Figure 1

Scope of the protocol.

As noted above, the intramolecular alkyne hydroarylations with certain Ugi adducts required further adjustment of the reaction conditions. For example, the reaction of substrate 7p being conducted in TFE at room temperature delivered a complex mixture of regioisomeric 2-quinolones 8p/8p’ and TFE-adduct 9b (Table 2, entry 1). However, the application of branched fluorinated alcohols as solvent solved the problem of the competing alkoxylation reaction. Thus, no alcohol adducts were formed when the gold-catalyzed cyclization of 7p was conducted in hexafluoro-2-methylpropan-2-ol or HFIP (Table 2, entries 2–4). Using the latter solvent a full conversion of 7p was achieved at 50 °C within 20 h, allowing to isolate both possible products 8p and 8p’ in 58% and 15% yields, respectively (Table 2, entry 4). It should also be stressed, that reacting 7p in chloroform at rt failed to produce any traces of cyclized products (Table 2, entry 5).

Table 2.

Screening the conditions for the gold-catalyzed intramolecular hydroarylation of the Ugi adduct 7p.a

graphic file with name Beilstein_J_Org_Chem-14-2572-i002.jpg

Entry Conditions Conversion of 7p, %b Yield of 8p, %b Yield of 8p’, %b Yield of 9b, %b

1 CF3CH2OH, rt 79 30 7 14
2 CH3(CF3)2COH, rt 34 27 6
3 CH3(CF3)2COH, 50 °C 87 66 (48)c 14
4d (CF3)2CHOH, 50 °C 100 71 (58)c 20 (15)c
5 CHCl3, rt 10

aReaction conditions: 7p (0.2 mmol), solvent (2 mL), 12 h, under air. bDetermined by 1H NMR using 3,4,5-trimethoxybenzaldehyde as an internal standard. cIsolated yields for 0.3 mmol scale reactions are given in parentheses. dThe reaction was conducted for 20 h.

A 4-bromo-3-methoxyaniline-derived Ugi adduct 7q proved to be the most difficult substrate. The initial attempts to perform an intramolecular alkyne hydroarylation of 7q in TFE were characterized by a rather slow reaction rate which concomitantly promoted the competing alkoxylation reaction (Table 3, entries 1 and 2). Consequently, we were able to isolate and characterize the corresponding TFE-adduct 9c (Table 3, entry 2). Switching to HFIP as the solvent prevented the alkoxylation but led to an even slower reaction rate (Table 3, entries 3–5). Increasing the catalyst loading to 10 and finally up to 20 mol % allowed to achieve a full conversion of 7q within 30 h producing 2-quinolone 8q in 75% isolated yield (Table 3, entries 5 and 6).

Table 3.

Screening the conditions for the gold-catalyzed intramolecular hydroarylation of the Ugi adduct 7q.a

graphic file with name Beilstein_J_Org_Chem-14-2572-i003.jpg

Entry Conditions Conversion of 7q, %b Yield of 8q, %b Yield of 8q’, %b Yield of 9c, %b

1 CF3CH2OH, rt 28 4 1 11
2 CF3CH2OH, 50 °C 58 8 2 22 (18)c
3 (CF3)2CHOH, rt 12 7 1 -
4 (CF3)2CHOH, 50 °C 24 14 4 -
5d (CF3)2CHOH, 50 °C 51 40 6 -
6e (CF3)2CHOH, 50 °C 100 76 (75)c 18 -

aReaction conditions: 7q (0.2 mmol), AuPPh3Cl/AgOTf (5 mol %), solvent (2 mL), 12 h, under air. bDetermined by 1H NMR using 3,4,5-trimethoxybenzaldehyde as an internal standard. cIsolated yields for 0.4 mmol scale reactions are given in parentheses. dThe reaction was conducted for 24 h using 10 mol % of AuPPh3Cl/AgOTf catalyst. eThe reaction was conducted for 30 h using 20 mol % of AuPPh3Cl/AgOTf catalyst.

Analogously to 7p and 7q, the cyclization of 3-methoxyaniline-derived substrate 7r being conducted in TFE did not lead to a full conversion within 12 h at rt (Table 4, entry 1). Switching to branched fluorinated solvents led to a faster conversion of 7r simultaneously suppressing the competing alkoxylation (Table 4, entries 2–4). Nonetheless, the transformation of 7r was further complicated by the fact that the resulting cyclized products 8r and 8r’ were essentially inseparable. The best 8r/8r’ ratio could be obtained using hexafluoro-2-methylpropan-2-ol while the best overall yield was obtained using HFIP (Table 4, entry 2 versus entry 4).

