The title compound, C17H17NO2, was synthesized and its photoreactive properties in the crystalline state were investigated. A solid-state photoreaction did not occur because the reaction sites were too far apart in the molecule.
Keywords: crystal structure, photoreaction
Abstract
The title compound [systematic name: 2-oxo-N,2-diphenyl-N-(propan-2-yl)acetamide], C17H17NO2, was synthesized and its photoreactive properties in the crystalline state were investigated. In the molecule, the carbonyl group attached to the phenyl ring adopts an s-trans configuration with respect to the isopropyl group. Moreover, the distance between the C atom of the carbonyl group and the N-bound C atom of the isopropyl group is 3.845 (2) Å, which is much longer than 3.2 Å, the threshold for photoreactions to take place in the molecule. As a result, the crystal did not photoreact upon UV light irradiation. In the crystal, the molecules are linked via weak intermolecular C—H⋯O hydrogen bonds, forming a layer structure parallel to the ab plane.
Chemical context
An achiral molecule of N,N-diisopropylarylglyoxylamide 1a having two isopropyl groups crystallizes in the chiral space group P212121 and is transformed to the optically active β-lactam derivative 2a upon UV light irradiation (Fig. 1 ▸; Toda et al., 1987 ▸, 1993 ▸; Sekine et al., 1989 ▸; Hashizume et al., 1995 ▸, 1996 ▸, 1998 ▸). Likewise, N-ethyl-N-isopropylphenylglyoxylamide 1b, having an ethyl group and an isopropyl group, forms a chiral crystal (P212121), and its photoirradiation in the solid state yields the optically active β-lactam derivative 2b (Fig. 1 ▸; Toda et al., 1997 ▸). Therefore, we synthesized the title compound 1c having a phenyl group and an isopropyl group, and investigated whether an optically active β-lactam derivative could be obtained by photoreaction of its crystals. It was found that the photoreaction did not proceed in the solid state. In this paper, an explanation for the lack of photoreactivity is presented based on single crystal X-ray structural analysis.
Figure 1.
Photoreaction of N-isopropyl-phenylglyoxylamide derivatives.
Structural commentary
In the molecule of 1c, the carbonyl group (C7=O1) adopts an s-trans configuration with respect to the isopropyl group (Fig. 2 ▸), in contrast to 1a and 1b, which have s-cis configurations. The torsion angles C7—C8—N1—C15 and O1—C7—C8—O2 are −179.43 (13) and −112.09 (19)°, respectively, in 1c. The corresponding torsion angles are −5.1 (4) and 88.0 (4)°, respectively, in 1a, and −10.4 (3) and 90.7 (2)°, respectively, in 1b; in the case of 1a, which has two isopropyl groups, the torsion angle including the reacting carbon atom was calculated.
Figure 2.
The molecular structure of the title compound 1c. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
In order for the Norrish–Yang reaction to take place, the reacting atoms in the molecular structure must be in close proximity. In the crystal structure of 1c, the distance between the γ-hydrogen atom H15 and the carbonyl oxygen atom O1 is 4.565 Å. This interatomic distance is much longer than the ideal value of up to about 2.7 Å, at which photoreaction can proceed in the crystal (Konieczny et al., 2018 ▸). Moreover, the distance between the reacting C7 and C15 carbon atoms is 3.845 (2) Å, which is outside the range of ideal values of up to about 3.2 Å. These interatomic distances in 1c are large enough to prevent the photoreaction from taking place. In contrast, the corresponding distances are 2.78 (4) and 2.871 (4) Å in 1a, and 2.81 (3) and 2.897 (3) Å in 1b. As those distances are close to the ideal values, the photoreaction could occur in the crystalline state.
Supramolecular features
In the crystal of 1c, the molecules are linked by weak intermolecular C—H⋯O interactions (C10—H10⋯O1i and C13—H13⋯O2ii; symmetry codes as in Table 1 ▸), forming a layer structure parallel to the ab plane (Fig. 3 ▸).
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C10—H10⋯O1i | 0.95 | 2.32 | 3.2140 (18) | 157 |
| C13—H13⋯O2ii | 0.95 | 2.48 | 3.2895 (18) | 143 |
Symmetry codes: (i)
; (ii)
.
Figure 3.
