Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Oct 9;74(Pt 11):1553–1560. doi: 10.1107/S2056989018014020

Crystal structures and Hirshfeld surfaces of four meth­oxy­benzaldehyde oxime derivatives, 2-MeO-XC6H3C=NOH (X = H and 2-, 3- and 4-MeO): different conformations and hydrogen-bonding patterns

Ligia R Gomes a,b, Marcus V N de Souza c, Cristiane F Da Costa c, James L Wardell c,d, John Nicolson Low d,*
PMCID: PMC6218896  PMID: 30443379

The crystal structures of four (E) -meth­oxy­benzaldehyde oxime derivatives, namely (2-meth­oxy­benzaldehyde oxime, 1, 2,3-di­meth­oxy­benzaldehyde oxime, 2, 4-di­meth­oxy­benzaldehyde oxime, 3, and 2,5-di­meth­oxy­benzaldehyde oxime, 4, are discussed. The arrangements of the 2-meth­oxy group and the H atom of the oxime unit are s-cis in compounds 13, but in both independent mol­ecules of compound 4, the arrangements are s-trans. The primary inter­molecular O—H(oxime)⋯O(hy­droxy) hydrogen bonds generate C(3) chains in 1 and 2. In contrast, in compound 3, the O—H(oxime)⋯O(hy­droxy) hydrogen bonds generate symmetric Inline graphic(6) dimers. A more complex dimer is generated in 4 from the O—H(oxime)⋯O(hy­droxy) and C—H(2-meth­oxy)⋯O(hy­droxy) hydrogen bonds.

Keywords: crystal structure, oxime derivative, hydrogen bonding

Abstract

The crystal structures of four (E)-meth­oxy­benzaldehyde oxime derivatives, namely (2-meth­oxy­benzaldehyde oxime, 1, 2,3-di­meth­oxy­benzaldehyde oxime, 2, 4-di­meth­oxy­benzaldehyde oxime, 3, and 2,5-di­meth­oxy­benzaldehyde oxime, 4, are discussed. The arrangements of the 2-meth­oxy group and the H atom of the oxime unit are s-cis in compounds 13, but in both independent mol­ecules of compound 4, the arrangements are s-trans. There is also a difference in the conformation of the two mol­ecules in 4, involving the orientations of the 2- and 5-meth­oxy groups. The primary inter­molecular O—H(oxime)⋯O(hy­droxy) hydrogen bonds generate C(3) chains in 1 and 2. In contrast, in compound 3, the O—H(oxime)⋯O(hy­droxy) hydrogen bonds generate symmetric R 2 2(6) dimers. A more complex dimer is generated in 4 from the O—H(oxime)⋯O(hy­droxy) and C—H(2-meth­oxy)⋯O(hy­droxy) hydrogen bonds. In all cases, further inter­actions, C—H⋯O and C—H⋯π or π–π, generate three-dimensional arrays. Hirshfeld surface and fingerprint analyses are discussed.

Chemical context  

In the plant kingdom, oximes play a vital role in metabolism (Sørensen et al., 2018). Aldoximes, RCH=NOH, are found in many biologically active compounds (Abele et al., 2008; Nikitjuka & Jirgensons, 2014), having a diverse range of uses including as anti-tumour agents (Martínez-Pascual et al., 2017; Qin et al., 2017; Canario et al., 2018; Huang et al., 2018), acaricidal and insecticidal agents (Dai et al., 2017), thymidine phospho­rylase inhibitors (Zhao et al., 2018), anti-microbial agents (Yadav et al., 2017), bacteriocides (Kozlowska et al., 2017), anti-inflammatory agents (Mohassab et al. 2017), and in the treatment of nerve-gas poisoning (Lorke et al., 2008; Voicu et al., 2010; Katalinić et al., 2017; Radić et al., 2013).

Benzaldehyde oximes, ArCH=NOH, with their –CH=N—OH functional group are ideally arranged for classical O—H⋯O and/or O—H⋯N hydrogen bonding. The last survey of the classical hydrogen-bonding patterns in benzaldehyde oximes reported in 2010 (Low et al., 2010) confirmed that the most frequently found arrangements, with the exception of salicylaldoxines, are Inline graphic(6) dimers and C(3) chains, Fig. 1. Aakeröy et al. (2013) reported the percentages of Inline graphic(6) dimers and C(3) chains found in non-salicylaldoxine to be ca 72 and 24%, respectively – similar percentages can be derived from a recent survey of the Cambridge Structural Database (CSD Version 5.39, August 2018 update; Groom et al., 2016). Hydrogen bonds are considered to be the strongest and most directional of inter­molecular inter­actions in mol­ecules (Etter, 1990) and thus play the major roles in determining the overall supra­molecular structures. However, the involvement of weaker inter­molecular inter­actions, such as C—H⋯O hydrogen bonds, π–π inter­actions and inter­actions involving the substituents, can have a significant influence on the supra­molecular arrays generated. In a continuation of recent studies on aldoximes (Low et al. 2018; Gomes et al., 2018), we have determined the crystal structures of four meth­oxy­benzaldehyde derivatives, namely 2-MeO-X-C6H3CH=NOH where X = H in 1, X = 3-MeO in 2, X = 4-MeO in 3 and X = 5-MeO in 4. The aim of the study was to further investigate the occurrence of Inline graphic(6) dimers and C(3) chains in a series of related compounds.graphic file with name e-74-01553-scheme1.jpg

Figure 1.

Figure 1

Illustrations of the C(3) chains and Inline graphic(6) dimers formed by oximes

Structural commentary  

There are no unusual features in the mol­ecular structures. Compound 1 crystallizes in the ortho­rhom­bic space group Pna21 with one mol­ecule in the asymmetric unit (Fig. 2), compound 2 crystallizes in the ortho­rhom­bic space group P212121 with one mol­ecule in the asymmetric unit (Fig. 3), compound 3 crystallizes in the triclinic space group P Inline graphic with one mol­ecule in the asymmetric unit (Fig. 4), and compound 4 crystallizes in the monoclinic space group, P21/c with two independent mol­ecules, Mol A and Mol B, in the asymmetric unit (Fig. 5). The geometry about the oxime moiety in all mol­ecules is (E). In compounds 13, the 2-meth­oxy group and the hydrogen of the oxime moiety have an s-cis arrangement. In contrast, in both mol­ecules of compound 4, the 2-meth­oxy group and the hydrogen atom of the oxime moiety have an s-trans arrangement. The s-trans arrangement of the 2-alk­oxy group and hydrogen atom of the oxime units in compound 4 is very much rarer than the s-cis arrangement found in compounds 13 and other non-salicylaldoximes. A search of the Cambridge Structural Database (CSD Version 5.39, August 2018 update; Groom et al., 2016) revealed that only salicyl­aldoximes and 2-alk­oxy­benzaldehyde oxime (E)-2-({2-[(E)-(hy­droxy­imino)­meth­yl]phen­oxy}meth­yl)-3-p-tolyl­acryl­o­nitrile (LAQRIG; Suresh et al. 2012) had this s-trans arrangement. In contrast, the isomer 2-({2-[(hy­droxy­imino)meth­yl]phen­oxy}meth­yl)-3-(2-methyl­phen­yl)acrylo­nitrile (GARNEU; Govindan et al., 2012a ) and some similar compounds such as (E)-2-({2-[(E)-(hy­droxy­imino)­meth­yl]phen­oxy}meth­yl)-3-phenyl­acrylo­nitrile (LAQRUS; Govindan et al., 2012b ) had the s-cis arrangement.

Figure 2.

Figure 2

Atom arrangements and numbering scheme for compound 1. Displacement ellipsoids are drawn at the 50% probability level.

Figure 3.

Figure 3

Atom arrangements and numbering system for compound 2. Displacement ellipsoids are drawn at the 50% probability level.

Figure 4.

Figure 4

Atom arrangements and numbering system for compound 3. Displacement ellipsoids are drawn at the 50% probability level.

Figure 5.

Figure 5

Atom arrangements and numbering system for the two independent mol­ecules, Mol A and Mol B, of compound 4. Displacement ellipsoids are drawn at the 50% probability level.

There is a conformational difference between the two independent mol­ecules Mol A and Mol B of compound 4. This difference is in the orientation of the two meth­oxy groups, see Fig. 5: in Mol A the orientation is s-trans and in Mol B, it is s-cis. As expected for a 1,2,3-tris­ubstituted benzene derivative, compound 4 is the least planar of the four oxime derivatives, with the 2-meth­oxy substituent furthest out of the plane of the attached phenyl group, see Table 1.

Table 1. Distances (Å) of OMe C atoms and oxime N and O atoms from benzene ring mean plane in compounds 14 .