Table 4.

Screening the conditions for the gold-catalyzed intramolecular hydroarylation of the Ugi adduct 7r.a

graphic file with name Beilstein_J_Org_Chem-14-2572-i004.jpg

Entry Conditions Conversion of 7r, %b Combined yield of 8r and 8r’ (8r:8r’), %b Yield of 9d, %b

1 CF3CH2OH, rt, 12 h 70 48 (3.9:1) 10
2 CH3(CF3)2COH, rt, 12 h 100 85 (3.9:1)
3 CH3(CF3)2COH, 50 °C, 4 h 100 84 (3.4:1)
4 (CF3)2CHOH, rt, 12 h 100 94 (3.5:1); 80c (6.5:1)

aReaction conditions: 7r (0.15 mmol), solvent (1.5 mL), under air. bDetermined by 1H NMR using 3,4,5-trimethoxybenzaldehyde as an internal standard. cCombined yield for a 0.4 mmol scale reaction obtained after column chromatography.

Conclusion

We have elaborated a fast and diversity-oriented approach towards 2-quinolones bearing a branched substituent on the nitrogen atom. The strategy relies on the application of a four-component Ugi reaction followed by a gold-catalyzed intramolecular alkyne hydroarylation. The developed process has a broad scope and simple reaction settings. Another important highlight of the developed process is that it strongly benefits from the employment of fluorinated alcohols as environmentally benign solvents.

Supporting Information

File 1

Full experimental procedures and spectroscopic characterizations, as well as the copies of 1H and 13C NMR spectra of Ugi products 7 and final 2-quinolones 8.

Acknowledgments

This work was supported by the start-up fund from Soochow University (grant Q410900714), National Natural Science Foundation of China (grant 21650110445), Natural Science Foundation of Jiangsu Province of China (grants BK20160310and BK20150317), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the project of scientific and technologic infrastructure of Suzhou (grant SZS201708). A. A. N. is grateful to the European Community Mobility Programme “Erasmus Mundus Action 2, Strand 1” for providing a doctoral scholarship. E. V. V. d. E. acknowledges the support of RUDN University Program 5-100.

Contributor Information

Olga P Pereshivko, Email: olga@suda.edu.cn.

Vsevolod A Peshkov, Email: vsevolod@suda.edu.cn.

References

  • 1.Heeb S, Fletcher M P, Chhabra S R, Diggle S P, Williams P, Cámara M. FEMS Microbiol Rev. 2011;35:247–274. doi: 10.1111/j.1574-6976.2010.00247.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Michael J P. Nat Prod Rep. 2008;25:166–187. doi: 10.1039/b612168n. [DOI] [PubMed] [Google Scholar]
  • 3.Andersson M I, MacGowan A P. J Antimicrob Chemother. 2003;51(Suppl 1):1–11. doi: 10.1093/jac/dkg212. [DOI] [PubMed] [Google Scholar]
  • 4.Tedesco R, Chai D, Darcy M G, Dhanak D, Fitch D M, Gates A, Johnston V K, Keenan R M, Lin-Goerke J, Sarisky R T, et al. Bioorg Med Chem Lett. 2009;19:4354–4358. doi: 10.1016/j.bmcl.2009.05.080. [DOI] [PubMed] [Google Scholar]
  • 5.Cheng P, Zhang Q, Ma Y-B, Jiang Z-Y, Zhang X-M, Zhang F-X, Chen J-J. Bioorg Med Chem Lett. 2008;18(13):3787–3789. doi: 10.1016/j.bmcl.2008.05.065. [DOI] [PubMed] [Google Scholar]
  • 6.Guo R-H, Zhang Q, Ma Y-B, Luo J, Geng C-A, Wang L-J, Zhang X-M, Zhou J, Jiang Z-Y, Chen J-J. Eur J Med Chem. 2011;46:307–319. doi: 10.1016/j.ejmech.2010.11.019. [DOI] [PubMed] [Google Scholar]
  • 7.Curreli F, Zhang H, Zhang X, Pyatkin I, Victor Z, Altieri A, Debnath A K. Bioorg Med Chem. 2011;19:77–90. doi: 10.1016/j.bmc.2010.11.045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Naik M, Humnabadkar V, Tantry S J, Panda M, Narayan A, Guptha S, Panduga V, Manjrekar P, Jena L k, Koushik K, et al. J Med Chem. 2014;57(12):5419–5434. doi: 10.1021/jm5005978. [DOI] [PubMed] [Google Scholar]
  • 9.Hassanin H M, El-edfawy S M. Heterocycles. 2012;85:2421–2436. doi: 10.3987/com-12-12523. [DOI] [Google Scholar]
  • 10.Kraus J M, Verlinde C L M J, Karimi M, Lepesheva G I, Gelb M H, Buckner F S. J Med Chem. 2009;52:1639–1647. doi: 10.1021/jm801313t. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Kraus J M, Tatipaka H B, McGuffin S A, Chennamaneni N K, Karimi M, Arif J, Verlinde C L M J, Buckner F S, Gelb M H. J Med Chem. 2010;53:3887–3898. doi: 10.1021/jm9013136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Clark P G K, Vieira L C C, Tallant C, Fedorov O, Singleton D C, Rogers C M, Monteiro O P, Bennett J M, Baronio R, Müller S, et al. Angew Chem, Int Ed. 2015;54(21):6217–6221. doi: 10.1002/anie.201501394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Upadhyay K D, Dodia N M, Khunt R C, Chaniara R S, Shah A K. ACS Med Chem Lett. 2018;9:283–288. doi: 10.1021/acsmedchemlett.7b00545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Alsina M, Fonseca R, Wilson E F, Belle A N, Gerbino E, Price-Troska T, Overton R M, Ahmann G, Bruzek L M, Adjei A A, et al. Blood. 2004;103:3271–3277. doi: 10.1182/blood-2003-08-2764. [DOI] [PubMed] [Google Scholar]
  • 15.Sparano J A, Moulder S, Kazi A, Coppola D, Negassa A, Vahdat L, Li T, Pellegrino C, Fineberg S, Munster P, et al. Clin Cancer Res. 2009;15:2942–2948. doi: 10.1158/1078-0432.ccr-08-2658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Ni Z-J, Barsanti P, Brammeier N, Diebes A, Poon D J, Ng S, Pecchi S, Pfister K, Renhowe P A, Ramurthy S, et al. Bioorg Med Chem Lett. 2006;16:3121–3124. doi: 10.1016/j.bmcl.2006.03.059. [DOI] [PubMed] [Google Scholar]
  • 17.Claassen G, Brin E, Crogan-Grundy C, Vaillancourt M T, Zhang H Z, Cai S X, Drewe J, Tseng B, Kasibhatla S. Cancer Lett. 2009;274:243–249. doi: 10.1016/j.canlet.2008.09.032. [DOI] [PubMed] [Google Scholar]
  • 18.Maiti A, Reddy P V N, Sturdy M, Marler L, Pegan S D, Mesecar A D, Pezzuto J M, Cushman M. J Med Chem. 2009;52(7):1873–1884. doi: 10.1021/jm801335z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Tang Q, Zhai X, Tu Y, Wang P, Wang L, Wu C, Wang W, Xie H, Gong P, Zheng P. Bioorg Med Chem Lett. 2016;26:1794–1798. doi: 10.1016/j.bmcl.2016.02.037. [DOI] [PubMed] [Google Scholar]
  • 20.Bonnefous C, Payne J E, Roppe J, Zhuang H, Chen X, Symons K T, Nguyen P M, Sablad M, Rozenkrants N, Zhang Y, et al. J Med Chem. 2009;52:3047–3062. doi: 10.1021/jm900173b. [DOI] [PubMed] [Google Scholar]
  • 21.Payne J E, Bonnefous C, Symons K T, Nguyen P M, Sablad M, Rozenkrants N, Zhang Y, Wang L, Yazdani N, Shiau A K, et al. J Med Chem. 2010;53:7739–7755. doi: 10.1021/jm100828n. [DOI] [PubMed] [Google Scholar]
  • 22.Durón S G, Lindstrom A, Bonnefous C, Zhang H, Chen X, Symons K T, Sablad M, Rozenkrants N, Zhang Y, Wang L, et al. Bioorg Med Chem Lett. 2012;22:1237–1241. doi: 10.1016/j.bmcl.2011.11.073. [DOI] [PubMed] [Google Scholar]
  • 23.Hewawasam P, Fan W, Ding M, Flint K, Cook D, Goggins G D, Myers R A, Gribkoff V K, Boissard C G, Dworetzky S I, et al. J Med Chem. 2003;46:2819–2822. doi: 10.1021/jm030005h. [DOI] [PubMed] [Google Scholar]
  • 24.Huang C-C, Chang N-C. Org Lett. 2008;10:673–676. doi: 10.1021/ol7030312. [DOI] [PubMed] [Google Scholar]
  • 25.Glasnov T N, Stadlbauer W, Kappe C O. J Org Chem. 2005;70:3864–3870. doi: 10.1021/jo0502549. [DOI] [PubMed] [Google Scholar]
  • 26.Chen X, Cui X, Wu Y. Org Lett. 2016;18:2411–2414. doi: 10.1021/acs.orglett.6b00923. [DOI] [PubMed] [Google Scholar]
  • 27.Guo T. Tetrahedron Lett. 2016;57:5837–5840. doi: 10.1016/j.tetlet.2016.11.056. [DOI] [Google Scholar]
  • 28.Guo T, Wang H. Synlett. 2017;28:1845–1851. doi: 10.1055/s-0036-1588829. [DOI] [Google Scholar]
  • 29.Guo T, Wei X-N, Wang H-Y, Zhao B. Synth Commun. 2018;48:761–767. doi: 10.1080/00397911.2017.1422519. [DOI] [Google Scholar]
  • 30.Ishida T, Kikuchi S, Yamada T. Org Lett. 2013;15:3710–3713. doi: 10.1021/ol401571r. [DOI] [PubMed] [Google Scholar]
  • 31.Zhang J, Han X, Lu X. Synlett. 2015;26:1744–1748. doi: 10.1055/s-0034-1380751. [DOI] [Google Scholar]
  • 32.Murayama T, Shibuya M, Yamamoto Y. J Org Chem. 2016;81:11940–11949. doi: 10.1021/acs.joc.6b02626. [DOI] [PubMed] [Google Scholar]
  • 33.Liu L, Lu H, Wang H, Yang C, Zhang X, Zhang-Negrerie D, Du Y, Zhao K. Org Lett. 2013;15:2906–2909. doi: 10.1021/ol400743r. [DOI] [PubMed] [Google Scholar]
  • 34.Mai W-P, Sun G-C, Wang J-T, Song G, Mao P, Yang L-R, Yuan J-W, Xiao Y-M, Qu L-B. J Org Chem. 2014;79:8094–8102. doi: 10.1021/jo501301t. [DOI] [PubMed] [Google Scholar]
  • 35.Manikandan R, Jeganmohan M. Org Lett. 2014;16:3568–3571. doi: 10.1021/ol501548e. [DOI] [PubMed] [Google Scholar]
  • 36.Wu J, Xiang S, Zeng J, Leow M, Liu X-W. Org Lett. 2015;17:222–225. doi: 10.1021/ol503292p. [DOI] [PubMed] [Google Scholar]
  • 37.Dorel R, Echavarren A M. Chem Rev. 2015;115:9028–9072. doi: 10.1021/cr500691k. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Boyarskiy V P, Ryabukhin D S, Bokach N A, Vasilyev A V. Chem Rev. 2016;116:5894–5986. doi: 10.1021/acs.chemrev.5b00514. [DOI] [PubMed] [Google Scholar]
  • 39.Iwai I, Hiraoka T. Chem Pharm Bull. 1963;11(5):638–643. doi: 10.1248/cpb.11.638. [DOI] [PubMed] [Google Scholar]
  • 40.Koltunov K Y, Walspurger S, Sommer J. Eur J Org Chem. 2004:4039–4047. doi: 10.1002/ejoc.200400313. [DOI] [Google Scholar]
  • 41.Ryabukhin D S, Gurskaya L Y, Fukin G K, Vasilyev A V. Tetrahedron. 2014;70:6428–6443. doi: 10.1016/j.tet.2014.07.028. [DOI] [Google Scholar]
  • 42.Jia C, Piao D, Kitamura T, Fujiwara Y. J Org Chem. 2000;65:7516–7522. doi: 10.1021/jo000861q. [DOI] [PubMed] [Google Scholar]
  • 43.Song C E, Jung D-u, Choung S Y, Roh E J, Lee S-g. Angew Chem, Int Ed. 2004;43(45):6183–6185. doi: 10.1002/anie.200460292. [DOI] [PubMed] [Google Scholar]
  • 44.Vacala T, Bejcek L P, Williams C G, Williamson A C, Vadola P A. J Org Chem. 2017;82:2558–2569. doi: 10.1021/acs.joc.6b02984. [DOI] [PubMed] [Google Scholar]
  • 45.Shibuya T, Shibata Y, Noguchi K, Tanaka K. Angew Chem, Int Ed. 2011;50:3963–3967. doi: 10.1002/anie.201100152. [DOI] [PubMed] [Google Scholar]
  • 46.Shibuya T, Nakamura K, Tanaka K. Beilstein J Org Chem. 2011;7:944–950. doi: 10.3762/bjoc.7.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Banfi L, Basso A, Riva R. Top Heterocycl Chem. 2010;23:1–39. doi: 10.1007/7081_2009_23. [DOI] [Google Scholar]
  • 48.Sharma U K, Sharma N, Vachhani D D, Van der Eycken E V. Chem Soc Rev. 2015;44:1836–1860. doi: 10.1039/c4cs00253a. [DOI] [PubMed] [Google Scholar]
  • 49.Li X, Jia X, Yin L. Chin J Org Chem. 2017;37:2237–2249. doi: 10.6023/cjoc201704026. [DOI] [Google Scholar]
  • 50.Liu C, Wang G, Wang Y, Van Hecke K, Pereshivko O P, Peshkov V A. Tetrahedron Lett. 2018;59:1823–1827. doi: 10.1016/j.tetlet.2018.03.079. [DOI] [Google Scholar]
  • 51.Vachhani D D, Kumar A, Modha S G, Sharma S K, Parmar V S, Van der Eycken E V. Synthesis. 2015;47:1337–1347. doi: 10.1055/s-0034-1379894. [DOI] [Google Scholar]
  • 52.Li Z, Kumar A, Vachhani D D, Sharma S K, Parmar V S, Van der Eycken E V. Eur J Org Chem. 2014:2084–2091. doi: 10.1002/ejoc.201301507. [DOI] [Google Scholar]
  • 53.Kumar A, Li Z, Sharma S K, Parmar V S, Van der Eycken E V. Chem Commun. 2013;49:6803–6805. doi: 10.1039/c3cc42704h. [DOI] [PubMed] [Google Scholar]
  • 54.He Y, Li Z, Robeyns K, Van Meervelt L, Van der Eycken E V. Angew Chem, Int Ed. 2018;57(1):272–276. doi: 10.1002/anie.201710592. [DOI] [PubMed] [Google Scholar]
  • 55.Vacala T L, Carlson P R, Arreola-Hester A, Williams C G, Makhoul E W, Vadola P A. J Org Chem. 2018;83:1493–1501. doi: 10.1021/acs.joc.7b03125. [DOI] [PubMed] [Google Scholar]
  • 56.He Y, Li Z, Tian G, Song L, Van Meervelt L, Van der Eycken E V. Chem Commun. 2017;53:6413–6416. doi: 10.1039/c7cc03152a. [DOI] [PubMed] [Google Scholar]
  • 57.Kumar A, Vachhani D D, Modha S G, Sharma S K, Parmar V S, Van der Eycken E V. Beilstein J Org Chem. 2013;9:2097–2102. doi: 10.3762/bjoc.9.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Modha S G, Kumar A, Vachhani D D, Jacobs J, Sharma S K, Parmar V S, Van Meervelt L, Van der Eycken E V. Angew Chem, Int Ed. 2012;51(38):9572–9575. doi: 10.1002/anie.201205052. [DOI] [PubMed] [Google Scholar]
  • 59.Nechaev A A, Van Hecke K, Zaman M, Kashtanov S, Ungur L, Pereshivko O P, Peshkov V A, Van der Eycken E V. J Org Chem. 2018;83:8170–8182. doi: 10.1021/acs.joc.8b00953. [DOI] [PubMed] [Google Scholar]
  • 60.Rasouli M A, Mahdavi M, Saeedi M, Ranjbar P R, Shafiee A, Foroumadi A. J Heterocycl Chem. 2015;52:386–391. doi: 10.1002/jhet.2053. [DOI] [Google Scholar]
  • 61.Gordon C P, Young K A, Hizartzidis L, Deane F M, McCluskey A. Org Biomol Chem. 2011;9:1419–1428. doi: 10.1039/c0ob00029a. [DOI] [PubMed] [Google Scholar]
  • 62.Marcaccini S, Pepino R, Pozo M C, Basurto S, García-Valverde M, Torroba T. Tetrahedron Lett. 2004;45(21):3999–4001. doi: 10.1016/j.tetlet.2004.03.184. [DOI] [Google Scholar]
  • 63.Dandia A, Singh R, Joshi J, Kumari S. Mini-Rev Org Chem. 2014;11:462–476. doi: 10.2174/1570193x1104140926170237. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

File 1

Full experimental procedures and spectroscopic characterizations, as well as the copies of 1H and 13C NMR spectra of Ugi products 7 and final 2-quinolones 8.


Articles from Beilstein Journal of Organic Chemistry are provided here courtesy of Beilstein-Institut

RESOURCES