A packing diagram viewed along the c axis isfor the title compound 1c, showing C—H⋯O interactions as dotted blue lines.
Database survey
A search of the Cambridge Structural Database (Version 5.39, last update August 2018; Groom et al., 2016 ▸) generates nine hits for compounds based on the N-isopropylphenylglyoxylamide fragment shown in Fig. 1 ▸. These results include five structural analogues including an isopropyl group (JAGLAE; Sekine et al., 1989 ▸), a methacryloyl group (NUKSOB; Sakamoto et al., 1997 ▸), an ethyl group (POWMIX; Toda et al., 1997 ▸), a tigloyl group (WEPCID01; Sakamoto et al., 1997 ▸) and a 2-tert-butylphenyl group (QUPWEE; Jesuraj & Sivaguru, 2010 ▸). The last compound has a similar molecular structure to that of 1c, with a corresponding torsion angle of 174.6 (1)°. Of the remaining compounds, three are co-crystals of N,N-diisopropylarylglyoxylamide with other organic compounds (ZEDJOH and ZEDJUN; Hashizume et al., 1994 ▸; POWMET; Toda et al., 1997 ▸).
Synthesis and crystallization
The title compound was prepared according to a reported method (Toda et al., 1987 ▸,1997 ▸; Sekine et al., 1989 ▸): chlorination of the phenylglyoxylic acid with thionyl chloride followed by reaction with N-isopropylaniline and triethylamine. Thus, to an ice-cooled solution of N-isopropylaniline (0.72 ml, 5 mmol) and triethylamine (0.70 ml, 5 mmol) in dry diethyl ether (2 ml) was added a solution of benzoylformyl chloride (0.84 g, 5 mmol) in dry diethyl ether (2 ml), and the reaction mixture was stirred for 3 h in an ice bath. After filtration of triethylammonium chloride, the filtrate was washed with dilute HCl and aqueous NaHCO3 and dried over MgSO4. The crude product was recrystallized from benzene to give 1c as colourless prisms (0.5968 g, 22.4% yield, m.p. 397–401 K); IR (KBr): νmax 1643 and 1681 cm−1; 1H NMR (CDCl3): δH 1.21 (d, 6H, CHMe 2), 5.10 (sep, 1H, N—CH), 7.07–7.80 (m, 10H, ArH). Single crystals of 1c suitable for X-ray diffraction were grown from a benzene solution.
Photoreaction in the solid state
1c (51.3 mg, 0.21 mmol) was pulverized in a mortar and irradiated with a 400 W high pressure mercury lamp for 20 h. No reaction took place, as determined by TLC, IR and NMR spectroscopy.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. All H atoms were positioned in geometrically calculated positions (C—H = 0.95–0.98 Å) and refined using a riding model with U iso(H) = 1.2U eq(C) and 1.5U eq(C-methyl).
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C17H17NO2 |
| M r | 267.31 |
| Crystal system, space group | Monoclinic, P21/n |
| Temperature (K) | 93 |
| a, b, c (Å) | 5.8354 (5), 16.5123 (14), 15.1330 (12) |
| β (°) | 93.837 (2) |
| V (Å3) | 1454.9 (2) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.08 |
| Crystal size (mm) | 0.25 × 0.18 × 0.14 |
| Data collection | |
| Diffractometer | Rigaku R-AXIS RAPID |
| Absorption correction | Multi-scan (ABSCOR; Higashi, 1995 ▸) |
| T min, T max | 0.642, 0.989 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 13857, 3316, 2572 |
| R int | 0.043 |
| (sin θ/λ)max (Å−1) | 0.648 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.054, 0.143, 1.13 |
| No. of reflections | 3316 |
| No. of parameters | 183 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.36, −0.21 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018013762/is5500sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018013762/is5500Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989018013762/is5500Isup3.cml
CCDC reference: 1870320
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| C17H17NO2 | F(000) = 568 |
| Mr = 267.31 | Dx = 1.220 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71075 Å |
| a = 5.8354 (5) Å | Cell parameters from 13857 reflections |
| b = 16.5123 (14) Å | θ = 3.7–27.5° |
| c = 15.1330 (12) Å | µ = 0.08 mm−1 |
| β = 93.837 (2)° | T = 93 K |
| V = 1454.9 (2) Å3 | Block, colorless |
| Z = 4 | 0.25 × 0.18 × 0.14 mm |
Data collection
| Rigaku R-AXIS RAPID diffractometer | 3316 independent reflections |
| Radiation source: rotating anode X-ray | 2572 reflections with I > 2σ(I) |
| Detector resolution: 10.0 pixels mm-1 | Rint = 0.043 |
| ω–scan | θmax = 27.5°, θmin = 3.7° |
| Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −7→6 |
| Tmin = 0.642, Tmax = 0.989 | k = −21→21 |
| 13857 measured reflections | l = −19→19 |
Refinement
| Refinement on F2 | 0 restraints |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.054 | H-atom parameters constrained |
| wR(F2) = 0.143 | w = 1/[σ2(Fo2) + (0.0737P)2 + 0.1802P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.13 | (Δ/σ)max < 0.001 |
| 3316 reflections | Δρmax = 0.36 e Å−3 |
| 183 parameters | Δρmin = −0.21 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.9019 (2) | 0.43953 (8) | 0.30276 (9) | 0.0606 (4) | |
| O2 | 0.6189 (3) | 0.53493 (7) | 0.14588 (8) | 0.0580 (4) | |
| N1 | 0.5441 (2) | 0.40017 (7) | 0.15732 (7) | 0.0296 (3) | |
| C1 | 0.7452 (3) | 0.54690 (9) | 0.42792 (9) | 0.0349 (3) | |
| H1 | 0.890380 | 0.521888 | 0.440442 | 0.042* | |
| C2 | 0.6582 (3) | 0.59840 (10) | 0.48934 (10) | 0.0419 (4) | |
| H2 | 0.742860 | 0.608701 | 0.544010 | 0.050* | |
| C3 | 0.4469 (3) | 0.63490 (10) | 0.47073 (11) | 0.0444 (4) | |
| H3 | 0.386515 | 0.670465 | 0.512701 | 0.053* | |
| C4 | 0.3231 (3) | 0.61973 (10) | 0.39107 (11) | 0.0416 (4) | |
| H4 | 0.178359 | 0.645041 | 0.378623 | 0.050* | |
| C5 | 0.4093 (2) | 0.56796 (9) | 0.32967 (9) | 0.0324 (3) | |
| H5 | 0.323566 | 0.557451 | 0.275295 | 0.039* | |
| C6 | 0.6215 (2) | 0.53134 (8) | 0.34761 (9) | 0.0270 (3) | |
| C7 | 0.7246 (2) | 0.47610 (8) | 0.28442 (10) | 0.0328 (3) | |
| C8 | 0.6187 (3) | 0.47218 (8) | 0.18929 (10) | 0.0341 (3) | |
| C9 | 0.5209 (2) | 0.33160 (7) | 0.21501 (8) | 0.0244 (3) | |
| C10 | 0.3298 (2) | 0.32551 (9) | 0.26361 (9) | 0.0306 (3) | |
| H10 | 0.216281 | 0.366815 | 0.260071 | 0.037* | |
| C11 | 0.3046 (3) | 0.25880 (10) | 0.31762 (9) | 0.0424 (4) | |
| H11 | 0.173330 | 0.254294 | 0.351177 | 0.051* | |
| C12 | 0.4701 (3) | 0.19876 (9) | 0.32281 (10) | 0.0463 (4) | |
| H12 | 0.451759 | 0.152802 | 0.359426 | 0.056* | |
| C13 | 0.6617 (3) | 0.20564 (9) | 0.27481 (11) | 0.0444 (4) | |
| H13 | 0.776465 | 0.164769 | 0.279285 | 0.053* | |
| C14 | 0.6880 (2) | 0.27157 (9) | 0.22024 (10) | 0.0345 (3) | |
| H14 | 0.819139 | 0.275831 | 0.186591 | 0.041* | |
| C15 | 0.4431 (3) | 0.39643 (8) | 0.06438 (9) | 0.0357 (4) | |
| H15 | 0.509044 | 0.442544 | 0.031566 | 0.043* | |
| C16 | 0.1885 (4) | 0.40866 (18) | 0.06136 (13) | 0.0788 (8) | |
| H16A | 0.128132 | 0.413824 | −0.000383 | 0.118* | |
| H16B | 0.154033 | 0.458040 | 0.093861 | 0.118* | |
| H16C | 0.116587 | 0.362105 | 0.088643 | 0.118* | |
| C17 | 0.5082 (4) | 0.31954 (11) | 0.01865 (11) | 0.0496 (5) | |
| H17A | 0.454587 | 0.322180 | −0.044054 | 0.074* | |
| H17B | 0.436796 | 0.273184 | 0.046472 | 0.074* | |
| H17C | 0.675558 | 0.313261 | 0.023782 | 0.074* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0388 (7) | 0.0666 (9) | 0.0745 (9) | 0.0178 (6) | −0.0104 (6) | −0.0379 (7) |
| O2 | 0.1117 (11) | 0.0272 (6) | 0.0356 (6) | −0.0214 (6) | 0.0097 (7) | −0.0026 (5) |
| N1 | 0.0430 (7) | 0.0230 (6) | 0.0231 (5) | −0.0042 (5) | 0.0039 (5) | −0.0016 (4) |
| C1 | 0.0364 (8) | 0.0353 (7) | 0.0318 (7) | 0.0036 (6) | −0.0059 (6) | −0.0020 (6) |
| C2 | 0.0518 (9) | 0.0446 (9) | 0.0286 (7) | 0.0014 (7) | −0.0024 (7) | −0.0067 (6) |
| C3 | 0.0558 (10) | 0.0418 (9) | 0.0365 (8) | 0.0068 (7) | 0.0099 (7) | −0.0095 (7) |
| C4 | 0.0378 (8) | 0.0411 (8) | 0.0458 (9) | 0.0109 (6) | 0.0025 (7) | −0.0034 (7) |
| C5 | 0.0344 (7) | 0.0327 (7) | 0.0294 (7) | 0.0003 (6) | −0.0029 (6) | 0.0005 (5) |
| C6 | 0.0313 (7) | 0.0229 (6) | 0.0267 (6) | −0.0019 (5) | 0.0017 (6) | 0.0001 (5) |
| C7 | 0.0318 (7) | 0.0289 (7) | 0.0379 (8) | −0.0024 (5) | 0.0025 (6) | −0.0080 (6) |
| C8 | 0.0470 (9) | 0.0261 (7) | 0.0301 (7) | −0.0068 (6) | 0.0103 (6) | −0.0050 (5) |
| C9 | 0.0296 (7) | 0.0215 (6) | 0.0216 (6) | −0.0004 (5) | −0.0011 (5) | −0.0024 (5) |
| C10 | 0.0318 (7) | 0.0350 (7) | 0.0250 (6) | 0.0047 (5) | 0.0023 (6) | 0.0006 (5) |
| C11 | 0.0506 (9) | 0.0487 (9) | 0.0283 (7) | −0.0114 (7) | 0.0058 (7) | 0.0063 (7) |
| C12 | 0.0755 (12) | 0.0301 (8) | 0.0312 (8) | −0.0093 (7) | −0.0121 (8) | 0.0097 (6) |
| C13 | 0.0600 (11) | 0.0278 (7) | 0.0427 (8) | 0.0139 (7) | −0.0162 (8) | −0.0033 (6) |
| C14 | 0.0325 (7) | 0.0347 (7) | 0.0359 (7) | 0.0066 (6) | −0.0003 (6) | −0.0067 (6) |
| C15 | 0.0603 (10) | 0.0256 (7) | 0.0211 (6) | −0.0041 (6) | 0.0022 (6) | 0.0004 (5) |
| C16 | 0.0715 (14) | 0.128 (2) | 0.0338 (9) | 0.0442 (14) | −0.0149 (9) | −0.0091 (11) |
| C17 | 0.0712 (12) | 0.0450 (9) | 0.0318 (8) | 0.0037 (8) | −0.0030 (8) | −0.0123 (7) |
Geometric parameters (Å, º)
| O1—C7 | 1.2141 (18) | C9—C14 | 1.3890 (18) |
| O2—C8 | 1.2269 (18) | C10—C11 | 1.385 (2) |
| N1—C8 | 1.3451 (17) | C10—H10 | 0.9500 |
| N1—C9 | 1.4417 (16) | C11—C12 | 1.382 (2) |
| N1—C15 | 1.4893 (17) | C11—H11 | 0.9500 |
| C1—C2 | 1.381 (2) | C12—C13 | 1.378 (3) |
| C1—C6 | 1.3952 (19) | C12—H12 | 0.9500 |
| C1—H1 | 0.9500 | C13—C14 | 1.381 (2) |
| C2—C3 | 1.385 (2) | C13—H13 | 0.9500 |
| C2—H2 | 0.9500 | C14—H14 | 0.9500 |
| C3—C4 | 1.386 (2) | C15—C16 | 1.497 (3) |
| C3—H3 | 0.9500 | C15—C17 | 1.507 (2) |
| C4—C5 | 1.382 (2) | C15—H15 | 1.0000 |
| C4—H4 | 0.9500 | C16—H16A | 0.9800 |
| C5—C6 | 1.3883 (19) | C16—H16B | 0.9800 |
| C5—H5 | 0.9500 | C16—H16C | 0.9800 |
| C6—C7 | 1.4781 (19) | C17—H17A | 0.9800 |
| C7—C8 | 1.529 (2) | C17—H17B | 0.9800 |
| C9—C10 | 1.3796 (19) | C17—H17C | 0.9800 |
| C8—N1—C9 | 121.17 (11) | C11—C10—H10 | 120.2 |
| C8—N1—C15 | 118.33 (11) | C12—C11—C10 | 120.15 (15) |
| C9—N1—C15 | 119.47 (10) | C12—C11—H11 | 119.9 |
| C2—C1—C6 | 120.50 (14) | C10—C11—H11 | 119.9 |
| C2—C1—H1 | 119.8 | C13—C12—C11 | 119.95 (14) |
| C6—C1—H1 | 119.8 | C13—C12—H12 | 120.0 |
| C1—C2—C3 | 119.57 (14) | C11—C12—H12 | 120.0 |
| C1—C2—H2 | 120.2 | C12—C13—C14 | 120.43 (14) |
| C3—C2—H2 | 120.2 | C12—C13—H13 | 119.8 |
| C2—C3—C4 | 120.23 (14) | C14—C13—H13 | 119.8 |
| C2—C3—H3 | 119.9 | C13—C14—C9 | 119.41 (14) |
| C4—C3—H3 | 119.9 | C13—C14—H14 | 120.3 |
| C5—C4—C3 | 120.31 (14) | C9—C14—H14 | 120.3 |
| C5—C4—H4 | 119.8 | N1—C15—C16 | 110.62 (13) |
| C3—C4—H4 | 119.8 | N1—C15—C17 | 111.89 (12) |
| C4—C5—C6 | 119.86 (13) | C16—C15—C17 | 112.32 (16) |
| C4—C5—H5 | 120.1 | N1—C15—H15 | 107.2 |
| C6—C5—H5 | 120.1 | C16—C15—H15 | 107.2 |
| C5—C6—C1 | 119.53 (13) | C17—C15—H15 | 107.2 |
| C5—C6—C7 | 122.58 (12) | C15—C16—H16A | 109.5 |
| C1—C6—C7 | 117.90 (12) | C15—C16—H16B | 109.5 |
| O1—C7—C6 | 122.44 (13) | H16A—C16—H16B | 109.5 |
| O1—C7—C8 | 118.59 (13) | C15—C16—H16C | 109.5 |
| C6—C7—C8 | 118.61 (12) | H16A—C16—H16C | 109.5 |
| O2—C8—N1 | 124.45 (13) | H16B—C16—H16C | 109.5 |
| O2—C8—C7 | 116.97 (12) | C15—C17—H17A | 109.5 |
| N1—C8—C7 | 118.47 (12) | C15—C17—H17B | 109.5 |
| C10—C9—C14 | 120.44 (13) | H17A—C17—H17B | 109.5 |
| C10—C9—N1 | 119.48 (11) | C15—C17—H17C | 109.5 |
| C14—C9—N1 | 120.07 (12) | H17A—C17—H17C | 109.5 |
| C9—C10—C11 | 119.61 (13) | H17B—C17—H17C | 109.5 |
| C9—C10—H10 | 120.2 | ||
| C6—C1—C2—C3 | −0.2 (2) | O1—C7—C8—N1 | 64.3 (2) |
| C1—C2—C3—C4 | 0.2 (3) | C6—C7—C8—N1 | −122.42 (15) |
| C2—C3—C4—C5 | 0.1 (3) | C8—N1—C9—C10 | 80.08 (17) |
| C3—C4—C5—C6 | −0.4 (2) | C15—N1—C9—C10 | −88.16 (15) |
| C4—C5—C6—C1 | 0.4 (2) | C8—N1—C9—C14 | −101.03 (16) |
| C4—C5—C6—C7 | −179.31 (14) | C15—N1—C9—C14 | 90.73 (16) |
| C2—C1—C6—C5 | −0.1 (2) | C14—C9—C10—C11 | −0.3 (2) |
| C2—C1—C6—C7 | 179.61 (14) | N1—C9—C10—C11 | 178.59 (12) |
| C5—C6—C7—O1 | −174.46 (15) | C9—C10—C11—C12 | 0.1 (2) |
| C1—C6—C7—O1 | 5.9 (2) | C10—C11—C12—C13 | 0.6 (2) |
| C5—C6—C7—C8 | 12.5 (2) | C11—C12—C13—C14 | −1.1 (2) |
| C1—C6—C7—C8 | −167.15 (13) | C12—C13—C14—C9 | 0.9 (2) |
| C9—N1—C8—O2 | −171.72 (15) | C10—C9—C14—C13 | −0.2 (2) |
| C15—N1—C8—O2 | −3.3 (2) | N1—C9—C14—C13 | −179.05 (12) |
| C9—N1—C8—C7 | 12.2 (2) | C8—N1—C15—C16 | −91.50 (19) |
| C15—N1—C8—C7 | −179.43 (13) | C9—N1—C15—C16 | 77.08 (19) |
| O1—C7—C8—O2 | −112.09 (19) | C8—N1—C15—C17 | 142.45 (15) |
| C6—C7—C8—O2 | 61.20 (19) | C9—N1—C15—C17 | −48.97 (18) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C10—H10···O1i | 0.95 | 2.32 | 3.2140 (18) | 157 |
| C13—H13···O2ii | 0.95 | 2.48 | 3.2895 (18) | 143 |
Symmetry codes: (i) x−1, y, z; (ii) −x+3/2, y−1/2, −z+1/2.
Funding Statement
This work was funded by Japan Society for the Promotion of Science grants JP17K05745 and JP18H04504.
References
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Hashizume, D., Kogo, H., Ohashi, Y., Miyamoto, H. & Toda, F. (1998). Anal. Sci. 14, 1187–1188.
- Hashizume, D., Kogo, H., Sekine, A., Ohashi, Y., Miyamoto, H. & Toda, F. (1995). Acta Cryst. C51, 929–933.
- Hashizume, D., Kogo, H., Sekine, A., Ohashi, Y., Miyamoto, H. & Toda, F. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 61–66.
- Hashizume, D., Uekusa, H., Ohashi, Y., Matsugawa, R., Miyamoto, H. & Toda, F. (1994). Bull. Chem. Soc. Jpn, 67, 985–993.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Jesuraj, J. L. & Sivaguru, J. (2010). Chem. Commun. 46, 4791–4793. [DOI] [PubMed]
- Konieczny, K., Ciesielski, A., Bąkowicz, J., Galica, T. & Turowska-Tyrk, I. (2018). Crystals, 8, 299–311.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sakamoto, M., Takahashi, M., Fujita, T., Watanabe, S., Nishio, T., Iida, I. & Aoyama, H. (1997). J. Org. Chem. 62, 6298–6308.
- Sekine, A., Hori, K., Ohashi, Y., Yagi, M. & Toda, F. (1989). J. Am. Chem. Soc. 111, 697–699.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Toda, F. & Miyamoto, H. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 1129–1132.
- Toda, F., Miyamoto, H., Koshima, H. & Urbanczyk-Lipkowska, Z. (1997). J. Org. Chem. 62, 9261–9266.
- Toda, F., Yagi, M. & Sōda, S. (1987). J. Chem. Soc. Chem. Commun. pp. 1413–1414.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018013762/is5500sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018013762/is5500Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989018013762/is5500Isup3.cml
CCDC reference: 1870320
Additional supporting information: crystallographic information; 3D view; checkCIF report