Atom 1 2 3 4 Mol A 4 Mol B
C21 0.086 (3) −1.140 (4) 0.195 (1) 0.121 (1) 0.059 (1)
C31 −0.011 (4)
C41 0.081 (1)
C51 0.033 (1) 0.061 (1)
N12 0.061 (2) 0.259 (3) −0.177 (1) 0.264 (1) −0.020 (1)
O13 −0.009 (2) −0.027 (3) 0.051 (1) 0.242 (1) 0.010 (1)

Supra­molecular features  

Hydrogen bonding  

In the crystal of 1, mol­ecules are primarily linked by strong O13—H13⋯N12i hydrogen bonds (Table 2), forming C(3) chains, illustrated in Fig. 6. Also present in compound 1 are two weaker hydrogen bonds, namely, C3—H3⋯O13ii and C21—H21C⋯O13iii, as well as a weak π–π stacking inter­action [CgCg iv = 4.025 (2) Å: slippage 2.105 Å: symmetry code; x, y, z − 1]. These three inter­actions generate the mol­ecular arrangement shown in Fig. 7. The C3—H3⋯O13ii hydrogen bonds generate C7 chains in the c-axis direction, while the C21—H21C⋯O13iii hydrogen bonds form C(8) spiral chains along the a-axis direction: together these hydrogen bonds form Inline graphic(22) rings. The tilted π–π stacks propagate in the c-axis direction. The involvement of the weaker C3—H3⋯O13ii, C21—H21C⋯O13iii and π–π inter­actions, along with the stronger O13—H13 ⋯N12i hydrogen bonds, creates the three-dimensional structure for 1.

Table 2. Hydrogen-bond geometry (Å, °) for 1 .

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13⋯N12i 0.84 1.93 2.764 (2) 170
C3—H3⋯O13ii 0.95 2.50 3.442 (2) 174
C21—H21C⋯O13iii 0.98 2.57 3.506 (3) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 6.

Figure 6

Compound 1. Part of a C(3) chain formed by O13—H13⋯·N12 hydrogen bonds (dashed lines; see Table 2).

Figure 7.

Figure 7

Compound 1. Part of the arrangement generated from the combination of hydrogen bonds and π–π inter­actions (dashed lines; see Table 2).

As in 1, mol­ecules of 2 are primarily linked by strong O13—H13 ⋯N12i hydrogen bonds (Table 3), forming C(3) chains: as such chains are very similar to those in compound 1, see Fig. 6, an illustration has not been provided for the C(3) chain in compound 2. Other inter­molecular inter­actions in 2 are the weaker C21—H21B⋯O31iii and C31—H31B⋯O13iv hydrogen bonds and a C31—H31CCg1v inter­action involving the C1–C6 ring. These three inter­actions combine to form the arrangement illustrated in Fig. 8. The C21—H21B⋯O31iii hydrogen bonds on their own generate C(6) chains, which propagate in the a-axis direction while the C31—H31B⋯O13iv hydrogen bonds generate spiral C(9) chains in the b-axis direction. Together these hydrogen bonds generate a network of Inline graphic(26) rings. The C31—H31CCg1v inter­actions lead to chains along the a-axis direction. The involvement of the weaker C21—H21B⋯O31iii, C31—H31B⋯O13iv C and C—H⋯π inter­actions, along with the stronger O13—H13 ⋯N12i hydrogen bonds, creates a three-dimensional structure for 2. C4—H4⋯O12ii hydrogen bonds also occur.

Table 3. Hydrogen-bond geometry (Å, °) for 2 .

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13⋯N12i 0.97 (4) 1.87 (5) 2.805 (4) 161 (4)
C4—H4⋯O21ii 0.95 2.63 3.284 (4) 126
C21—H21B⋯O31iii 0.98 2.54 3.323 (5) 136
C31—H31B⋯O13iv 0.98 2.51 3.448 (5) 161
C31—H31CCg1v 0.98 2.73 3.599 (5) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 8.

Figure 8

Compound 2. Part of the arrangement generated form C21—H21B⋯O31, C31—H31B⋯O13 and π–π inter­actions (dashed lines; see Table 3).

In compound 3, Inline graphic(6) dimers are generated from strong O13—H13⋯N12i hydrogen bonds (Table 4), as illustrated in Fig. 9. Linkages of these Inline graphic(6) dimers by weaker C41—H41A(meth­oxy)⋯O13ii hydrogen bonds provide a two-mol­ecule-wide ribbon. Within the ribbons are Inline graphic (22) rings as well as the Inline graphic(6) rings. An additional inter­action in 3 is the C41—H41CCg1iii inter­action, which generates a tilted ladder assembly, propagating in the a-axis direction, with the Inline graphic(6) rings acting as the rungs and the C41—H41CCg1iii inter­actions as the supports.

Table 4. Hydrogen-bond geometry (Å, °) for 3 .

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13⋯N12i 0.893 (18) 1.995 (19) 2.8124 (13) 151.5 (15)
C41—H41A⋯O13ii 0.98 2.63 3.0680 (15) 107
C41—H41CCg1iii 0.98 2.60 3.4479 (13) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 9.

Figure 9

Compound 3. A two-mol­ecule-wide ribbon generated from linking the Inline graphic(6) dimers, formed by pairs of strong O13—H13—N12 hydrogen bonds and by weaker C41—H41A⋯O13 hydrogen bonds (dashed lines; see Table 4).

In compound 4, each of the two independent mol­ecules forms symmetric dimers, see Fig. 10. These are generated from combinations of O113—H113⋯N112i and O113—H113⋯O121i hydrogen bonds (Table 5) for Mol A and O213—H213⋯N212ii and O213—H213⋯O221ii hydrogen bonds for Mol B. In each case, the dimers contain three rings, two Inline graphic(6) and one Inline graphic(6). There are short N⋯N distances across the Inline graphic(6) dimer rings, 2.8595 (12) Å for MolA and 2.8956 (12) Å for Mol B, each being less than the sum of the van der Waals radius (3.10 Å) for two N atoms.

Figure 10.

Figure 10

Compound 4. Symmetric dimers of (a) Mol A and (b) Mol B. Hydrogen bonds (see Table 5) are shown as dashed lines.

Table 5. Hydrogen-bond geometry (Å, °) for 4 .

Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O113—H113⋯O121i 0.875 (16) 2.247 (15) 2.8944 (9) 130.7 (12)
O113—H113⋯N112i 0.875 (16) 1.965 (16) 2.7567 (10) 149.9 (13)
O213—H213⋯O221ii 0.877 (15) 2.204 (15) 2.8758 (9) 133.1 (12)
O213—H213⋯N212ii 0.877 (15) 2.034 (15) 2.8160 (10) 147.9 (13)
C111—H111⋯O251 0.95 2.46 3.2458 (11) 140
C121—H12C⋯N212iii 0.98 2.53 3.4400 (13) 155
C151—H15A⋯O113iv 0.98 2.50 3.3947 (11) 152
C14—H14⋯Cg2iii 0.95 2.98 3.6656 (9) 130
C151—H15BCg2 0.98 2.72 3.5973 (10) 149
C24—H24⋯Cg1v 0.95 2.67 3.4281 (10) 137
C211—H211⋯Cg1vi 0.95 2.78 3.6272 (9) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

The links between the two different dimers of 4 are provided by a number of C—H⋯O and C—H⋯π inter­actions, listed in Table 5. Fig. 11 restricts the contacts to just the C—H⋯O hydrogen bonds, namely C121—H12C⋯N212iii, C111—H111⋯O251 and C151—H15A⋯O113iv. To facilitate the viewing of the connection in Fig. 11, the two different dimers are drawn in different colours.

Figure 11.

Figure 11

Compound 4. Symmetric dimers of Mol A (green) and Mol B (blue). Inter­molecular inter­actions (see Table 5) are shown as dashed lines.

Hirshfeld surface analysis  

Hirshfeld surfaces (Spackman & Jayatilaka, 2009) and two-dimensional fingerprint (FP) plots (Spackman & McKinnon, 2002), provide complementary information concerning the inter­molecular inter­actions discussed above. The analyses were generated using Crystal Explorer3.1 (Wolff et al., 2012). The Hirshfeld surfaces mapped over d norm for 14 are illus­trated in Fig. 12. The red areas on the surfaces correspond to close contacts. The fingerprint plots are shown in Fig. 13. In all of the FP plots, the pair of spikes pointing south-west relate to the N—H contacts, which in compounds 1 and 2 are involved in the C(3) chains, while in compounds 3 and 4, they are responsible for the creation of the dimers. In compound 3, the fins ending at d e, d i = 1.9,1.1 Å are due to C(π)⋯H/C(π)⋯H contacts. The FP plots for Mol A and Mol B of compound 4 are asymmetric because of the different inter­actions of each mol­ecule. The double wings in the FP plot for Mol A in the second quadrant are complementary to those displayed in the fourth quadrant by MolB and relate to C⋯H close contacts connecting the two mol­ecules. The spike ending at d i, d e = 1.1 Å in Mol A is due to H⋯H contacts.

Figure 12.

Figure 12

Hirshfeld surfaces for compounds 14. In each case, the inter­actions related to the red areas are designated.

Figure 13.

Figure 13

Fingerprint plots for compounds 14.

The percentages of the various atom–atom contacts, derived from the fingerprint plots, for the four compounds are shown in Table 6. The fact that compound 1 has only one meth­oxy group while the isomers, 24, have two is reflected in the greater percentages of contacts involving the oxygen close contacts. The C(3)-chain-forming compounds 1 and 2 show higher percentages of H⋯H and C⋯C contacts, but a lower percentage of H⋯C/C⋯H contacts, than the dimer-forming compounds 3 and 4.

Table 6. Percentages of atom–atom contacts for compounds 1, 2, 3 and 4 (Mol A and Mol B).

Compound 1 2 3 4 Mol A 4 Mol B
H⋯H 52.7 49.1 43.7 41.5 38.6
H⋯O/O⋯H 16.2 22.5 23.4 24.9 26.3
H⋯C/C⋯H 11.3 14.5 20.4 22.7 25.9
H⋯N/N⋯H 8.1 6.6 8.4 9.0 8.1
C⋯C 7.9 3.5 1.3 0.1 0.1
O⋯C/C⋯O 2.1 2.0 2.6 1.5 0.8
N⋯O/O⋯N
N⋯C/C⋯N 1.6 1.8
O⋯O 0.4 0.2

Database survey  

A search of the Cambridge Structural Database survey (CSD Version 5.39, August 2018 update; Groom et al., 2016) revealed compounds similar to 2 and 3. The classical hydrogen bonds in 3,5-di­meth­oxy­benzene oxime generate C(3) chains (VUZJAC; Dong et al., 2010). No benzene oxime derivative with only meth­oxy substituents has been reported in the database to form an Inline graphic(6) or related dimer. The structure has been reported of 3,4,5-tri­meth­oxy­benzene oxime (MEQDAO; Chang, 2006) in which classical hydrogen bonds, formed between the oxime unit and the 4- and 5-meth­oxy moieties, but not the 2-meth­oxy group, result in the formation of a tetra­mer. The water mol­ecule in 3,4.5-tri­meth­oxy­benzene monohydrate (HESWUY; Priya et al., 2006) is strongly involved in the hydrogen-bonding arrangements.

There are 376 structures, (411 fragments) in the CSD database with oxime Inline graphic(6) dimers in which the N⋯N distance across the ring is less than or equal to 3.10 Å, the sum of two N-atom van der Waals radii. The H⋯O hydrogen-bond distance range was restricted to 1.739–2.285 Å to exclude improbable O⋯H distances based on a statistical analysis in Mercury (Macrae et al., 2006). The N⋯N distances range from 2.727 to 3.097 Å with a mean value of 2.987 Å. There are 27 structures within the range 2.838 to 2.909 Å in which our values of 2.8595 (12) Å for MolA and 2.8956 (12) Å for MolB of compound4 lie. Only single-crystal organic compounds were searched for with no limit on the R factor.

Synthesis and crystallization  

The title compounds were prepared from hy­droxy­amine and the corresponding benzaldehyde in methanol in the presence of potassium carbonate and were recrystallized from methanol solutions, m.p. = 364–365 K for compound 1, 371–373 K for 2, 378–380 K for 3 and 370–371 K for 4.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 7. All hy­droxy hydrogen atoms were refined isotropically. C-bound H atoms were refined as riding with C—H = 0.95–0.98Å and U iso(H) = 1.2–1.5U eq(C).

Table 7. Experimental details.

  1 2 3 4
Crystal data
Chemical formula C8H9NO2 C9H11NO3 C9H11NO3 C9H11NO3
M r 151.16 181.19 181.19 181.19
Crystal system, space group Orthorhombic, P n a21 Orthorhombic, P212121 Triclinic, P Inline graphic Monoclinic, P21/c
Temperature (K) 100 100 100 100
a, b, c (Å) 11.1719 (2), 16.4260 (3), 4.0249 (1) 4.6775 (2), 13.0996 (5), 14.1984 (5) 4.9441 (2), 8.2188 (4), 12.1308 (3) 7.6480 (1), 21.3380 (4), 10.9421 (2)
α, β, γ (°) 90, 90, 90 90, 90, 90 108.849 (3), 92.288 (3), 106.273 (4) 90, 90.555 (2), 90
V3) 738.61 (3) 869.98 (6) 443.17 (3) 1785.59 (5)
Z 4 4 2 8
Radiation type Cu Kα Cu Kα Cu Kα Mo Kα
μ (mm−1) 0.82 0.87 0.86 0.10
Crystal size (mm) 0.05 × 0.05 × 0.03 0.30 × 0.05 × 0.02 0.20 × 0.10 × 0.05 0.20 × 0.15 × 0.13
 
Data collection
Diffractometer Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector Rigaku FRE+ equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HyPix 6000 detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2017) Multi-scan (CrysAlis PRO; Rigaku OD, 2017) Multi-scan (CrysAlis PRO; Rigaku OD, 2017) Multi-scan (CrysAlis PRO; Rigaku OD, 2017)
T min, T max 0.848, 1.000 0.507, 1.000 0.802, 1.000 0.935, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12857, 1345, 1325 7835, 1596, 1371 7618, 1594, 1462 38753, 4082, 3761
R int 0.038 0.095 0.033 0.020
(sin θ/λ)max−1) 0.602 0.602 0.602 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.033, 0.088, 1.08 0.058, 0.151, 1.04 0.035, 0.101, 0.88 0.031, 0.086, 1.06
No. of reflections 1345 1596 1594 4082
No. of parameters 102 124 124 247
No. of restraints 1 0 0 0
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.16 0.35, −0.20 0.20, −0.19 0.32, −0.19
Absolute structure Refined as a perfect inversion twin. Flack x determined using 474 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.5 0.2 (3)

Computer programs: CrysAlis PRO (Rigaku OD, 2017), OSCAIL (McArdle et al., 2004), SHELXT (Sheldrick, 2015a ), ShelXle (Hübschle et al., 2011), SHELXL (Sheldrick, 2015b ), Mercury (Macrae et al., 2006) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) 1, 2, 3, 4, global. DOI: 10.1107/S2056989018014020/qm2129sup1.cif

e-74-01553-sup1.cif (2MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989018014020/qm21291sup2.hkl

e-74-01553-1sup2.hkl (108.9KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989018014020/qm21292sup3.hkl

e-74-01553-2sup3.hkl (128.8KB, hkl)

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989018014020/qm21293sup4.hkl

e-74-01553-3sup4.hkl (128.5KB, hkl)

Structure factors: contains datablock(s) 4. DOI: 10.1107/S2056989018014020/qm21294sup5.hkl

e-74-01553-4sup5.hkl (325.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018014020/qm21291sup6.cml

Supporting information file. DOI: 10.1107/S2056989018014020/qm21292sup7.cml

Supporting information file. DOI: 10.1107/S2056989018014020/qm21293sup8.cml

Supporting information file. DOI: 10.1107/S2056989018014020/qm21294sup9.cml

CCDC references: 1871165, 1871164, 1871163, 1871162

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the staff at the National Crystallographic Service, University of Southampton, for the data collection, help and advice (Coles & Gale, 2012).

supplementary crystallographic information

2-Methoxy-benzaldehyde oxime (1). Crystal data

C8H9NO2 Dx = 1.359 Mg m3
Mr = 151.16 Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Pna21 Cell parameters from 7376 reflections
a = 11.1719 (2) Å θ = 2.7–70.0°
b = 16.4260 (3) Å µ = 0.82 mm1
c = 4.0249 (1) Å T = 100 K
V = 738.61 (3) Å3 Block, colourless
Z = 4 0.05 × 0.05 × 0.03 mm
F(000) = 320

2-Methoxy-benzaldehyde oxime (1). Data collection

Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector diffractometer 1345 independent reflections
Radiation source: Rotating anode, Rigaku 007 HF 1325 reflections with I > 2σ(I)
Detector resolution: 10 pixels mm-1 Rint = 0.038
profile data from ω–scans θmax = 68.2°, θmin = 4.8°
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2017) h = −13→13
Tmin = 0.848, Tmax = 1.000 k = −19→19
12857 measured reflections l = −4→4

2-Methoxy-benzaldehyde oxime (1). Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.1277P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088 (Δ/σ)max < 0.001
S = 1.08 Δρmax = 0.17 e Å3
1345 reflections Δρmin = −0.16 e Å3
102 parameters Absolute structure: Refined as a perfect inversion twin.
1 restraint Absolute structure parameter: 0.5

2-Methoxy-benzaldehyde oxime (1). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component perfect inversion twin.

2-Methoxy-benzaldehyde oxime (1). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O13 0.45979 (12) 0.42019 (8) −0.4095 (4) 0.0311 (4)
H13 0.443792 0.464123 −0.506595 0.047*
O21 0.69333 (12) 0.21322 (8) 0.0350 (4) 0.0303 (4)
N12 0.56325 (15) 0.43011 (9) −0.2166 (5) 0.0265 (4)
C1 0.72029 (18) 0.35490 (12) 0.0488 (5) 0.0260 (5)
C2 0.76289 (18) 0.27720 (11) 0.1386 (6) 0.0266 (5)
C3 0.86797 (18) 0.26830 (12) 0.3172 (6) 0.0296 (5)
H3 0.895987 0.215571 0.375132 0.036*
C4 0.93229 (19) 0.33707 (13) 0.4113 (6) 0.0316 (5)
H4 1.004194 0.331184 0.535045 0.038*
C5 0.89200 (18) 0.41434 (12) 0.3255 (6) 0.0310 (5)
H5 0.936169 0.461141 0.390355 0.037*
C6 0.78780 (18) 0.42272 (12) 0.1462 (6) 0.0296 (5)
H6 0.761062 0.475674 0.087081 0.035*
C11 0.61087 (18) 0.36135 (11) −0.1461 (6) 0.0275 (5)
H11 0.573609 0.312951 −0.223553 0.033*
C21 0.7290 (2) 0.13337 (11) 0.1388 (7) 0.0319 (5)
H21A 0.668356 0.093725 0.069500 0.048*
H21B 0.736939 0.132217 0.381231 0.048*
H21C 0.805963 0.119570 0.036670 0.048*

2-Methoxy-benzaldehyde oxime (1). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O13 0.0346 (7) 0.0199 (6) 0.0389 (9) −0.0001 (6) −0.0067 (6) 0.0040 (6)
O21 0.0346 (7) 0.0172 (7) 0.0391 (9) 0.0000 (5) −0.0025 (7) 0.0018 (6)
N12 0.0300 (8) 0.0215 (8) 0.0279 (9) 0.0012 (6) 0.0017 (7) −0.0006 (7)
C1 0.0310 (10) 0.0206 (9) 0.0264 (11) 0.0008 (7) 0.0041 (9) −0.0005 (8)
C2 0.0323 (9) 0.0194 (9) 0.0281 (11) −0.0011 (7) 0.0048 (9) −0.0007 (8)
C3 0.0348 (10) 0.0230 (9) 0.0310 (11) 0.0017 (8) 0.0036 (9) 0.0015 (9)
C4 0.0316 (10) 0.0307 (11) 0.0324 (12) 0.0001 (8) 0.0009 (9) 0.0006 (9)
C5 0.0350 (11) 0.0243 (10) 0.0337 (12) −0.0043 (7) 0.0015 (9) −0.0025 (10)
C6 0.0362 (11) 0.0203 (9) 0.0322 (11) 0.0003 (8) 0.0023 (9) −0.0007 (9)
C11 0.0352 (11) 0.0181 (8) 0.0292 (11) −0.0008 (7) 0.0030 (9) −0.0011 (8)
C21 0.0390 (11) 0.0158 (9) 0.0408 (12) 0.0028 (7) −0.0004 (10) 0.0028 (9)

2-Methoxy-benzaldehyde oxime (1). Geometric parameters (Å, º)

O13—N12 1.402 (2) C3—H3 0.9500
O13—H13 0.8400 C4—C5 1.390 (3)
O21—C2 1.372 (2) C4—H4 0.9500
O21—C21 1.433 (2) C5—C6 1.377 (3)
N12—C11 1.280 (3) C5—H5 0.9500
C1—C6 1.401 (3) C6—H6 0.9500
C1—C2 1.409 (3) C11—H11 0.9500
C1—C11 1.456 (3) C21—H21A 0.9800
C2—C3 1.384 (3) C21—H21B 0.9800
C3—C4 1.391 (3) C21—H21C 0.9800
N12—O13—H13 109.5 C6—C5—C4 119.69 (18)
C2—O21—C21 117.07 (16) C6—C5—H5 120.2
C11—N12—O13 111.27 (15) C4—C5—H5 120.2
C6—C1—C2 117.80 (19) C5—C6—C1 121.50 (18)
C6—C1—C11 123.00 (17) C5—C6—H6 119.3
C2—C1—C11 119.18 (17) C1—C6—H6 119.3
O21—C2—C3 123.87 (17) N12—C11—C1 122.16 (18)
O21—C2—C1 115.11 (18) N12—C11—H11 118.9
C3—C2—C1 121.01 (17) C1—C11—H11 118.9
C2—C3—C4 119.58 (18) O21—C21—H21A 109.5
C2—C3—H3 120.2 O21—C21—H21B 109.5
C4—C3—H3 120.2 H21A—C21—H21B 109.5
C5—C4—C3 120.4 (2) O21—C21—H21C 109.5
C5—C4—H4 119.8 H21A—C21—H21C 109.5
C3—C4—H4 119.8 H21B—C21—H21C 109.5
C21—O21—C2—C3 4.2 (3) C2—C3—C4—C5 −0.4 (3)
C21—O21—C2—C1 −176.10 (18) C3—C4—C5—C6 0.0 (3)
C6—C1—C2—O21 −179.70 (18) C4—C5—C6—C1 0.4 (3)
C11—C1—C2—O21 −1.2 (3) C2—C1—C6—C5 −0.4 (3)
C6—C1—C2—C3 0.0 (3) C11—C1—C6—C5 −178.8 (2)
C11—C1—C2—C3 178.5 (2) O13—N12—C11—C1 179.25 (17)
O21—C2—C3—C4 −179.9 (2) C6—C1—C11—N12 −6.4 (3)
C1—C2—C3—C4 0.4 (3) C2—C1—C11—N12 175.2 (2)

2-Methoxy-benzaldehyde oxime (1). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O13—H13···N12i 0.84 1.93 2.764 (2) 170
C3—H3···O13ii 0.95 2.50 3.442 (2) 174
C21—H21C···O13iii 0.98 2.57 3.506 (3) 160

Symmetry codes: (i) −x+1, −y+1, z−1/2; (ii) x+1/2, −y+1/2, z+1; (iii) x+1/2, −y+1/2, z.

2,3-Dimethoxy-benzaldehyde oxime (2). Crystal data

C9H11NO3 Dx = 1.383 Mg m3
Mr = 181.19 Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121 Cell parameters from 2093 reflections
a = 4.6775 (2) Å θ = 4.6–67.5°
b = 13.0996 (5) Å µ = 0.87 mm1
c = 14.1984 (5) Å T = 100 K
V = 869.98 (6) Å3 Needle, colourless
Z = 4 0.30 × 0.05 × 0.02 mm
F(000) = 384

2,3-Dimethoxy-benzaldehyde oxime (2). Data collection

Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector diffractometer 1596 independent reflections
Radiation source: Rotating anode, Rigaku 007 HF 1371 reflections with I > 2σ(I)
Detector resolution: 10 pixels mm-1 Rint = 0.095
profile data from ω–scans θmax = 68.2°, θmin = 4.6°
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2017) h = −5→5
Tmin = 0.507, Tmax = 1.000 k = −15→15
7835 measured reflections l = −17→16

2,3-Dimethoxy-benzaldehyde oxime (2). Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.1064P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.151 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.35 e Å3
1596 reflections Δρmin = −0.20 e Å3
124 parameters Absolute structure: Flack x determined using 474 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraints Absolute structure parameter: 0.2 (3)

2,3-Dimethoxy-benzaldehyde oxime (2). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2,3-Dimethoxy-benzaldehyde oxime (2). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O13 −0.3161 (6) 0.81289 (19) 0.42174 (19) 0.0376 (7)
H13 −0.382 (10) 0.799 (3) 0.485 (3) 0.045 (12)*
O21 0.3629 (5) 0.73710 (18) 0.18056 (18) 0.0331 (6)
O31 0.6683 (6) 0.57595 (18) 0.1198 (2) 0.0370 (7)
N12 −0.1250 (7) 0.7305 (2) 0.4137 (2) 0.0328 (7)
C1 0.1671 (8) 0.6379 (3) 0.3072 (3) 0.0311 (8)
C2 0.3440 (8) 0.6450 (2) 0.2283 (3) 0.0309 (8)
C3 0.5135 (8) 0.5622 (2) 0.1997 (3) 0.0315 (8)
C4 0.5069 (9) 0.4725 (3) 0.2525 (2) 0.0331 (9)
H4 0.620619 0.415756 0.234431 0.040*
C5 0.3334 (9) 0.4664 (3) 0.3318 (3) 0.0344 (8)
H5 0.332576 0.405472 0.368039 0.041*
C6 0.1631 (9) 0.5468 (3) 0.3588 (3) 0.0338 (9)
H6 0.042859 0.540487 0.412457 0.041*
C11 −0.0229 (8) 0.7232 (2) 0.3309 (3) 0.0332 (8)
H11 −0.069638 0.772807 0.284541 0.040*
C21 0.2048 (9) 0.7399 (3) 0.0942 (3) 0.0374 (9)
H21A 0.230310 0.806598 0.064099 0.056*
H21B 0.001542 0.728827 0.107410 0.056*
H21C 0.274481 0.686165 0.052004 0.056*
C31 0.8511 (10) 0.4933 (3) 0.0919 (3) 0.0390 (10)
H31A 0.952242 0.511808 0.033893 0.059*
H31B 0.735578 0.432080 0.080781 0.059*
H31C 0.990297 0.479650 0.141905 0.059*

2,3-Dimethoxy-benzaldehyde oxime (2). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O13 0.0411 (16) 0.0292 (13) 0.0423 (16) 0.0088 (12) 0.0053 (13) 0.0027 (11)
O21 0.0339 (14) 0.0250 (12) 0.0405 (14) −0.0027 (11) 0.0009 (12) 0.0020 (10)
O31 0.0340 (14) 0.0291 (12) 0.0478 (15) 0.0042 (11) 0.0072 (13) −0.0015 (11)
N12 0.0294 (16) 0.0244 (14) 0.0446 (18) 0.0025 (13) −0.0001 (15) −0.0001 (12)
C1 0.0277 (18) 0.0277 (17) 0.038 (2) −0.0008 (15) −0.0021 (17) −0.0004 (14)
C2 0.0297 (17) 0.0244 (17) 0.0387 (19) −0.0018 (15) −0.0012 (17) 0.0017 (14)
C3 0.0285 (18) 0.0262 (16) 0.040 (2) 0.0016 (15) 0.0002 (16) −0.0029 (15)
C4 0.0315 (18) 0.0236 (17) 0.044 (2) 0.0017 (16) −0.0025 (17) −0.0036 (14)
C5 0.036 (2) 0.0286 (17) 0.039 (2) 0.0000 (16) −0.0054 (18) 0.0019 (15)
C6 0.034 (2) 0.0298 (18) 0.038 (2) 0.0001 (17) −0.0004 (17) 0.0019 (15)
C11 0.0353 (19) 0.0238 (16) 0.040 (2) 0.0010 (17) 0.0001 (18) 0.0007 (15)
C21 0.040 (2) 0.0324 (18) 0.040 (2) −0.0016 (17) 0.0010 (17) 0.0037 (15)
C31 0.035 (2) 0.0296 (18) 0.052 (2) 0.0034 (16) 0.009 (2) −0.0068 (16)

2,3-Dimethoxy-benzaldehyde oxime (2). Geometric parameters (Å, º)

O13—N12 1.405 (4) C4—C5 1.389 (5)
O13—H13 0.97 (4) C4—H4 0.9500
O21—C2 1.386 (4) C5—C6 1.375 (5)
O21—C21 1.432 (4) C5—H5 0.9500
O31—C3 1.357 (4) C6—H6 0.9500
O31—C31 1.435 (4) C11—H11 0.9500
N12—C11 1.273 (5) C21—H21A 0.9800
C1—C2 1.396 (5) C21—H21B 0.9800
C1—C6 1.401 (5) C21—H21C 0.9800
C1—C11 1.467 (5) C31—H31A 0.9800
C2—C3 1.404 (5) C31—H31B 0.9800
C3—C4 1.394 (5) C31—H31C 0.9800
N12—O13—H13 97 (3) C5—C6—C1 119.9 (4)
C2—O21—C21 114.1 (3) C5—C6—H6 120.1
C3—O31—C31 116.6 (3) C1—C6—H6 120.1
C11—N12—O13 111.8 (3) N12—C11—C1 119.7 (3)
C2—C1—C6 119.0 (3) N12—C11—H11 120.1
C2—C1—C11 119.5 (3) C1—C11—H11 120.1
C6—C1—C11 121.4 (3) O21—C21—H21A 109.5
O21—C2—C1 119.2 (3) O21—C21—H21B 109.5
O21—C2—C3 119.7 (3) H21A—C21—H21B 109.5
C1—C2—C3 121.0 (3) O21—C21—H21C 109.5
O31—C3—C4 125.0 (3) H21A—C21—H21C 109.5
O31—C3—C2 116.1 (3) H21B—C21—H21C 109.5
C4—C3—C2 118.9 (3) O31—C31—H31A 109.5
C5—C4—C3 119.8 (3) O31—C31—H31B 109.5
C5—C4—H4 120.1 H31A—C31—H31B 109.5
C3—C4—H4 120.1 O31—C31—H31C 109.5
C6—C5—C4 121.4 (3) H31A—C31—H31C 109.5
C6—C5—H5 119.3 H31B—C31—H31C 109.5
C4—C5—H5 119.3
C21—O21—C2—C1 −103.3 (4) C1—C2—C3—C4 −1.2 (5)
C21—O21—C2—C3 80.0 (4) O31—C3—C4—C5 −178.1 (4)
C6—C1—C2—O21 −175.9 (3) C2—C3—C4—C5 0.2 (5)
C11—C1—C2—O21 7.9 (5) C3—C4—C5—C6 1.1 (6)
C6—C1—C2—C3 0.8 (5) C4—C5—C6—C1 −1.4 (6)
C11—C1—C2—C3 −175.4 (4) C2—C1—C6—C5 0.5 (6)
C31—O31—C3—C4 −4.0 (5) C11—C1—C6—C5 176.6 (3)
C31—O31—C3—C2 177.6 (4) O13—N12—C11—C1 −176.2 (3)
O21—C2—C3—O31 −6.0 (5) C2—C1—C11—N12 −161.0 (3)
C1—C2—C3—O31 177.3 (3) C6—C1—C11—N12 22.8 (6)
O21—C2—C3—C4 175.5 (3)

2,3-Dimethoxy-benzaldehyde oxime (2). Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
O13—H13···N12i 0.97 (4) 1.87 (5) 2.805 (4) 161 (4)
C4—H4···O21ii 0.95 2.63 3.284 (4) 126
C21—H21B···O31iii 0.98 2.54 3.323 (5) 136
C31—H31B···O13iv 0.98 2.51 3.448 (5) 161
C31—H31C···Cg1v 0.98 2.73 3.599 (5) 148

Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) −x+1, y−1/2, −z+1/2; (iii) x−1, y, z; (iv) −x, y−1/2, −z+1/2; (v) x+1, y, z.

2,4-Dimethoxybenzaldehyde oxime (3). Crystal data

C9H11NO3 Z = 2
Mr = 181.19 F(000) = 192
Triclinic, P1 Dx = 1.358 Mg m3
a = 4.9441 (2) Å Cu Kα radiation, λ = 1.54178 Å
b = 8.2188 (4) Å Cell parameters from 3758 reflections
c = 12.1308 (3) Å θ = 3.9–69.9°
α = 108.849 (3)° µ = 0.86 mm1
β = 92.288 (3)° T = 100 K
γ = 106.273 (4)° Block, colourless
V = 443.17 (3) Å3 0.20 × 0.10 × 0.05 mm

2,4-Dimethoxybenzaldehyde oxime (3). Data collection

Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector diffractometer 1594 independent reflections
Radiation source: Rotating anode, Rigaku 007 HF 1462 reflections with I > 2σ(I)
Detector resolution: 10 pixels mm-1 Rint = 0.033
profile data from ω–scans θmax = 68.2°, θmin = 3.9°
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2017) h = −5→5
Tmin = 0.802, Tmax = 1.000 k = −9→9
7618 measured reflections l = −14→13

2,4-Dimethoxybenzaldehyde oxime (3). Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0775P)2 + 0.1273P] where P = (Fo2 + 2Fc2)/3
S = 0.88 (Δ/σ)max < 0.001
1594 reflections Δρmax = 0.20 e Å3
124 parameters Δρmin = −0.19 e Å3

2,4-Dimethoxybenzaldehyde oxime (3). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2,4-Dimethoxybenzaldehyde oxime (3). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O13 −0.22417 (16) 0.06653 (12) 0.08642 (7) 0.0311 (2)
O21 0.29524 (16) 0.56560 (10) 0.41358 (7) 0.0261 (2)
O41 1.14895 (16) 0.88605 (11) 0.31075 (7) 0.0273 (2)
N12 0.05891 (19) 0.17759 (13) 0.09919 (8) 0.0255 (3)
C1 0.3951 (2) 0.45758 (15) 0.22073 (10) 0.0231 (3)
C2 0.4791 (2) 0.58860 (15) 0.33490 (9) 0.0228 (3)
C3 0.7331 (2) 0.72870 (15) 0.36234 (9) 0.0237 (3)
H3 0.789071 0.815115 0.439846 0.028*
C4 0.9063 (2) 0.74213 (15) 0.27541 (10) 0.0238 (3)
C5 0.8276 (2) 0.61490 (15) 0.16177 (10) 0.0247 (3)
H5 0.945380 0.624026 0.102665 0.030*
C6 0.5741 (2) 0.47475 (15) 0.13657 (10) 0.0245 (3)
H6 0.520758 0.387495 0.059294 0.029*
C11 0.1194 (2) 0.31641 (15) 0.19252 (10) 0.0242 (3)
H11 −0.017316 0.328624 0.244952 0.029*
C21 0.3513 (2) 0.70704 (15) 0.52560 (9) 0.0281 (3)
H21A 0.196509 0.679099 0.571095 0.042*
H21B 0.364539 0.821605 0.514202 0.042*
H21C 0.531398 0.717369 0.568289 0.042*
C41 1.3260 (2) 0.90933 (16) 0.22272 (10) 0.0278 (3)
H41A 1.490351 1.018155 0.257704 0.042*
H41B 1.216391 0.922054 0.158580 0.042*
H41C 1.392155 0.803696 0.191690 0.042*
H13 −0.235 (4) −0.031 (2) 0.0244 (16) 0.049 (5)*

2,4-Dimethoxybenzaldehyde oxime (3). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O13 0.0234 (4) 0.0320 (5) 0.0287 (5) −0.0008 (3) 0.0076 (3) 0.0062 (4)
O21 0.0251 (4) 0.0298 (4) 0.0202 (4) 0.0037 (3) 0.0072 (3) 0.0081 (3)
O41 0.0227 (4) 0.0309 (5) 0.0241 (4) 0.0022 (3) 0.0068 (3) 0.0089 (3)
N12 0.0212 (5) 0.0278 (5) 0.0252 (5) 0.0032 (4) 0.0044 (4) 0.0100 (4)
C1 0.0229 (6) 0.0248 (6) 0.0230 (6) 0.0079 (4) 0.0033 (4) 0.0099 (4)
C2 0.0222 (5) 0.0285 (6) 0.0216 (6) 0.0092 (4) 0.0060 (4) 0.0123 (5)
C3 0.0235 (6) 0.0279 (6) 0.0196 (5) 0.0072 (5) 0.0034 (4) 0.0086 (4)
C4 0.0198 (6) 0.0269 (6) 0.0257 (6) 0.0063 (4) 0.0029 (4) 0.0114 (5)
C5 0.0236 (6) 0.0306 (6) 0.0229 (6) 0.0100 (5) 0.0077 (4) 0.0113 (5)
C6 0.0252 (6) 0.0271 (6) 0.0208 (5) 0.0083 (5) 0.0036 (4) 0.0077 (4)
C11 0.0242 (6) 0.0288 (6) 0.0221 (6) 0.0080 (5) 0.0058 (4) 0.0118 (4)
C21 0.0295 (6) 0.0324 (6) 0.0195 (6) 0.0065 (5) 0.0077 (4) 0.0075 (5)
C41 0.0250 (6) 0.0333 (6) 0.0258 (6) 0.0059 (5) 0.0085 (4) 0.0131 (5)

2,4-Dimethoxybenzaldehyde oxime (3). Geometric parameters (Å, º)

O13—N12 1.4112 (12) C3—H3 0.9500
O13—H13 0.893 (18) C4—C5 1.3939 (16)
O21—C2 1.3648 (13) C5—C6 1.3869 (16)
O21—C21 1.4294 (13) C5—H5 0.9500
O41—C4 1.3632 (13) C6—H6 0.9500
O41—C41 1.4339 (13) C11—H11 0.9500
N12—C11 1.2728 (15) C21—H21A 0.9800
C1—C6 1.3931 (16) C21—H21B 0.9800
C1—C2 1.4107 (15) C21—H21C 0.9800
C1—C11 1.4634 (15) C41—H41A 0.9800
C2—C3 1.3864 (16) C41—H41B 0.9800
C3—C4 1.3971 (16) C41—H41C 0.9800
N12—O13—H13 103.5 (11) C1—C6—C5 122.23 (10)
C2—O21—C21 117.44 (8) C1—C6—H6 118.9
C4—O41—C41 116.82 (9) C5—C6—H6 118.9
C11—N12—O13 111.40 (9) N12—C11—C1 121.37 (10)
C6—C1—C2 117.84 (10) N12—C11—H11 119.3
C6—C1—C11 122.31 (10) C1—C11—H11 119.3
C2—C1—C11 119.74 (10) O21—C21—H21A 109.5
O21—C2—C3 123.79 (10) O21—C21—H21B 109.5
O21—C2—C1 115.34 (10) H21A—C21—H21B 109.5
C3—C2—C1 120.88 (10) O21—C21—H21C 109.5
C2—C3—C4 119.64 (10) H21A—C21—H21C 109.5
C2—C3—H3 120.2 H21B—C21—H21C 109.5
C4—C3—H3 120.2 O41—C41—H41A 109.5
O41—C4—C3 115.11 (10) O41—C41—H41B 109.5
O41—C4—C5 124.27 (10) H41A—C41—H41B 109.5
C3—C4—C5 120.62 (10) O41—C41—H41C 109.5
C6—C5—C4 118.78 (10) H41A—C41—H41C 109.5
C6—C5—H5 120.6 H41B—C41—H41C 109.5
C4—C5—H5 120.6
C21—O21—C2—C3 8.36 (15) C2—C3—C4—O41 179.03 (9)
C21—O21—C2—C1 −171.96 (9) C2—C3—C4—C5 −0.70 (17)
C6—C1—C2—O21 179.72 (9) O41—C4—C5—C6 −179.69 (9)
C11—C1—C2—O21 3.38 (15) C3—C4—C5—C6 0.01 (17)
C6—C1—C2—C3 −0.59 (16) C2—C1—C6—C5 −0.11 (17)
C11—C1—C2—C3 −176.93 (9) C11—C1—C6—C5 176.12 (9)
O21—C2—C3—C4 −179.34 (9) C4—C5—C6—C1 0.40 (17)
C1—C2—C3—C4 1.00 (16) O13—N12—C11—C1 −175.95 (9)
C41—O41—C4—C3 −177.21 (9) C6—C1—C11—N12 17.32 (17)
C41—O41—C4—C5 2.51 (16) C2—C1—C11—N12 −166.51 (10)

2,4-Dimethoxybenzaldehyde oxime (3). Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
O13—H13···N12i 0.893 (18) 1.995 (19) 2.8124 (13) 151.5 (15)
C41—H41A···O13ii 0.98 2.63 3.0680 (15) 107
C41—H41C···Cg1iii 0.98 2.60 3.4479 (13) 144

Symmetry codes: (i) −x, −y, −z; (ii) x+2, y+1, z; (iii) x+1, y, z.

2,5-Dimethoxybenzaldehyde oxime (4). Crystal data

C9H11NO3 F(000) = 768
Mr = 181.19 Dx = 1.348 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71075 Å
a = 7.6480 (1) Å Cell parameters from 21005 reflections
b = 21.3380 (4) Å θ = 2.1–32.1°
c = 10.9421 (2) Å µ = 0.10 mm1
β = 90.555 (2)° T = 100 K
V = 1785.59 (5) Å3 Block, colourless
Z = 8 0.20 × 0.15 × 0.13 mm

2,5-Dimethoxybenzaldehyde oxime (4). Data collection

Rigaku FRE+ equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HyPix 6000 detector diffractometer 4082 independent reflections
Radiation source: Rotating Anode, Rigaku FRE+ 3761 reflections with I > 2σ(I)
Confocal mirrors, VHF Varimax monochromator Rint = 0.020
Detector resolution: 10 pixels mm-1 θmax = 27.5°, θmin = 1.9°
profile data from ω–scans h = −9→9
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2017) k = −27→27
Tmin = 0.935, Tmax = 1.000 l = −14→14
38753 measured reflections

2,5-Dimethoxybenzaldehyde oxime (4). Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.5056P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
4082 reflections Δρmax = 0.32 e Å3
247 parameters Δρmin = −0.19 e Å3

2,5-Dimethoxybenzaldehyde oxime (4). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2,5-Dimethoxybenzaldehyde oxime (4). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O121 1.05737 (9) 0.46081 (3) 0.23188 (6) 0.01640 (15)
O221 0.33772 (9) 0.09728 (3) 0.32374 (6) 0.01705 (15)
O151 0.88735 (9) 0.21358 (3) 0.13343 (6) 0.01629 (14)
O213 0.63115 (9) 0.03239 (3) 0.60782 (6) 0.01852 (15)
H213 0.6028 (19) −0.0064 (7) 0.5898 (13) 0.036 (4)*
O251 0.47197 (9) 0.34248 (3) 0.46029 (6) 0.01810 (15)
O113 0.84907 (9) 0.45697 (3) 0.56752 (6) 0.01890 (15)
H113 0.905 (2) 0.4914 (7) 0.5868 (13) 0.036 (4)*
N112 0.92134 (10) 0.44408 (4) 0.45300 (7) 0.01543 (16)
N212 0.53640 (10) 0.06589 (4) 0.51894 (7) 0.01507 (16)
C11 0.92057 (11) 0.36690 (4) 0.29191 (8) 0.01265 (17)
C12 1.01564 (11) 0.40037 (4) 0.20387 (8) 0.01345 (17)
C13 1.06269 (12) 0.37068 (4) 0.09534 (8) 0.01520 (18)
H13 1.125790 0.393201 0.035247 0.018*
C14 1.01792 (11) 0.30839 (4) 0.07452 (8) 0.01529 (18)
H14 1.051935 0.288508 0.000789 0.018*
C15 0.92359 (11) 0.27498 (4) 0.16103 (8) 0.01354 (17)
C16 0.87441 (11) 0.30442 (4) 0.26854 (8) 0.01321 (17)
H16 0.808499 0.281887 0.327125 0.016*
C21 0.47308 (11) 0.17198 (4) 0.45403 (8) 0.01312 (17)
C22 0.36691 (11) 0.15892 (4) 0.35049 (8) 0.01327 (17)
C23 0.29914 (11) 0.20820 (4) 0.28236 (8) 0.01541 (18)
H23 0.229476 0.199464 0.212053 0.018*
C24 0.33136 (12) 0.27053 (4) 0.31516 (8) 0.01597 (18)
H24 0.284202 0.303707 0.267240 0.019*
C25 0.43233 (11) 0.28369 (4) 0.41782 (8) 0.01448 (18)
C26 0.50301 (11) 0.23437 (4) 0.48551 (8) 0.01430 (17)
H26 0.573634 0.243537 0.555138 0.017*
C111 0.86582 (11) 0.39220 (4) 0.40987 (8) 0.01383 (17)
H111 0.784786 0.368751 0.456649 0.017*
C121 1.16522 (14) 0.49466 (5) 0.14906 (9) 0.0233 (2)
H12A 1.188699 0.536566 0.181970 0.035*
H12B 1.105118 0.498388 0.069891 0.035*
H12C 1.275896 0.472247 0.138464 0.035*
C151 0.79088 (13) 0.17920 (4) 0.22231 (9) 0.01864 (19)
H15A 0.769266 0.136629 0.192162 0.028*
H15B 0.679003 0.200181 0.236846 0.028*
H15C 0.858216 0.177225 0.298868 0.028*
C211 0.55768 (11) 0.12487 (4) 0.53198 (8) 0.01470 (18)
H211 0.632715 0.139016 0.595943 0.018*
C221 0.24158 (15) 0.08339 (5) 0.21389 (9) 0.0238 (2)
H22A 0.233090 0.037865 0.203679 0.036*
H22B 0.302042 0.101530 0.143698 0.036*
H22C 0.123897 0.101296 0.219223 0.036*
C251 0.41248 (14) 0.39453 (4) 0.38939 (9) 0.0225 (2)
H25A 0.453866 0.433561 0.426991 0.034*
H25B 0.284384 0.394557 0.386171 0.034*
H25C 0.458345 0.391238 0.306319 0.034*

2,5-Dimethoxybenzaldehyde oxime (4). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O121 0.0203 (3) 0.0116 (3) 0.0174 (3) −0.0029 (2) 0.0052 (2) −0.0001 (2)
O221 0.0220 (3) 0.0133 (3) 0.0157 (3) −0.0018 (2) −0.0063 (2) −0.0012 (2)
O151 0.0188 (3) 0.0128 (3) 0.0173 (3) −0.0015 (2) 0.0015 (2) −0.0033 (2)
O213 0.0230 (3) 0.0136 (3) 0.0189 (3) 0.0017 (3) −0.0077 (3) 0.0021 (2)
O251 0.0208 (3) 0.0111 (3) 0.0223 (3) −0.0006 (2) −0.0048 (3) 0.0004 (2)
O113 0.0263 (4) 0.0160 (3) 0.0145 (3) −0.0053 (3) 0.0077 (3) −0.0043 (2)
N112 0.0186 (4) 0.0148 (4) 0.0129 (3) −0.0001 (3) 0.0039 (3) −0.0015 (3)
N212 0.0165 (4) 0.0146 (4) 0.0140 (4) 0.0020 (3) −0.0027 (3) 0.0020 (3)
C11 0.0114 (4) 0.0128 (4) 0.0137 (4) 0.0010 (3) −0.0013 (3) −0.0004 (3)
C12 0.0123 (4) 0.0122 (4) 0.0158 (4) 0.0007 (3) −0.0006 (3) 0.0003 (3)
C13 0.0151 (4) 0.0163 (4) 0.0142 (4) 0.0007 (3) 0.0015 (3) 0.0019 (3)
C14 0.0152 (4) 0.0173 (4) 0.0133 (4) 0.0021 (3) 0.0003 (3) −0.0024 (3)
C15 0.0116 (4) 0.0126 (4) 0.0164 (4) 0.0013 (3) −0.0030 (3) −0.0015 (3)
C16 0.0117 (4) 0.0133 (4) 0.0146 (4) 0.0001 (3) −0.0004 (3) 0.0010 (3)
C21 0.0125 (4) 0.0141 (4) 0.0128 (4) −0.0005 (3) 0.0012 (3) 0.0007 (3)
C22 0.0126 (4) 0.0133 (4) 0.0139 (4) −0.0012 (3) 0.0012 (3) −0.0007 (3)
C23 0.0140 (4) 0.0175 (4) 0.0147 (4) 0.0001 (3) −0.0017 (3) −0.0001 (3)
C24 0.0145 (4) 0.0153 (4) 0.0180 (4) 0.0020 (3) −0.0010 (3) 0.0026 (3)
C25 0.0128 (4) 0.0127 (4) 0.0179 (4) −0.0009 (3) 0.0017 (3) −0.0003 (3)
C26 0.0133 (4) 0.0159 (4) 0.0137 (4) −0.0010 (3) −0.0008 (3) −0.0002 (3)
C111 0.0139 (4) 0.0135 (4) 0.0141 (4) −0.0004 (3) 0.0016 (3) 0.0010 (3)
C121 0.0312 (5) 0.0160 (4) 0.0228 (5) −0.0063 (4) 0.0096 (4) 0.0015 (4)
C151 0.0245 (5) 0.0131 (4) 0.0183 (4) −0.0024 (3) 0.0002 (4) −0.0005 (3)
C211 0.0145 (4) 0.0160 (4) 0.0135 (4) −0.0011 (3) −0.0018 (3) −0.0005 (3)
C221 0.0321 (5) 0.0188 (4) 0.0204 (5) −0.0043 (4) −0.0119 (4) −0.0020 (4)
C251 0.0280 (5) 0.0131 (4) 0.0263 (5) 0.0018 (4) −0.0035 (4) 0.0027 (4)

2,5-Dimethoxybenzaldehyde oxime (4). Geometric parameters (Å, º)

O121—C12 1.3628 (10) C21—C26 1.3935 (12)
O121—C121 1.4275 (11) C21—C22 1.4151 (12)
O221—C22 1.3653 (10) C21—C211 1.4651 (12)
O221—C221 1.4339 (11) C22—C23 1.3866 (12)
O151—C15 1.3721 (10) C23—C24 1.3988 (12)
O151—C151 1.4291 (11) C23—H23 0.9500
O213—N212 1.4029 (9) C24—C25 1.3858 (12)
O213—H213 0.877 (15) C24—H24 0.9500
O251—C25 1.3706 (10) C25—C26 1.3929 (12)
O251—C251 1.4268 (11) C26—H26 0.9500
O113—N112 1.4017 (9) C111—H111 0.9500
O113—H113 0.875 (16) C121—H12A 0.9800
N112—C111 1.2747 (11) C121—H12B 0.9800
N212—C211 1.2767 (12) C121—H12C 0.9800
C11—C16 1.4020 (12) C151—H15A 0.9800
C11—C12 1.4072 (12) C151—H15B 0.9800
C11—C111 1.4639 (12) C151—H15C 0.9800
C12—C13 1.3962 (12) C211—H211 0.9500
C13—C14 1.3908 (12) C221—H22A 0.9800
C13—H13 0.9500 C221—H22B 0.9800
C14—C15 1.3921 (12) C221—H22C 0.9800
C14—H14 0.9500 C251—H25A 0.9800
C15—C16 1.3887 (12) C251—H25B 0.9800
C16—H16 0.9500 C251—H25C 0.9800
C12—O121—C121 118.13 (7) C23—C24—H24 120.1
C22—O221—C221 117.40 (7) O251—C25—C24 125.45 (8)
C15—O151—C151 116.42 (7) O251—C25—C26 115.32 (8)
N212—O213—H213 101.5 (10) C24—C25—C26 119.23 (8)
C25—O251—C251 117.38 (7) C25—C26—C21 121.89 (8)
N112—O113—H113 100.6 (10) C25—C26—H26 119.1
C111—N112—O113 111.63 (7) C21—C26—H26 119.1
C211—N212—O213 111.12 (7) N112—C111—C11 123.34 (8)
C16—C11—C12 119.24 (8) N112—C111—H111 118.3
C16—C11—C111 115.96 (8) C11—C111—H111 118.3
C12—C11—C111 124.79 (8) O121—C121—H12A 109.5
O121—C12—C13 123.99 (8) O121—C121—H12B 109.5
O121—C12—C11 116.60 (8) H12A—C121—H12B 109.5
C13—C12—C11 119.41 (8) O121—C121—H12C 109.5
C14—C13—C12 120.53 (8) H12A—C121—H12C 109.5
C14—C13—H13 119.7 H12B—C121—H12C 109.5
C12—C13—H13 119.7 O151—C151—H15A 109.5
C13—C14—C15 120.42 (8) O151—C151—H15B 109.5
C13—C14—H14 119.8 H15A—C151—H15B 109.5
C15—C14—H14 119.8 O151—C151—H15C 109.5
O151—C15—C16 124.23 (8) H15A—C151—H15C 109.5
O151—C15—C14 116.36 (8) H15B—C151—H15C 109.5
C16—C15—C14 119.40 (8) N212—C211—C21 123.80 (8)
C15—C16—C11 120.99 (8) N212—C211—H211 118.1
C15—C16—H16 119.5 C21—C211—H211 118.1
C11—C16—H16 119.5 O221—C221—H22A 109.5
C26—C21—C22 118.53 (8) O221—C221—H22B 109.5
C26—C21—C211 116.18 (8) H22A—C221—H22B 109.5
C22—C21—C211 125.29 (8) O221—C221—H22C 109.5
O221—C22—C23 123.76 (8) H22A—C221—H22C 109.5
O221—C22—C21 116.92 (8) H22B—C221—H22C 109.5
C23—C22—C21 119.32 (8) O251—C251—H25A 109.5
C22—C23—C24 121.27 (8) O251—C251—H25B 109.5
C22—C23—H23 119.4 H25A—C251—H25B 109.5
C24—C23—H23 119.4 O251—C251—H25C 109.5
C25—C24—C23 119.74 (8) H25A—C251—H25C 109.5
C25—C24—H24 120.1 H25B—C251—H25C 109.5
C121—O121—C12—C13 −4.21 (13) C211—C21—C22—O221 1.91 (13)
C121—O121—C12—C11 175.24 (8) C26—C21—C22—C23 1.31 (12)
C16—C11—C12—O121 −179.74 (7) C211—C21—C22—C23 −177.99 (8)
C111—C11—C12—O121 −0.50 (13) O221—C22—C23—C24 179.06 (8)
C16—C11—C12—C13 −0.26 (13) C21—C22—C23—C24 −1.05 (13)
C111—C11—C12—C13 178.98 (8) C22—C23—C24—C25 −0.22 (13)
O121—C12—C13—C14 178.77 (8) C251—O251—C25—C24 −3.63 (13)
C11—C12—C13—C14 −0.67 (13) C251—O251—C25—C26 175.86 (8)
C12—C13—C14—C15 0.80 (13) C23—C24—C25—O251 −179.32 (8)
C151—O151—C15—C16 0.74 (12) C23—C24—C25—C26 1.21 (13)
C151—O151—C15—C14 179.85 (8) O251—C25—C26—C21 179.53 (8)
C13—C14—C15—O151 −179.15 (8) C24—C25—C26—C21 −0.94 (13)
C13—C14—C15—C16 0.01 (13) C22—C21—C26—C25 −0.32 (13)
O151—C15—C16—C11 178.13 (8) C211—C21—C26—C25 179.03 (8)
C14—C15—C16—C11 −0.95 (13) O113—N112—C111—C11 −179.60 (8)
C12—C11—C16—C15 1.08 (13) C16—C11—C111—N112 168.18 (8)
C111—C11—C16—C15 −178.23 (8) C12—C11—C111—N112 −11.08 (14)
C221—O221—C22—C23 4.54 (13) O213—N212—C211—C21 −178.99 (8)
C221—O221—C22—C21 −175.35 (8) C26—C21—C211—N212 176.46 (8)
C26—C21—C22—O221 −178.79 (8) C22—C21—C211—N212 −4.24 (14)

2,5-Dimethoxybenzaldehyde oxime (4). Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.

D—H···A D—H H···A D···A D—H···A
O113—H113···O121i 0.875 (16) 2.247 (15) 2.8944 (9) 130.7 (12)
O113—H113···N112i 0.875 (16) 1.965 (16) 2.7567 (10) 149.9 (13)
O213—H213···O221ii 0.877 (15) 2.204 (15) 2.8758 (9) 133.1 (12)
O213—H213···N212ii 0.877 (15) 2.034 (15) 2.8160 (10) 147.9 (13)
C111—H111···O251 0.95 2.46 3.2458 (11) 140
C121—H12C···N212iii 0.98 2.53 3.4400 (13) 155
C151—H15A···O113iv 0.98 2.50 3.3947 (11) 152
C14—H14···Cg2iii 0.95 2.98 3.6656 (9) 130
C151—H15B···Cg2 0.98 2.72 3.5973 (10) 149
C24—H24···Cg1v 0.95 2.67 3.4281 (10) 137
C211—H211···Cg1vi 0.95 2.78 3.6272 (9) 149

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y, −z+1; (iii) x+1, −y+1/2, z−1/2; (iv) x, −y+1/2, z−1/2; (v) x−1, y, z; (vi) x, −y+1/2, z+1/2.

References

  1. Aakeröy, C. B., Sinha, A. S., Epa, K. N., Chopade, P. D., Smith, M. M. & Desper, J. (2013). Cryst. Growth Des. 13, 2687–2695.
  2. Abele, E., Abele, R. & Lukevics, E. (2008). Chem. Heterocycl. Cmpds, 44, 769–792.
  3. Canario, C., Silvestre, S., Falcao, A. & Alves, G. (2018). Curr. Med. Chem. 25, 660–686. [DOI] [PubMed]
  4. Chang, X.-H. (2006). Acta Cryst. E62, o5699–o5700.
  5. Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.
  6. Dai, H., Chen, J., Li, G., Ge, S. S., Shi, Y. J., Fang, Y. & Ling, Y. (2017). Bioorg. Med. Chem. Lett. 27, 950–953. [DOI] [PubMed]
  7. Dong, B., Zhang, Y. & Chen, J.-Z. (2010). Acta Cryst. E66, o2719. [DOI] [PMC free article] [PubMed]
  8. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  9. Gomes, L. R., de Souza, M. V. N., Da Costa, C. F., Wardell, J. L. & Low, J. N. (2018). Acta Cryst. E74, 1480–1485. [DOI] [PMC free article] [PubMed]
  10. Govindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2012a). Acta Cryst. E68, o484. [DOI] [PMC free article] [PubMed]
  11. Govindan, S., Vijayakumar, S., Jayakumar, S., Mannickam, B. & Sanmargam, A. (2012b). Acta Cryst. E68, o596. [DOI] [PMC free article] [PubMed]
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Huang, G., Zhao, H. R., Meng, Q. Q., Zhang, Q. J., Dong, J. Y., Zhu, B. Q. & Li, S. S. (2018). Eur. J. Med. Chem. 143, 166–181. [DOI] [PubMed]
  14. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  15. Katalinić, M., Zandona, A., Ramić, A., Zorbaz, T., Primožic, I. & Kovarik, Z. (2017). Molecules, 22, 1234. [DOI] [PMC free article] [PubMed]
  16. Kozłowska, J., Potaniec, B., Żarowska, B. & Anioł, M. (2017). Molecules, 22, 1485. [DOI] [PMC free article] [PubMed]
  17. Lorke, D. E., Kalasz, H., Petroianu, G. A. & Tekes, K. (2008). Curr. Med. Chem. 15, 743–753. [DOI] [PubMed]
  18. Low, J. N., Santos, L. M. N. B. F., Lima, C. F. R. A. C., Brandão, P. & Gomes, L. R. (2010). Eur. J. Chem. 1, 61–66.
  19. Low, J. N., Wardell, J. L., Da Costa, C. F., Souza, M. V. N. & Gomes, L. R. (2018). Eur. J. Chem. 9, 151–160.
  20. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  21. Martínez-Pascual, R., Meza-Reyes, S., Vega-Baez, J. L., Merino-Montiel, P., Padrón, J. M., Mendoza, Á. & Montiel-Smith, S. (2017). Steroids, 122, 24–33. [DOI] [PubMed]
  22. McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303–309.
  23. Mohassab, M., Hassan, H. A., Abdelhamid, D., Abdel-Aziz, M., Dalby, K. N. & Kaoud, T. S. (2017). Bioorg. Chem. 75, 242–259. [DOI] [PubMed]
  24. Nikitjuka, A. & Jirgensons, A. (2014). Chem. Heterocycl. Cmpd, 49, 1544–1559.
  25. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  26. Priya, B. S., Basappa, S. N., Anandalwar, S. M., Prasad, J. S. & Rangappa, K. S. (2006). Anal. Sci.:X-Ray Structures Online, 22, x161–x162.
  27. Qin, H. L., Leng, J., Youssif, B. G. M., Amjad, M. W., Raja, M. A. G., Hussain, M. A., Hussain, Z., Kazmi, S. N. & Bukhari, S. N. A. (2017). Chem. Biol. Drug Des. 90, 443–449. [DOI] [PubMed]
  28. Radić, Z., Dale, T., Kovarik, Z., Berend, S., Garcia, E., Zhang, L., Amitai, G., Green, C., Radić, B., Duggan, B. M., Ajami, D., Rebek, J. Jr & Taylor, P. (2013). Biochem. J. 450, 231–242. [DOI] [PMC free article] [PubMed]
  29. Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  30. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  31. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  32. Sørensen, M., Neilson, E. H. J. & Møller, B. L. (2018). Mol. Plant. 11, 95–117. [DOI] [PubMed]
  33. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  34. Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
  35. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  36. Suresh, G., Sabari, V., Srinivasan, J., Mannickam, B. & Aravindhan, S. (2012). Acta Cryst. E68, o570. [DOI] [PMC free article] [PubMed]
  37. Voicu, V. A., Thiermann, H., Rădulescu, F. Ş., Mircioiu, C. & Miron, D. S. (2010). Basic Clin. Pharmacol. Toxicol. 106, 73–85. [DOI] [PubMed]
  38. Wolff, S. K., Grimwood, D. I., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.
  39. Yadav, P., Lal, K., Rani, P., Mor, S., Kumar, A. & Kumar, A. (2017). Med. Chem. Res. 26, 1469–1480.
  40. Zhao, S. Y., Li, K., Jin, Y. & Lin, J. (2018). Eur. J. Med. Chem. 144, 41–51. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2, 3, 4, global. DOI: 10.1107/S2056989018014020/qm2129sup1.cif

e-74-01553-sup1.cif (2MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989018014020/qm21291sup2.hkl

e-74-01553-1sup2.hkl (108.9KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989018014020/qm21292sup3.hkl

e-74-01553-2sup3.hkl (128.8KB, hkl)

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989018014020/qm21293sup4.hkl

e-74-01553-3sup4.hkl (128.5KB, hkl)

Structure factors: contains datablock(s) 4. DOI: 10.1107/S2056989018014020/qm21294sup5.hkl

e-74-01553-4sup5.hkl (325.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018014020/qm21291sup6.cml

Supporting information file. DOI: 10.1107/S2056989018014020/qm21292sup7.cml

Supporting information file. DOI: 10.1107/S2056989018014020/qm21293sup8.cml

Supporting information file. DOI: 10.1107/S2056989018014020/qm21294sup9.cml

CCDC references: 1871165, 1871164, 1871163, 1871162

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES