Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Oct 31;74(Pt 11):1682–1685. doi: 10.1107/S2056989018014755

Crystal structure of bis­(diiso­propyl­ammonium) molybdate

Bougar Sarr a,*, Abdou Mbaye b, Cheikh Abdoul Khadir Diop a, Frederic Melin c, Petra Hellwig c, Mamadou Sidibé a, Yoann Rousselin d
PMCID: PMC6218890  PMID: 30443406

The crystal structure of the title salt, (C6H16N)2[MoO4], results from N—H⋯O hydrogen-bonded rings formed through inter­connections between the (iPr2NH2)+ cations and [MoO4]2− anions.

Keywords: crystal structure, organic-inorganic salt, molybdate anion, N—H⋯O hydrogen bonding, graph set notation

Abstract

The organic–inorganic title salt, (C6H16N)2[MoO4] or (iPr2NH2)2[MoO4], was obtained by reacting MoO3 with diiso­propyl­amine in a 1:2 molar ratio in water. The molybdate anion is located on a twofold rotation axis and exhibits a slightly distorted tetra­hedral configuration. In the crystal structure, the diiso­propyl­ammmonium (iPr2NH2)+ cations and [MoO4]2− anions are linked to each other through N—H⋯O hydrogen bonds, generating rings with R 12 12(36) motifs that give rise to the formation of a three-dimensional network. The structure was refined taking into account inversion twinning (ratio of ca 4:1 between the two domains).

Chemical context  

As a result of the photochromic properties of alkyl­ammonium molybdates (Arnaud-Neu & Schwing-Weill, 1974), molybdenum chemistry is an exciting research area. A large variety of oxidoanions based on molybdenum have been synthesized and characterized with numerous counter-cations. Among these, mononuclear and binuclear anions as well as polyoxidomolybdates with a much higher nuclearity are known (Gatehouse & Leverett, 1969; Matsumoto et al. 1975; Modec et al., 2004; Müller & Gouzerh, 2012; Pouye et al., 2014; Sarr et al., 2018). Salts containing the tetra­hedral molybdate anion [MoO4]2– combined with cations such as K+, Na+, (CH6N3)+, ((C6H11)2NH2)+, (NH3(CH2)2NH3)+, (OHRNH3)+ and (CyNH2)+ have been isolated in the past (Gatehouse & Leverett, 1969; Matsumoto et al., 1975; Ozeki et al., 1987; Thiele & Fuchs, 1979; Bensch et al., 1987; Sheikhshoaie & Ghazizadeh, 2013; Pouye et al., 2014), but never with the diiso­propyl­ammonium cation (iPr2NH2)+. In a continuation of our work on molybdenum compounds with organic cations, we report here the synthesis and crystal structure of the title compound, (iPr2NH2)2[MoO4], (I).graphic file with name e-74-01682-scheme1.jpg

Structural commentary  

The asymmetric unit of (I) comprises one (iPr2NH2)+ cation and an {MoO2} entity (Fig. 1). The [MoO4]2– molybdate anion is completed by application of twofold rotation symmetry. The two Mo—O distances are 1.732 (2) and 1.7505 (15) Å and the O—Mo—O angles vary in a narrow range between 108.77 (10) and 110.7 (2)° (Table 1), revealing only slight distortions from ideal values. Similar bond lengths and angles for the molybdate anion were reported in previous studies (Ozeki et al., 1987; Bensch et al., 1987; Sheikhshoaie & Ghazizadeh, 2013; Pouye et al., 2014) where the Mo—O distances vary between 1.749 (2) and 1.776 (3) Å, and the O—Mo—O angles between 106.85 (4) and 113.2 (1)°.

Figure 1.

Figure 1

Asymmetric unit view of (I) with displacement ellipsoids drawn at the 50% probability level and hydrogen atoms as spheres of arbitrary radius.

Table 1. Selected bond angles (°).

O1i—Mo1—O1 110.33 (12) O2—Mo1—O1 108.77 (10)
O2—Mo1—O1i 109.13 (11) O2i—Mo1—O2 110.7 (2)

Symmetry code: (i) Inline graphic.

In the crystal structure of (CyNH2)2MoO4·2H2O (Cy = cyclo­hexyl; Pouye et al., 2014) the four Mo—O bond lengths are equal with 1.7613 (12) Å. Although in this structure similar N—H⋯O inter­molecular inter­actions between the (CyNH2)+ cation and the molybdate anion are present in comparison with the (iPr2NH2)+ cation in the title compound, the small differences in the hydrogen-bonding pattern result in slightly different Mo—O bond lengths between the two structures. On one hand this may be related to the presence of additional water mol­ecules in (CyNH2)2MoO4·2H2O, on the other hand to steric hindrance between the four diiso­propyl­ammonium cations that surround each molybdate anion in (I). At least the strengths of the N—H⋯O hydrogen bonds do not seem to have a noticeable effect on the different Mo—O distances in (I). Both hydrogen bonds are very similar in terms of N⋯O distances and N—H⋯O angles (Table 2).

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.89 1.80 2.684 (3) 170
N1—H1B⋯O1ii 0.89 1.81 2.695 (2) 174

Symmetry code: (ii) Inline graphic.

Supra­molecular features  

In the crystal structure of (I), each [MoO4]2– anion is linked to two pairs of symmetry-related diiso­propyl­ammonium cations through N—H⋯O hydrogen bonds (Table 2). Contrariwise, each (iPr2NH2)+ cation is linked to two molybdate [MoO4]2− anions. The inter­action of six molybdate anions with six diiso­propyl­ammonium cations leads to {(iPr2NH2)⋯MoO4}6 ring systems with an Inline graphic(36) motif (Etter et al., 1990). Each ring is linked to six adjacent rings giving rise to infinite layers extending parallel to (010) (Fig. 2). The connection of the rings into a three-dimensional network structure perpendicular to this plane is shown in Fig. 3.

Figure 2.

Figure 2

The N—H⋯O hydrogen-bonding network in (I) (turquoise dashed lines) in a view approximately along [010].

Figure 3.

Figure 3

The N—H⋯O hydrogen-bonding network in (I) (turquoise dashed lines) in a view approximately along [001].

Database survey  

A search of the Cambridge Structural Database (Version 5.39 plus 1 update, November 2017; Groom et al., 2016) revealed 226 entries dealing with (iPr2NH2)+ cations while 32 entries contained the [MoO4]2− molybdate anion.

Synthesis and crystallization  

Compound (I) was obtained from a mixture of molybdenum trioxide (3.2 g, 22.23 mmol) and diiso­propyl­amine (4 g, 44.46 mmol) in a 1:2 molar ratio in water. A clear, colourless solution was obtained after stirring for approximately one h. After twenty days of evaporation in an oven at 333 K, some colourless single crystals were obtained.

In the IR spectrum of (I) (Fig. 4 a), the bands at 899 and 786 cm−1 can be attributed to symmetric and asymmetric Mo—O stretching modes, respectively. The diso­propyl­ammonium cation is characterized by a series of vibrational bands in the 3000–2200 cm−1 region, which can be attributed to ν(N—H), ν(C—H) and combination modes. The δ(N—H) bending vibrations probably contribute to the signal observed at 1598 cm−1.

Figure 4.

Figure 4

IR (a) and Raman (b) spectra of (I).

In the Raman spectrum of (I) (Fig. 4 b), the band at 797 cm−1 is attributed to the anti­symmetric stretching mode of the [MoO4]2− molybdate anion. The symmetric vibration, νs(Mo—O), in the form of a weak shoulder at 839 cm−1 in the infrared spectrum, is very intense in the Raman spectrum at 896 cm−1. In the high wavenumber region of the Raman spectrum, the bands between 3000 and 2800 cm−1 can be assigned to the ν(N—H) and ν(C—H) stretching vibrations of the diiso­propyl­ammonium cation.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The structure was refined taking into account twinning by inversion (ratio of ca 4:1 between the two domains). H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N—H distances of 0.89 Å and C—H distances of 0.96 Å for methyl and of 0.98 Å for methyl­ene groups, and with Uiso(H) = 1.2U eq(C,N) or 1.5U eq(Cmeth­yl).

Table 3. Experimental details.

Crystal data
Chemical formula (C6H16N)2[MoO4]
M r 364.33
Crystal system, space group Tetragonal, P43212
Temperature (K) 293
a, c (Å) 9.0166 (1), 23.1158 (3)
V3) 1879.29 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.71
Crystal size (mm) 0.38 × 0.26 × 0.1
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.612, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 111277, 2156, 2109
R int 0.055
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.019, 0.049, 1.12
No. of reflections 2156
No. of parameters 92
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.31
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.19 (7)

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018014755/wm5465sup1.cif

e-74-01682-sup1.cif (2.6MB, cif)

CCDC reference: 1874215

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Université Cheikh Anta Diop, Dakar, Sénégal, the Laboratoire de Chimie et Physique des Matériaux (LCPM) de l’Université Assane Seck de Ziguinchor, Sénégal, the CNRS and Université de Strasbourg, France, the Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Spectropole, Marseille, France and the ICMUB-UMR 6302, Dijon, France for financial support.

supplementary crystallographic information

Crystal data

(C6H16N)2[MoO4] Dx = 1.288 Mg m3
Mr = 364.33 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212 Cell parameters from 49023 reflections
a = 9.0166 (1) Å θ = 3.6–27.7°
c = 23.1158 (3) Å µ = 0.71 mm1
V = 1879.29 (5) Å3 T = 293 K
Z = 4 Prism, clear light colourless
F(000) = 768 0.38 × 0.26 × 0.1 mm

Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, AtlasS2 diffractometer 2109 reflections with I > 2σ(I)
Detector resolution: 5.3048 pixels mm-1 Rint = 0.055
ω scans θmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) h = −11→11
Tmin = 0.612, Tmax = 1.000 k = −11→11
111277 measured reflections l = −29→30
2156 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0245P)2 + 0.4149P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.049 (Δ/σ)max < 0.001
S = 1.12 Δρmax = 0.21 e Å3
2156 reflections Δρmin = −0.31 e Å3
92 parameters Absolute structure: Refined as an inversion twin
0 restraints Absolute structure parameter: 0.19 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.6950 (2) 0.2985 (3) 0.57328 (7) 0.0451 (5)
H1A 0.607999 0.280281 0.556562 0.054*
H1B 0.681809 0.289840 0.611289 0.054*
C1 0.8015 (3) 0.1790 (4) 0.55462 (12) 0.0603 (7)
H1 0.897057 0.196363 0.573616 0.072*
C2 0.7411 (5) 0.0325 (4) 0.57499 (18) 0.0827 (10)
H2A 0.725309 0.036136 0.616035 0.124*
H2B 0.810811 −0.044698 0.566106 0.124*
H2C 0.648792 0.012618 0.555832 0.124*
C3 0.8245 (4) 0.1852 (5) 0.48930 (13) 0.0872 (11)
H3A 0.731448 0.169286 0.470093 0.131*
H3B 0.893498 0.109574 0.477926 0.131*
H3C 0.863030 0.280735 0.478768 0.131*
C4 0.7349 (4) 0.4560 (3) 0.56091 (11) 0.0590 (7)
H4 0.745520 0.468318 0.518986 0.071*
C5 0.8813 (4) 0.4960 (4) 0.58963 (15) 0.0750 (10)
H5A 0.876969 0.471035 0.629966 0.112*
H5B 0.899069 0.600390 0.585479 0.112*
H5C 0.960302 0.441624 0.571562 0.112*
C6 0.6069 (4) 0.5518 (4) 0.58154 (14) 0.0735 (10)
H6A 0.518209 0.524379 0.561190 0.110*
H6B 0.628992 0.654184 0.574169 0.110*
H6C 0.592529 0.537236 0.622295 0.110*
Mo1 0.26396 (2) 0.26396 (2) 0.500000 0.03021 (9)
O1 0.2086 (2) 0.1625 (2) 0.43916 (6) 0.0510 (5)
O2 0.4506 (2) 0.2317 (4) 0.51236 (10) 0.0959 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0337 (9) 0.0747 (15) 0.0269 (8) 0.0005 (9) −0.0009 (7) −0.0005 (9)
C1 0.0350 (13) 0.095 (2) 0.0510 (15) 0.0047 (13) 0.0011 (11) −0.0167 (15)
C2 0.069 (2) 0.075 (2) 0.104 (3) 0.006 (2) 0.010 (2) −0.016 (2)
C3 0.070 (2) 0.138 (3) 0.0536 (17) 0.007 (2) 0.0170 (16) −0.026 (2)
C4 0.0638 (19) 0.0767 (18) 0.0364 (12) −0.0047 (17) −0.0013 (14) 0.0133 (12)
C5 0.064 (2) 0.083 (3) 0.078 (2) −0.0223 (18) −0.0017 (18) 0.003 (2)
C6 0.086 (2) 0.071 (2) 0.0631 (18) 0.0121 (18) −0.0156 (17) 0.0083 (17)
Mo1 0.03380 (10) 0.03380 (10) 0.02304 (12) −0.00356 (9) −0.00072 (6) 0.00072 (6)
O1 0.0687 (12) 0.0566 (10) 0.0277 (7) −0.0072 (9) −0.0063 (7) −0.0049 (7)
O2 0.0350 (9) 0.178 (3) 0.0751 (14) 0.0026 (14) −0.0119 (9) −0.0308 (18)

Geometric parameters (Å, º)

N1—H1A 0.8900 C4—H4 0.9800
N1—H1B 0.8900 C4—C5 1.521 (5)
N1—C1 1.506 (4) C4—C6 1.518 (5)
N1—C4 1.493 (4) C5—H5A 0.9600
C1—H1 0.9800 C5—H5B 0.9600
C1—C2 1.504 (5) C5—H5C 0.9600
C1—C3 1.525 (4) C6—H6A 0.9600
C2—H2A 0.9600 C6—H6B 0.9600
C2—H2B 0.9600 C6—H6C 0.9600
C2—H2C 0.9600 Mo1—O1 1.7505 (15)
C3—H3A 0.9600 Mo1—O1i 1.7504 (15)
C3—H3B 0.9600 Mo1—O2 1.732 (2)
C3—H3C 0.9600 Mo1—O2i 1.732 (2)
H1A—N1—H1B 107.1 N1—C4—H4 108.7
C1—N1—H1A 107.8 N1—C4—C5 110.5 (2)
C1—N1—H1B 107.8 N1—C4—C6 107.3 (3)
C4—N1—H1A 107.8 C5—C4—H4 108.7
C4—N1—H1B 107.8 C6—C4—H4 108.7
C4—N1—C1 118.2 (2) C6—C4—C5 112.9 (3)
N1—C1—H1 108.5 C4—C5—H5A 109.5
N1—C1—C3 110.1 (3) C4—C5—H5B 109.5
C2—C1—N1 108.0 (3) C4—C5—H5C 109.5
C2—C1—H1 108.5 H5A—C5—H5B 109.5
C2—C1—C3 113.0 (3) H5A—C5—H5C 109.5
C3—C1—H1 108.5 H5B—C5—H5C 109.5
C1—C2—H2A 109.5 C4—C6—H6A 109.5
C1—C2—H2B 109.5 C4—C6—H6B 109.5
C1—C2—H2C 109.5 C4—C6—H6C 109.5
H2A—C2—H2B 109.5 H6A—C6—H6B 109.5
H2A—C2—H2C 109.5 H6A—C6—H6C 109.5
H2B—C2—H2C 109.5 H6B—C6—H6C 109.5
C1—C3—H3A 109.5 O1i—Mo1—O1 110.33 (12)
C1—C3—H3B 109.5 O2i—Mo1—O1 109.13 (11)
C1—C3—H3C 109.5 O2—Mo1—O1i 109.13 (11)
H3A—C3—H3B 109.5 O2—Mo1—O1 108.77 (10)
H3A—C3—H3C 109.5 O2i—Mo1—O1i 108.77 (10)
H3B—C3—H3C 109.5 O2i—Mo1—O2 110.7 (2)
C1—N1—C4—C5 −59.1 (3) C4—N1—C1—C2 176.6 (2)
C1—N1—C4—C6 177.5 (2) C4—N1—C1—C3 −59.5 (3)

Symmetry code: (i) y, x, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2 0.89 1.80 2.684 (3) 170
N1—H1B···O1ii 0.89 1.81 2.695 (2) 174

Symmetry code: (ii) y+1/2, −x+1/2, z+1/4.

References

  1. Arnaud-Neu, F. & Schwing-Weill, M. J. (1974). J. Less-Common Met. 36, 71–78.
  2. Bensch, W., Hug, P., Emmenegger, R., Reller, A. & Oswald, H. R. (1987). Mater. Res. Bull. 22, 447–454.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  5. Gatehouse, B. M. & Leverett, P. (1969). J. Chem. Soc. A, pp. 849–854.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Matsumoto, K. Y., Kobayashi, A. & Sasaki, Y. (1975). Bull. Chem. Soc. Jpn, 48, 1009–1013.
  8. Modec, B., Brenčič, J. V. & Koller, J. (2004). Eur. J. Inorg. Chem. pp. 1611–1620.
  9. Müller, A. & Gouzerh, P. (2012). Chem. Soc. Rev. 41, 7431–7463. [DOI] [PubMed]
  10. Ozeki, T., Ichida, H. & Sasaki, Y. (1987). Acta Cryst. C43, 2220–2221.
  11. Pouye, S. F., Cissé, I., Diop, L., Molloy, K. C. & Kociok-Kohn, G. (2014). Sci. Study Res.: Chem. Chem. Eng., Biotechnol., Food Ind. (Univ. Bacau), 15, 091–094.
  12. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  13. Sarr, B., Diop, C. A. K., Melin, F., Sidibe, M., Hellwig, P., Michaud, F., Maury, F., Senocq, F., Mbaye, A. & Rousselin, Y. (2018). J. Mol. Struct. 1170, 44–50.
  14. Sheikhshoaie, I. & Ghazizadeh, M. (2013). Bull. Chem. Soc. Ethiop. 27, 69–76.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  17. Thiele, A. & Fuchs, J. (1979). Z. Naturforsch. Teil B, 34, 145–154.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018014755/wm5465sup1.cif

e-74-01682-sup1.cif (2.6MB, cif)

CCDC reference: 1874215

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES