Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Oct 16;74(Pt 11):1584–1588. doi: 10.1107/S2056989018013889

Structure of 2-chloro-N-(p-tol­yl)propanamide

Roderick C Jones a,*, Brendan Twamley b
PMCID: PMC6218893  PMID: 30443386

Two independent samples of the title compound were studied using Cu Kα and Mo Kα radiation as part of a continuous crystallization study. In the crystal, chains along the a axis are formed via N—H⋯O hydrogen bonds between acetamide groups, as well as C—H⋯O inter­actions. These chains arrange themselves into parallel running stacks which display weak C—Cl⋯O=Chalogen bonding as well as weak C—H⋯π inter­actions.

Keywords: crystal structure, API, continuous processing, biphasic

Abstract

Two independent samples of the title compound, alternatively 2-chloro-N-(4-methylphenyl)prop­an­amide, C10H12ClNO, 1, were studied using Cu Kα, 1a, and Mo Kα, 1b, radiation as part of a continuous crystallization study. The mol­ecule crystallizes with disorder in the Cl/terminal methyl positions [occupancies for the major disorder component of 0.783 (2) in 1a and and 0.768 (2) in 1b] and exhibits N—C bond lengths of 1.3448 (19), 1.344 (2) Å, C=O bond lengths of 1.2233 (18) and 1.2245 (19) Å and an acetamide moiety C—N—C—C torsion angle of 179.00 (13), 178.97 (14) ° for 1a and 1b, respectively. In the crystal, chains along the a axis are formed via N—H⋯O hydrogen bonds between acetamide groups, as well as C—H⋯O inter­actions. These chains arrange themselves into parallel running stacks which display weak C—Cl⋯O=C halogen bonding as well as weak C—H⋯π inter­actions.

Chemical context  

The introduction of continuous processing has been a paradigm shift in safety and productivity in the synthesis and isolation of active pharmaceutical ingredients (APIs) in both industry and academic research (Mascia et al., 2013 and Lee et al., 2015 and references contained therein). A major focus of our current research is developing design and optimization strategies to deliver robust, scalable and tunable continuous processes for API manufacturing, which can deliver specific API characteristics (Power et al., 2015; Zhao et al., 2015; O’Mahony et al., 2017; Simon et al., 2018). As part of this work we have been examining the continuous crystallization of 2-chloro-N-(p-tol­yl)propanamide, 1, a key inter­mediate of α-thio-β-chloro­acryl­amides, a class of compound that has shown importance in the literature as synthetically viable APIs (Murphy et al., 2007; Foley et al., 2011; Kissane & Maguire, 2011) that can undergo transformations; such as Diels–Alder cyclo­additions (Kissane et al., 2010a ), 1,3-dipolar cyclo­additions (Kissane et al., 2010b ), sulfide group (Kissane et al., 2010c ,d ) and nucleophilic substitution (Kissane et al., 2011). To design and understand a continuous crystallization process for 1, an extensive solubility study was conducted examining the compound’s solubility characteristics in common organic solvents (Pascual et al., 2017). During this study, an improved bi-phasic synthesis was developed and crystals from two different continuous crystallization process runs were isolated to detect and characterize any variability of the crystalline material produced. These samples, 1a and 1b, of 2-chloro-N-(p-tol­yl)propanamide, see Fig. 1, are described herein.graphic file with name e-74-01584-scheme1.jpg

Figure 1.

Figure 1

Mol­ecular structures 1a and 1b showing the atom-numbering scheme. Only the major occupancy disorder components [1a 0.793 (4) and 1b 0.768 (2)] of the Cl1 and C12 positions are shown. Displacement ellipsoids drawn at the 50% probability level.

Structural commentary  

Compound 1a and 1b both crystallize with one mol­ecule in the asymmetric unit in the ortho­rhom­bic space group Pbca and exhibit normal bond lengths and angles compared to similar compounds (2-chloro-N-phenyl­propanamide, IQOHOL, Gowda et al., 2003 and references below). The disorder observed in 1 between the meth­yl/chloro positions is similarly displayed in IQOHOL. The aryl ring-to-amide backbone plane is twisted with a C1—C7—N8—C9 torsion angle of 45.3 (2) in 1a and 45.6 (2)° in 1b (Table 1).

Table 1. Selected geometric parameters (Å, °) for 1a, 1b and IQOHOL.

  1a 1b IQOHOLa
Cl1—C11 1.7861 (17) 1.7845 (18) 1.785 (16)
O10—C9 1.2233 (18) 1.2245 (19) 1.219 (15)
N8—C7 1.4226 (19) 1.421 (2) 1.421 (16)
N8—C9 1.3448 (19) 1.344 (2) 1.341 (16)
C9—C11 1.524 (2) 1.523 (2) 1.522 (18)
O10—C9—C11—C12 −60.4 (5) −60.2 (6) 61.35 (1)
C9—N8—C7—C1 45.3 (2) 45.6 (2) −44.19 (1)

Note: (a) Equivalent geometric parameters are given for IQOHOL as atom labels do not matchthose of 1a and 1b.

An overlay of the mol­ecular structures of 1a and 1b without inversion and an r.m.s. fit of 0.040 Å is shown in Fig. 2. The data, collected using different sources (Cu Kα for 1a and Mo Kα for 1b), show remarkable similarity even down to the hydrogen-bonding metrics seen in Tables 2 and 3. Data were collected on crystals of a similar size and at 100 K. As can be seen in Table 1, a comparison between several bond lengths and angles in 1a, 1b and IQOHOL show how the metrics are similar, even with data that was collected at room temperature (IQOHOL). The disorder occupancy is different in 1a, 1b and in IQOHOL, but to no great extent with the occupancy of the major component being 0.783 (2) for 1a, 0.768 (2) for 1b and for 0.899 IQOHOL.

Figure 2.

Figure 2

Overlay image of both mol­ecules of 2-chloro-N-(p-tol­yl)propanamide (1a is shown in red and 1b in green) with an r.m.s. fit of 0.040 Å (no inversion). Displacement ellipsoids shown at the 50% probability level. Selected atom numbering only for clarity.

Table 2. Hydrogen-bond geometry (Å, °) for 1a .

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯O10i 0.80 (2) 2.03 (2) 2.8295 (16) 174.8 (17)
C11—H11⋯O10i 1.00 2.48 3.3574 (18) 146
C12—H12ECg1ii 0.98 2.61 3.503 (11) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 3. Hydrogen-bond geometry (Å, °) for 1b .

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯O10i 0.83 (2) 2.00 (2) 2.8255 (18) 174.2 (19)
C11—H11⋯O10i 1.00 2.48 3.353 (2) 146
C12—H12ECg1ii 0.98 2.62 3.493 (13) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

In the extended structure there is, as expected, a strong amide hydrogen bond, between the N—H group and the ketone oxygen (N8⋯O10i, see Tables 2 and 3). This feature can be seen in many of the known phenyl­acetamides and the donor–acceptor distance in similar congeners below range from 2.8175 (8) Å (XIHMOQ; Gowda et al., 2001) to the longer inter­action in CEXPOK of 3.2576 (6) Å. The distance in IQOHOL is 2.8632 (6) Å, slightly longer than that found in 1.

There is also a weaker inter­action between the methine group and the ketone (C11—H11⋯O10i, see Tables 2 and 3). This type of chelate hydrogen bonding is also seen in IQOHOL and XIHMOQ [DA = 3.2699 (8) and 2.8632 (6) Å respectively)] The head-to-tail packing and the chelate hydrogen bonding allows an approximately linear arrangement of 1, forming ribbons propagating along the [100] direction, see Fig. 3. Only IQOHOL and XIHMOQ exhibit similar characteristics with head-to-tail and approximately linear packing [0.21367 (6) and 3.5472 (14)° respectively, as measured by the amide OCN and aryl carbon plane normal to plane normal angle, compared to 1.80942 (8)° in 1a and 1.71940 (13)° in 1b).

Figure 3.

Figure 3

Hydrogen-bonding network represented by dotted lines of one layer in the cell viewed normal to the (001) plane. Displacement ellipsoids are shown at the 50% probability level.

There are other supra­molecular inter­actions that assist in the packing of 1. Complimenting the hydrogen bonding above, there is a weak C—Cl⋯Oii=Cii halogen bond between the terminal chlorine and the ketone, with distances of 1a, 3.1761 (14) and 1b, 3.1734 (18) Å [symmetry code: (ii) Inline graphic − x, −Inline graphic + y, z]. A very weak example of a C—H⋯πiii inter­action is also present in 1, with the methyl group C12 directed towards the centroid of ring C1–C6 (see Tables 2 and 3).

Database survey  

A search of the Cambridge Structural Database (CSD version 5.39, February 2018 update; Groom et al., 2016) for similar systems (R-PhNHCOCH–, where R = H, methyl, halogen) yielded several similar substituted phenyl­acetamides: CLACTN (Subramanian, 1966), CLACTN01 (Gowda et al., 2007a ), CLACTN02 (Naumov et al., 2007), CLACTN03 [Coles (née Huth) et al., 2008], CEXPOK (Banks et al., 1999), FOWYIA (Gowda et al., 2009), IFALIK (Frohberg et al., 2002), IQOHOL (Gowda et al., 2003), JODQEZ (Si-shun Kang et al., 2008), NIYYEB (Pathak et al., 2014), NUWQUT (Hursthouse et al., 2009), NUZBUF (Pal et al., 1998), NUZBUF01 (Gowda et al., 2001), RIYWIG (Gowda et al., 2008), SALYIN (Chekhlov et al., 1987), WINSUI (Gowda et al., 2007b ), XEKNEJ (Gupta et al., 2017), XICMAY (Gowda et al., 2007c ), XIHMIK and XIHMOQ (Gowda et al., 2001) and XIQNIV (Staples & Vidnovio, 2007).

Synthesis and crystallization  

A solution of α-chloro­propionyl chloride (1.16 mL, 12mmol 1.2 equiv.) in toluene (30 mL) was added dropwise (with extreme caution) to a vigorously stirred bi-phasic suspension of p-toluidine (1.07 g, 10 mmol) in toluene (50 mL) and 40 mL of aqueous NaOH (1.20 g, 30 mmol, 3 equiv.) at 273 K. After the addition was complete, the biphasic suspension was warmed to room temperature and stirred vigorously for 1 h. The organic phase was separated, and the aqueous layer extracted with ethyl acetate (3 × 15 mL). The organic layers were then combined, dried with Na2SO4, filtered and the solvent removed under vacuum. The resulting off-white solid was collected and washed with thoroughly with cold cyclo­hexane (1.89 g, 96%). Single crystals for X-ray analysis were grown by slow evaporation of a toluene solution at room temperature. Spectroscopic data for the obtained product matched that reported in the literature (Pascual et al., 2017).

1H NMR (300 MHz, CDCl3): δ 8.21 (s, 1H), 7.42 (d, J = 8.2 Hz, 2H), 7.15 (d, J = 8.2 Hz, 2H), 4.54 (q, J = 7.1 Hz, 1H) 2.13 (s, 3H), 1.83 (d, J = 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl3): δ 166.9 134.4, 134.0, 129.1, 119.7, 55.9, 22.4, 20.5. MS (EI) m/z 197 [M]+, [12C10H12 35Cl14N16O 197]. HRMS (EI) m/z Found: [M]+ 197.0604, [C10H12ClNO]+ requires 197.0607.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. In both 1a and 1b, Cl1/Cl1a and C12/C12a were modelled as disordered over two positions using restraints (DFIX for C11—C12, C11—C12a distances) and constraints (EADP, Cl atoms). The occupancy was allowed to refine with a population parameter of 1a = 0.783 (2), and 1b = 0.768 (2). The amide N—H H atom was located in a difference-Fourier map and freely refined. H atoms bonded to carbon were placed with idealized geometry and refined using a riding model with C—H = 0.95 Å aromatic, C—H = 0.90 Å methine, with U iso(H) = 1.2U eq(C) and C—H = 0.98 Å methyl with U iso(H) = 1.5U eq(C).

Table 4. Experimental details.

  (1a) (1b)
Crystal data
Chemical formula C10H12ClNO C10H12ClNO
M r 197.66 197.66
Crystal system, space group Orthorhombic, P b c a Orthorhombic, P b c a
Temperature (K) 100 100
a, b, c (Å) 9.5119 (3), 9.6885 (4), 21.8439 (8) 9.5053 (6), 9.6793 (5), 21.8380 (13)
V3) 2013.05 (13) 2009.2 (2)
Z 8 8
Radiation type Cu Kα Mo Kα
μ (mm−1) 3.03 0.34
Crystal size (mm) 0.27 × 0.14 × 0.10 0.25 × 0.11 × 0.1
 
Data collection
Diffractometer Bruker APEXII Kappa Duo Bruker D8 Quest ECO
Absorption correction Multi-scan (SADABS; Bruker, 2016) Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.565, 0.753 0.702, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 18191, 1892, 1819 19741, 2061, 1668
R int 0.045 0.051
(sin θ/λ)max−1) 0.608 0.627
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.103, 1.06 0.037, 0.089, 1.10
No. of reflections 1892 2061
No. of parameters 138 138
No. of restraints 2 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.26 0.30, −0.31

Computer programs: APEX3 (Bruker, 2016), SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) . DOI: 10.1107/S2056989018013889/ds2252sup1.cif

e-74-01584-sup1.cif (1.9KB, cif)

Structure factors: contains datablock(s) 1a. DOI: 10.1107/S2056989018013889/ds22521asup2.hkl

e-74-01584-1asup2.hkl (152.5KB, hkl)

Structure factors: contains datablock(s) 1b. DOI: 10.1107/S2056989018013889/ds22521bsup3.hkl

e-74-01584-1bsup3.hkl (165.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018013889/ds22521asup4.cml

CCDC references: 1870782, 1870781

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

RCJ would like to thank Professor Brian Glennon for the use of the lab and experimental assistance.

supplementary crystallographic information

2-Chloro-N-(4-methylphenyl)propanamide (1a) . Crystal data

C10H12ClNO Dx = 1.304 Mg m3
Mr = 197.66 Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Pbca Cell parameters from 9895 reflections
a = 9.5119 (3) Å θ = 4.1–69.6°
b = 9.6885 (4) Å µ = 3.03 mm1
c = 21.8439 (8) Å T = 100 K
V = 2013.05 (13) Å3 Irregular, clear colourless
Z = 8 0.27 × 0.14 × 0.10 mm
F(000) = 832

2-Chloro-N-(4-methylphenyl)propanamide (1a) . Data collection

Bruker APEXII Kappa Duo diffractometer 1892 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs 1819 reflections with I > 2σ(I)
Mirror optics monochromator Rint = 0.045
Detector resolution: 7.9 pixels mm-1 θmax = 69.7°, θmin = 4.1°
ω and φ scans h = −11→11
Absorption correction: multi-scan (SADABS; Bruker, 2016) k = −11→11
Tmin = 0.565, Tmax = 0.753 l = −26→26
18191 measured reflections

2-Chloro-N-(4-methylphenyl)propanamide (1a) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0541P)2 + 1.2115P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
1892 reflections Δρmax = 0.29 e Å3
138 parameters Δρmin = −0.26 e Å3
2 restraints

2-Chloro-N-(4-methylphenyl)propanamide (1a) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The terminal chloro/methyl groups are disordered and overlap with an occupancy of 78:22%. The disorder was modelled with restraints (DFIX) and constraints (EADP for the Cl atoms).

2-Chloro-N-(4-methylphenyl)propanamide (1a) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.60104 (11) 0.01803 (8) 0.42660 (5) 0.0298 (2) 0.783 (2)
Cl1A 0.6006 (11) 0.2847 (11) 0.3649 (4) 0.0328 (12) 0.217 (2)
O10 0.74965 (11) 0.26055 (12) 0.48882 (5) 0.0281 (3)
N8 0.53542 (13) 0.31060 (13) 0.52846 (6) 0.0208 (3)
H8 0.453 (2) 0.2949 (17) 0.5247 (7) 0.016 (4)*
C1 0.69159 (16) 0.46725 (17) 0.58476 (7) 0.0257 (4)
H1 0.7392 0.4906 0.5480 0.031*
C2 0.73137 (17) 0.52711 (18) 0.63985 (8) 0.0303 (4)
H2 0.8067 0.5915 0.6402 0.036*
C3 0.66349 (18) 0.49513 (17) 0.69457 (8) 0.0286 (4)
C4 0.7043 (2) 0.5651 (2) 0.75375 (9) 0.0408 (5)
H4A 0.7236 0.4951 0.7850 0.061*
H4B 0.6272 0.6246 0.7675 0.061*
H4C 0.7888 0.6212 0.7471 0.061*
C5 0.55361 (18) 0.40046 (17) 0.69264 (7) 0.0286 (4)
H5 0.5058 0.3771 0.7294 0.034*
C6 0.51263 (16) 0.33958 (16) 0.63802 (7) 0.0253 (3)
H6 0.4374 0.2751 0.6376 0.030*
C7 0.58167 (15) 0.37290 (16) 0.58389 (7) 0.0208 (3)
C9 0.62129 (15) 0.25772 (15) 0.48554 (7) 0.0204 (3)
C11 0.54665 (16) 0.19425 (16) 0.43058 (7) 0.0223 (3)
H11 0.4426 0.1988 0.4369 0.027* 0.783 (2)
H11A 0.4428 0.2050 0.4358 0.027* 0.217 (2)
C12A 0.582 (2) 0.0409 (11) 0.4215 (10) 0.035 (2) 0.217 (2)
H12A 0.5437 −0.0127 0.4558 0.053* 0.217 (2)
H12B 0.6838 0.0290 0.4197 0.053* 0.217 (2)
H12C 0.5395 0.0084 0.3831 0.053* 0.217 (2)
C12 0.5856 (12) 0.2688 (11) 0.3711 (4) 0.035 (2) 0.783 (2)
H12D 0.6871 0.2610 0.3641 0.053* 0.783 (2)
H12E 0.5597 0.3664 0.3743 0.053* 0.783 (2)
H12F 0.5350 0.2266 0.3368 0.053* 0.783 (2)

2-Chloro-N-(4-methylphenyl)propanamide (1a) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0401 (5) 0.0204 (4) 0.0290 (4) 0.0037 (2) −0.0030 (3) −0.0030 (3)
Cl1A 0.034 (2) 0.036 (2) 0.0278 (15) −0.0036 (14) −0.0033 (13) 0.0100 (13)
O10 0.0158 (6) 0.0365 (7) 0.0320 (6) 0.0011 (5) 0.0005 (4) −0.0073 (5)
N8 0.0125 (6) 0.0255 (7) 0.0244 (6) −0.0016 (5) 0.0002 (5) −0.0020 (5)
C1 0.0207 (7) 0.0299 (8) 0.0266 (8) −0.0025 (6) 0.0027 (6) −0.0026 (6)
C2 0.0215 (8) 0.0348 (9) 0.0347 (9) −0.0034 (7) −0.0014 (7) −0.0071 (7)
C3 0.0281 (8) 0.0310 (8) 0.0266 (8) 0.0070 (7) −0.0060 (7) −0.0037 (6)
C4 0.0409 (10) 0.0500 (11) 0.0315 (9) 0.0061 (9) −0.0089 (8) −0.0112 (9)
C5 0.0332 (8) 0.0295 (8) 0.0233 (7) 0.0048 (7) 0.0034 (6) 0.0033 (6)
C6 0.0242 (7) 0.0230 (7) 0.0286 (8) −0.0005 (6) 0.0032 (6) 0.0016 (6)
C7 0.0181 (7) 0.0215 (7) 0.0229 (7) 0.0032 (6) −0.0005 (5) −0.0003 (6)
C9 0.0182 (7) 0.0195 (7) 0.0235 (7) 0.0001 (5) 0.0010 (5) 0.0024 (6)
C11 0.0175 (7) 0.0244 (8) 0.0250 (7) 0.0020 (6) 0.0010 (5) −0.0016 (6)
C12A 0.034 (3) 0.030 (3) 0.042 (4) 0.006 (2) −0.007 (2) −0.005 (2)
C12 0.034 (3) 0.030 (3) 0.042 (4) 0.006 (2) −0.007 (2) −0.005 (2)

2-Chloro-N-(4-methylphenyl)propanamide (1a) . Geometric parameters (Å, º)

Cl1—C11 1.7861 (17) C5—H5 0.9500
Cl1A—C11 1.758 (8) C5—C6 1.387 (2)
O10—C9 1.2233 (18) C6—H6 0.9500
N8—H8 0.80 (2) C6—C7 1.391 (2)
N8—C7 1.4226 (19) C9—C11 1.524 (2)
N8—C9 1.3448 (19) C11—H11 1.0000
C1—H1 0.9500 C11—H11A 1.0000
C1—C2 1.388 (2) C11—C12A 1.536 (9)
C1—C7 1.389 (2) C11—C12 1.532 (7)
C2—H2 0.9500 C12A—H12A 0.9800
C2—C3 1.394 (2) C12A—H12B 0.9800
C3—C4 1.511 (2) C12A—H12C 0.9800
C3—C5 1.391 (2) C12—H12D 0.9800
C4—H4A 0.9800 C12—H12E 0.9800
C4—H4B 0.9800 C12—H12F 0.9800
C4—H4C 0.9800
C7—N8—H8 118.0 (12) O10—C9—N8 123.83 (14)
C9—N8—H8 116.7 (12) O10—C9—C11 121.34 (13)
C9—N8—C7 124.55 (13) N8—C9—C11 114.82 (13)
C2—C1—H1 120.3 Cl1—C11—H11 109.6
C2—C1—C7 119.47 (15) Cl1A—C11—H11A 109.2
C7—C1—H1 120.3 C9—C11—Cl1 106.80 (10)
C1—C2—H2 119.2 C9—C11—Cl1A 107.8 (4)
C1—C2—C3 121.63 (16) C9—C11—H11 109.6
C3—C2—H2 119.2 C9—C11—H11A 109.2
C2—C3—C4 121.00 (16) C9—C11—C12A 113.1 (8)
C5—C3—C2 117.95 (15) C9—C11—C12 111.4 (5)
C5—C3—C4 121.02 (16) C12A—C11—Cl1A 108.3 (9)
C3—C4—H4A 109.5 C12A—C11—H11A 109.2
C3—C4—H4B 109.5 C12—C11—Cl1 109.8 (4)
C3—C4—H4C 109.5 C12—C11—H11 109.6
H4A—C4—H4B 109.5 C11—C12A—H12A 109.5
H4A—C4—H4C 109.5 C11—C12A—H12B 109.5
H4B—C4—H4C 109.5 C11—C12A—H12C 109.5
C3—C5—H5 119.4 H12A—C12A—H12B 109.5
C6—C5—C3 121.17 (15) H12A—C12A—H12C 109.5
C6—C5—H5 119.4 H12B—C12A—H12C 109.5
C5—C6—H6 120.0 C11—C12—H12D 109.5
C5—C6—C7 120.01 (15) C11—C12—H12E 109.5
C7—C6—H6 120.0 C11—C12—H12F 109.5
C1—C7—N8 121.58 (14) H12D—C12—H12E 109.5
C1—C7—C6 119.77 (14) H12D—C12—H12F 109.5
C6—C7—N8 118.63 (14) H12E—C12—H12F 109.5
O10—C9—C11—Cl1 59.49 (17) C2—C1—C7—C6 0.1 (2)
O10—C9—C11—Cl1A −59.4 (4) C2—C3—C5—C6 0.0 (2)
O10—C9—C11—C12A 60.2 (10) C3—C5—C6—C7 0.0 (2)
O10—C9—C11—C12 −60.4 (5) C4—C3—C5—C6 177.74 (16)
N8—C9—C11—Cl1 −121.40 (12) C5—C6—C7—N8 −178.85 (14)
N8—C9—C11—Cl1A 119.7 (4) C5—C6—C7—C1 0.0 (2)
N8—C9—C11—C12A −120.7 (10) C7—N8—C9—O10 −1.9 (2)
N8—C9—C11—C12 118.7 (5) C7—N8—C9—C11 179.00 (13)
C1—C2—C3—C4 −177.66 (16) C7—C1—C2—C3 −0.1 (3)
C1—C2—C3—C5 0.1 (3) C9—N8—C7—C1 45.3 (2)
C2—C1—C7—N8 178.89 (14) C9—N8—C7—C6 −135.93 (15)

2-Chloro-N-(4-methylphenyl)propanamide (1a) . Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
N8—H8···O10i 0.80 (2) 2.03 (2) 2.8295 (16) 174.8 (17)
C11—H11···O10i 1.00 2.48 3.3574 (18) 146
C12—H12E···Cg1ii 0.98 2.61 3.503 (11) 151

Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x+1, −y+1, −z+1.

(1b). Crystal data

C10H12ClNO Dx = 1.307 Mg m3
Mr = 197.66 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 6677 reflections
a = 9.5053 (6) Å θ = 2.8–26.5°
b = 9.6793 (5) Å µ = 0.34 mm1
c = 21.8380 (13) Å T = 100 K
V = 2009.2 (2) Å3 Fragment, clear colourless
Z = 8 0.25 × 0.11 × 0.1 mm
F(000) = 832

(1b). Data collection

Bruker D8 Quest ECO diffractometer 2061 independent reflections
Radiation source: sealed X-ray tube, Siemens, KFF Mo 2K -90 C 1668 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.051
Detector resolution: 5.12 pixels mm-1 θmax = 26.5°, θmin = 3.5°
ω and φ scans h = −11→9
Absorption correction: multi-scan (SADABS; Bruker, 2016) k = −12→12
Tmin = 0.702, Tmax = 0.745 l = −26→27
19741 measured reflections

(1b). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0322P)2 + 1.4949P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
2061 reflections Δρmax = 0.30 e Å3
138 parameters Δρmin = −0.31 e Å3
2 restraints

(1b). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The terminal chloro/methyl groups are disordered and overlap with an occupancy of 77:23%. The disorder was modelled with restraints (DFIX) and constraints (EADP for the Cl atoms).

(1b). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.60085 (14) 0.01841 (9) 0.42661 (6) 0.0233 (2) 0.768 (2)
Cl1A 0.5999 (11) 0.2831 (11) 0.3648 (4) 0.0253 (12) 0.232 (2)
O10 0.74993 (12) 0.26099 (13) 0.48878 (5) 0.0217 (3)
N8 0.53537 (14) 0.31069 (14) 0.52838 (6) 0.0141 (3)
H8 0.450 (2) 0.2946 (19) 0.5248 (9) 0.019 (5)*
C1 0.69140 (18) 0.46745 (18) 0.58487 (8) 0.0186 (4)
H1 0.7389 0.4913 0.5481 0.022*
C2 0.73115 (18) 0.52705 (19) 0.63992 (8) 0.0236 (4)
H2 0.8064 0.5916 0.6404 0.028*
C3 0.66346 (19) 0.49466 (19) 0.69465 (8) 0.0217 (4)
C4 0.7041 (2) 0.5647 (2) 0.75373 (9) 0.0331 (5)
H4A 0.6236 0.6170 0.7695 0.050*
H4B 0.7829 0.6278 0.7462 0.050*
H4C 0.7323 0.4949 0.7838 0.050*
C5 0.5537 (2) 0.39994 (18) 0.69253 (8) 0.0220 (4)
H5 0.5059 0.3763 0.7293 0.026*
C6 0.51244 (18) 0.33931 (18) 0.63806 (8) 0.0187 (4)
H6 0.4370 0.2750 0.6376 0.022*
C7 0.58171 (16) 0.37265 (16) 0.58381 (7) 0.0140 (3)
C9 0.62137 (16) 0.25791 (16) 0.48549 (7) 0.0135 (3)
C11 0.54663 (17) 0.19470 (17) 0.43051 (8) 0.0158 (3)
H11 0.4425 0.1995 0.4367 0.019* 0.768 (2)
H11A 0.4426 0.2044 0.4357 0.019* 0.232 (2)
C12A 0.585 (3) 0.0413 (12) 0.4233 (12) 0.033 (3) 0.232 (2)
H12A 0.5527 −0.0098 0.4595 0.049* 0.232 (2)
H12B 0.6867 0.0317 0.4191 0.049* 0.232 (2)
H12C 0.5383 0.0041 0.3867 0.049* 0.232 (2)
C12 0.5869 (14) 0.2707 (13) 0.3713 (4) 0.033 (3) 0.768 (2)
H12D 0.6883 0.2615 0.3643 0.049* 0.768 (2)
H12E 0.5625 0.3687 0.3752 0.049* 0.768 (2)
H12F 0.5355 0.2303 0.3368 0.049* 0.768 (2)

(1b). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0348 (6) 0.0136 (3) 0.0214 (4) 0.0023 (3) −0.0026 (3) −0.0033 (3)
Cl1A 0.032 (2) 0.027 (2) 0.0167 (16) 0.0008 (15) −0.0042 (14) 0.0061 (13)
O10 0.0104 (6) 0.0306 (7) 0.0242 (7) 0.0017 (5) 0.0004 (5) −0.0076 (5)
N8 0.0078 (7) 0.0183 (7) 0.0161 (7) −0.0014 (5) −0.0005 (6) −0.0017 (6)
C1 0.0156 (8) 0.0216 (9) 0.0185 (9) −0.0030 (7) 0.0031 (6) −0.0029 (7)
C2 0.0166 (9) 0.0273 (10) 0.0268 (10) −0.0046 (7) −0.0006 (7) −0.0077 (8)
C3 0.0216 (9) 0.0238 (9) 0.0196 (9) 0.0063 (7) −0.0061 (7) −0.0040 (7)
C4 0.0351 (11) 0.0407 (12) 0.0234 (10) 0.0051 (9) −0.0089 (8) −0.0098 (9)
C5 0.0293 (10) 0.0222 (9) 0.0145 (8) 0.0042 (7) 0.0041 (7) 0.0040 (7)
C6 0.0195 (8) 0.0166 (8) 0.0201 (9) −0.0017 (7) 0.0029 (7) 0.0015 (7)
C7 0.0130 (8) 0.0144 (8) 0.0145 (8) 0.0023 (6) 0.0001 (6) −0.0001 (6)
C9 0.0124 (8) 0.0131 (7) 0.0151 (8) 0.0007 (6) 0.0012 (6) 0.0014 (6)
C11 0.0125 (7) 0.0179 (8) 0.0169 (8) 0.0009 (6) 0.0018 (6) −0.0017 (7)
C12A 0.028 (3) 0.031 (4) 0.039 (5) 0.009 (3) −0.007 (3) −0.006 (3)
C12 0.028 (3) 0.031 (4) 0.039 (5) 0.009 (3) −0.007 (3) −0.006 (3)

(1b). Geometric parameters (Å, º)

Cl1—C11 1.7845 (18) C5—H5 0.9500
Cl1A—C11 1.746 (8) C5—C6 1.383 (2)
O10—C9 1.2245 (19) C6—H6 0.9500
N8—H8 0.83 (2) C6—C7 1.393 (2)
N8—C7 1.421 (2) C9—C11 1.523 (2)
N8—C9 1.344 (2) C11—H11 1.0000
C1—H1 0.9500 C11—H11A 1.0000
C1—C2 1.386 (2) C11—C12A 1.536 (9)
C1—C7 1.389 (2) C11—C12 1.535 (7)
C2—H2 0.9500 C12A—H12A 0.9800
C2—C3 1.393 (3) C12A—H12B 0.9800
C3—C4 1.508 (2) C12A—H12C 0.9800
C3—C5 1.390 (3) C12—H12D 0.9800
C4—H4A 0.9800 C12—H12E 0.9800
C4—H4B 0.9800 C12—H12F 0.9800
C4—H4C 0.9800
C7—N8—H8 117.6 (13) O10—C9—N8 123.83 (15)
C9—N8—H8 117.2 (14) O10—C9—C11 121.43 (14)
C9—N8—C7 124.44 (14) N8—C9—C11 114.73 (14)
C2—C1—H1 120.2 Cl1—C11—H11 109.7
C2—C1—C7 119.60 (16) Cl1A—C11—H11A 109.5
C7—C1—H1 120.2 C9—C11—Cl1 106.68 (12)
C1—C2—H2 119.2 C9—C11—Cl1A 108.4 (4)
C1—C2—C3 121.64 (17) C9—C11—H11 109.7
C3—C2—H2 119.2 C9—C11—H11A 109.5
C2—C3—C4 120.96 (17) C9—C11—C12A 111.1 (9)
C5—C3—C2 117.83 (16) C9—C11—C12 110.8 (5)
C5—C3—C4 121.17 (17) C12A—C11—Cl1A 108.8 (10)
C3—C4—H4A 109.5 C12A—C11—H11A 109.5
C3—C4—H4B 109.5 C12—C11—Cl1 110.2 (5)
C3—C4—H4C 109.5 C12—C11—H11 109.7
H4A—C4—H4B 109.5 C11—C12A—H12A 109.5
H4A—C4—H4C 109.5 C11—C12A—H12B 109.5
H4B—C4—H4C 109.5 C11—C12A—H12C 109.5
C3—C5—H5 119.3 H12A—C12A—H12B 109.5
C6—C5—C3 121.41 (16) H12A—C12A—H12C 109.5
C6—C5—H5 119.3 H12B—C12A—H12C 109.5
C5—C6—H6 120.0 C11—C12—H12D 109.5
C5—C6—C7 119.94 (16) C11—C12—H12E 109.5
C7—C6—H6 120.0 C11—C12—H12F 109.5
C1—C7—N8 121.71 (14) H12D—C12—H12E 109.5
C1—C7—C6 119.58 (15) H12D—C12—H12F 109.5
C6—C7—N8 118.69 (14) H12E—C12—H12F 109.5
O10—C9—C11—Cl1 59.75 (18) C2—C1—C7—C6 0.4 (2)
O10—C9—C11—Cl1A −58.9 (4) C2—C3—C5—C6 0.1 (3)
O10—C9—C11—C12A 60.5 (11) C3—C5—C6—C7 0.2 (3)
O10—C9—C11—C12 −60.2 (6) C4—C3—C5—C6 177.51 (17)
N8—C9—C11—Cl1 −121.32 (14) C5—C6—C7—N8 −178.85 (15)
N8—C9—C11—Cl1A 120.0 (4) C5—C6—C7—C1 −0.4 (2)
N8—C9—C11—C12A −120.6 (11) C7—N8—C9—O10 −2.1 (3)
N8—C9—C11—C12 118.7 (6) C7—N8—C9—C11 178.97 (14)
C1—C2—C3—C4 −177.50 (17) C7—C1—C2—C3 −0.2 (3)
C1—C2—C3—C5 0.0 (3) C9—N8—C7—C1 45.6 (2)
C2—C1—C7—N8 178.82 (16) C9—N8—C7—C6 −136.01 (17)

(1b). Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
N8—H8···O10i 0.83 (2) 2.00 (2) 2.8255 (18) 174.2 (19)
C11—H11···O10i 1.00 2.48 3.353 (2) 146
C12—H12E···Cg1ii 0.98 2.62 3.493 (13) 149

Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by Synthesis and Solid State Pharmaceutical Center (SSPC) grant . Science Foundation Ireland grant SFI, 12/RC/2275.

References

  1. Banks, J. W., Batsanov, A. S., Howard, J. A. K., O’Hagan, D., Rzepa, H. S. & Martin-Santamaria, S. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2409–2411.
  2. Bruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2016). APEX3 and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chekhlov, A. N., Yurtanov, A. I. & Martynov, I. V. (1987). Russ. Chem. Bull. 36, 1198–1201.
  5. Coles (née Huth), S. L., Threlfall, T. L. & Hursthouse, M. B. (2008). University of Southampton, Crystal Structure Report Archive, 1387.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Foley, D. A., Doecke, C. W., Buser, J. Y., Merritt, J. M., Murphy, L., Kissane, M., Collins, S. G., Maguire, A. R. & Kaerner, A. (2011). J. Org. Chem. 76, 9630–9640. [DOI] [PubMed]
  8. Frohberg, P., Drutkowski, G., Wagner, C. & Lichtenberger, O. (2002). J. Chem. Res. (S), pp. 13–14.
  9. Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o3392.
  10. Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o4488.
  11. Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2333–o2334.
  12. Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A Phys. Sci. 58A, 225–230.
  13. Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2008). Acta Cryst. E64, o987. [DOI] [PMC free article] [PubMed]
  14. Gowda, B. T., Paulus, H. & Fuess, H. (2001). Z. Naturforsch. Teil A Phys. Sci. 56A, 386–394.
  15. Gowda, B. T., Svoboda, I., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o1955. [DOI] [PMC free article] [PubMed]
  16. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  17. Gupta, E., Kant, R. & Mohanan, K. (2017). Org. Lett. 19, 6016–6019. [DOI] [PubMed]
  18. Hursthouse, M. B., Huth, S. L. & Threlfall, T. L. (2009). Org. Process Res. Dev. 13, 1231–1240.
  19. Kang, S., Zeng, H., Li, H. & Wang, H. (2008). Acta Cryst. E64, o1194. [DOI] [PMC free article] [PubMed]
  20. Kissane, M., Lawrence, S. E. & Maguire, A. R. (2010b). Tetrahedron, 66, 4564–4572.
  21. Kissane, M., Lawrence, S. E. & Maguire, A. R. (2010c). Tetrahedron Asymmetry, 21, 871–884.
  22. Kissane, M., Lynch, D., Chopra, J., Lawrence, S. E. & Maguire, A. R. (2010a). Org. Biomol. Chem. 8, 5602–5613. [DOI] [PubMed]
  23. Kissane, M. & Maguire, A. R. (2011). Synlett, pp. 1212–1232.
  24. Kissane, M., Murphy, M., Lawrence, S. E. & Maguire, A. R. (2010d). Tetrahedron Asymmetry, 21, 2550–2558.
  25. Kissane, M., Murphy, M., O’Brien, E., Chopra, J., Murphy, L., Collins, S. G., Lawrence, S. E. & Maguire, A. R. (2011). Org. Biomol. Chem. 9, 2452–2472. [DOI] [PubMed]
  26. Lee, S. L., O’Connor, T. F., Yang, X., Cruz, C. N., Chatterjee, S., Madurawe, R. D., Moore, C. M. V., Yu, L. X. & Woodcock, J. (2015). J. Pharm. Innov. 10, 191–199.
  27. Mascia, S., Heider, P. L., Zhang, H., Lakerveld, R., Benyahia, B., Barton, P. I., Braatz, R. D., Cooney, C. L., Evans, J. M. B., Jamison, T. F., Jensen, K. F., Myerson, A. S. & Trout, B. L. (2013). Angew. Chem. Int. Ed. 52, 12359–12363. [DOI] [PubMed]
  28. Murphy, M., Lynch, D., Schaeffer, M., Kissane, M., Chopra, J., O’Brien, E., Ford, A., Ferguson, G. & Maguire, A. R. (2007). Org. Biomol. Chem. 5, 1228–1241. [DOI] [PubMed]
  29. Naumov, P., Sakurai, K., Tanaka, M. & Hara, H. (2007). J. Phys. Chem. B, 111, 10373–10378. [DOI] [PubMed]
  30. O’Mahony, R. M., Lynch, D., Hayes, H. L. D., Ní Thuama, E., Donnellan, P., Jones, R. C., Glennon, B., Collins, S. G. & Maguire, A. R. (2017). Eur. J. Org. Chem. pp. 6533–6539.
  31. Pal, A. K., Bera, A. K. & Banerjee, A. (1998). Z. Kristallogr. New Cryst. Struct. 213, 249–.
  32. Pascual, G. K., Donnellan, P., Glennon, B., Kamaraju, V. K. & Jones, R. C. (2017). J. Chem. Eng. Data, 62, 3193–3205.
  33. Pathak, S., Kundu, A. & Pramanik, A. (2014). RSC Adv. 4, 10180–10187.
  34. Power, G., Hou, G., Kamaraju, V. K., Morris, G., Zhao, Y. & Glennon, B. (2015). Chem. Eng. Sci. 133, 125–139.
  35. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  36. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  37. Simon, M., Donnellan, P., Glennon, B. & Jones, R. C. (2018). Chem. Eng. Technol. 41, 921–927.
  38. Staples, R. J. & Vidnovio, N. (2007). Z. Kristallogr. New Cryst. Struct. 222, 269–270.
  39. Subramanian, E. (1966). Z. Kristallogr. 123, 222–234.
  40. Zhao, Y., Kamaraju, V. K., Hou, G., Power, G., Donnellan, P. & Glennon, B. (2015). Chem. Eng. Sci. 133, 106–115.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) . DOI: 10.1107/S2056989018013889/ds2252sup1.cif

e-74-01584-sup1.cif (1.9KB, cif)

Structure factors: contains datablock(s) 1a. DOI: 10.1107/S2056989018013889/ds22521asup2.hkl

e-74-01584-1asup2.hkl (152.5KB, hkl)

Structure factors: contains datablock(s) 1b. DOI: 10.1107/S2056989018013889/ds22521bsup3.hkl

e-74-01584-1bsup3.hkl (165.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018013889/ds22521asup4.cml

CCDC references: 1870782, 1870781

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES