Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Oct 26;74(Pt 11):1658–1664. doi: 10.1107/S2056989018014895

Synthesis and structural characterization of four di­chlorido­bis­(cyclo­propyl­alkynyl­amidine)­metal complexes

Sida Wang a, Phil Liebing a, Felix Engelhardt a, Liane Hilfert a, Sabine Busse a, Frank T Edelmann a,*
PMCID: PMC6218897  PMID: 30443401

Transition-metal amidine complexes of the type MCl2[c-C3H5—C≡C—C(NR′)(NHR′)]2 (M = Mn, Fe, Co) are readily available by a two-step synthesis starting from cyclo­proplacetyl­ene.

Keywords: amidinate ligand, amidine, manganese, iron, cobalt, crystal structure, hydrogen bonding

Abstract

Deliberate hydrolysis of lithium cyclo­propyl­alkynylamidinates, Li[c-C3H5—C≡C(NR′)2] [R′ = iPr, Cy = cyclo­hex­yl)], afforded the hitherto unknown neutral cyclo­propyl­alkynyl­amidine derivatives c-C3H5—C≡C—C(NR′)(NHR′) [R′ = iPr (1), Cy (2)]. Subsequent reactions of 1 or 2 with metal(II) chlorides, MCl2 (M = Mn, Fe, Co), provided the title complexes di­chlorido­bis­(3-cyclo­propyl-N,N′-diisopropyl­prop-2-ynamidine)­manganese(II), [MnCl2(C12H20N2)2], (3), di­chlorido­bis­(3-cyclo­propyl-N,N′-diisopropyl­prop-2-ynamidine)­iron(II), [FeCl2(C12H20N2)2], (4), di­chlorido­bis­(N,N′-di­cyclo­hexyl-3-cyclo­propyl­prop-2-ynamidine)­iron(II), [FeCl2(C18H28N2)2], (5), and di­chlorido­bis­(N,N′-di­cyclo­hexyl-3-cyclo­propyl­prop-2-ynamidine)­cobalt(II), [CoCl2(C18H28N2)2], (6), or more generally MCl2[c-C3H5—C≡C—C(NR′)(NHR′)]2 [R′ = iPr, M = Mn (3), Fe (4); R′ = Cy, M = Fe (5), Co (6)] in moderate yields (30–39%). Besides their spectroscopic data (IR and MS) and elemental analyses, all complexes 36 were structurally characterized. The two isopropyl-substituted complexes 3 and 4 are isotypic, and so are the cyclo­hexyl-substituted complexes 5 and 6. In all cases, the central metal atom is coordinated by two Cl atoms and two N atoms in a distorted-tetra­hedral fashion, and the structure is supported by intra­molecular N—H⋯Cl hydrogen bonds.

Chemical context  

Over the past three decades, chelating anionic 1,3-di­aza­allyl-type ligands such as amidinates, [RC(NR′)2], and guanidin­ates, [R 2NC(NR′)2], have gained tremendous importance in various fields of organometallic and coordination chemistry. These highly versatile N-chelating ligands are generally regarded as steric equivalents of the ubiquitous cyclo­penta­dienyl ligands (Collins, 2011; Edelmann, 2009, 2012, 2013). Unlike the closely related carboxyl­ate anions, [RCO2], the steric properties of amidinate anions can be tuned in a wide range by introducing different substituents at all three atoms of the NCN 1,3-di­aza­allyl unit. A rather inter­esting and potentially useful variation of the amidinate group is the use of alkinyl groups at the central C atom. Alkinyl­amidines of the composition RC≡C—C(=NR′)(NR′) are of inter­est because of their applications in organic synthesis (Ong et al., 2006; Xu et al., 2008; Weingärtner & Maas, 2012) and in biological and pharmacological systems (Rowley et al., 2005; Sienkiewicz et al., 2005). Moreover, alkinylamidinate complexes of transition metals and lanthanides effectively catalyze the addition of C—H, N—H and P—H bonds to carbodi­imides as well as the polymerization of polar monomers such as -caprolactone. Previously used alkynylamidinate anions have mainly included the C-phenyl and C-tri­methyl­silyl derivatives [R—C≡C—C(NR′)2] (R = Ph, SiMe3; R′ = iPr, Cy; Dröse et al., 2010a,b ; Seidel et al., 2012; Xu et al., 2013).

We recently began with an investigation of alkinylamidinate ligands and complexes derived from cyclo­propyl­acetyl­ene. The cyclo­propyl group was selected because of its well-established electron-donating ability to an adjacent electron-deficient center. This way it is possible to electronically modify the amidinate ligand system rather than just changing its steric demand. In a first study, we described the synthesis and characterization of a series of lithium cyclo­propyl­ethinyl­amidinates, Li[c-C3H5—C≡C—C(NR′)2] [R′ = iPr, Cy (= cyclo­hex­yl)], which are readily accessible on a large scale using commercially available starting materials (cyclo­propyl­acetyl­ene, N,N′-diorganocarbodi­imides; Sroor et al., 2013). Subsequently, these ligands have been employed for the preparation of new di- and trivalent lanthanide complexes (Sroor et al., 2015a ,b ,c ,d , 2016; Wang et al., 2016). More recently, we became inter­ested in the chemistry of 3d metal complexes containing cyclo­propyl­ethinylamidinate ligands. In the course of this work, we occasionally observed and structurally characterized hydrolysis products of the composition MCl2[c-C3H5—C≡C—C(NR′)(NHR′)] (M = Mn, Fe, Co; R′ = iPr, Cy), which contain the neutral amidines c-C3H5-C≡C—C(NR′)(NHR′) as new ligands. Neutral amidines are highly versatile ligands in coordination chemistry in their own right (Barker & Kilner, 1994; Coles, 2006). We report here the deliberate synthesis of two new cylo­propyl­alkynyl­amidines, c-C3H5—C≡C—C(NR′)(NHR′) (R′ = iPr, Cy) as well as the preparation and structural characterization of four first-row transition metal complexes of the type MCl2[c-C3H5—C≡C—C(NR′)(NHR′)] (M = Mn, Fe, Co; R′ = iPr, Cy).

The title compounds were first discovered serendipitously when studying reactions of anhydrous metal(II) chlorides MCl2 (M = Mn, Fe, Co) with 2 equiv. of the lithium cyclo­propyl­ethinylamidinates, Li[c-C3H5—C≡C—C(NR′)2] (R′ = iPr, Cy) in THF solution. Occasionally, small amounts of well-formed crystals were obtained, which turned out (by X-ray diffraction studies) to be the aforementioned hydrolysis products MCl2[c-C3H5—C≡C—C(NR′)(NHR′)] (M = Mn, Fe, Co; R′ = iPr, Cy). We then decided to prepare these complexes in a deliberate manner. As illustrated in Fig. 1, the bottom-up synthesis starts with the readily available lithium cyclo­propyl­ethinylamidinates, Li[c-C3H5—C≡C—C(NR′)2] (R′ = iPr, Cy; Sroor et al., 2013), which were made by addition of c-C3H5—C≡C—Li (prepared in situ from cyclo­propyl­acetyl­ene and nBuLi) to the carbodiimides R′—N=C=N—R′ (R = iPr, Cy). The lithium amidinate inter­mediates were then carefully hydrolyzed under controlled conditions to afford the neutral amidines c-C3H5—C≡C—C(NR′)(NHR′) [R′ = iPr (1), Cy (2)] in >70% isolated yields. Both compounds form yellow oils, which were characterized by the usual set of spectroscopic data (MS, 1H NMR, 13C NMR, IR) and elemental analysis. With the free amidine ligands in hand, the metal complexes with first-row transition metals could easily be prepared by treatment of metal(II) chlorides MCl2 (M = Mn, Fe, Co) with 2 equiv. of either 1 or 2 in THF solution. The manganese(II) complex 3 as well as the two iron(II) complexes 4 and 5 form colourless crystals, while the cobalt(II) complex 6 is blue. The compositions of all four products as 1:2 complexes were confirmed by elemental analyses. The title compounds 36 were also characterized by their IR and mass spectra. The mass spectra showed a number of readily inter­pretable peaks resulting e.g. from loss of one amidine ligand or one or both chlorine atoms. IR bands in the region above ca 3100 cm−1 could be assigned to the ν(N—H) vibrations, while strong bands around 1570 cm−1 were characteristic for the C=N double bond in the amidine ligands. In the far-infrared region, the M—Cl bands could be clearly assigned by comparison with literature values (Clark & Williams, 1965; Takemoto et al., 1974) and IR spectra of the respective anhydrous metal(II) chlorides, MCl2 (M = Mn, Fe, Co; for details see the Synthesis and crystallization section).graphic file with name e-74-01658-scheme1.jpg

Figure 1.

Figure 1

Bottom-up synthesis of the title compounds 36 starting from cyclo­propyl­acetyl­ene.

Structural commentary  

MnCl2[c-C3H5—C≡C—C(NiPr)(NHiPr)]2 (3; Fig. 2) and FeCl2 [c-C3H5—C≡C—C(NiPr)(NHiPr)]2 (4; Fig. 3) crystallize isotypic­ally in the ortho­rhom­bic space group Fdd2. The metal atom is situated on a crystallographic twofold axis and is surrounded by two symmetry-equivalent chlorido ligands and two symmetry-equivalent amidine ligands. The latter are attached to the metal atom in a monodentate κN mode via the non-protonated nitro­gen atom (N1). The N—H moiety is involved in an intra­molecular N—H⋯Cl bond (Tables 1 and 2). The crystal structures of FeCl2[c-C3H5—C≡C—C(NCy)(NHCy)]2 (5; Fig. 4) and CoCl2[c-C3H5-C≡C—C(NCy)(NHCy)]2 (6; Fig. 5) are isotypic in the monoclinic space group P21/c. In this case, the two amidine ligands are not symmetry-equivalent, but nonetheless the mol­ecular structures resemble those of 3 and 4.

Figure 2.

Figure 2

Mol­ecular structure of 3 in the crystal. Displacement ellipsoids are drawn at the 50% level, C-bound H atoms omitted for clarity. Symmetry code: (′) 1 − x, 1 − y, z.

Figure 3.

Figure 3

Mol­ecular structure of 4 in the crystal. Displacement ellipsoids are drawn at the 50% level, C-bound H atoms omitted for clarity. Symmetry code: (′) 1 − x, 1 − y, z.

Table 1. Hydrogen-bond geometry (Å, °) for 3 .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯Cl 0.85 (2) 2.36 (2) 3.197 (3) 170 (3)
C8—H9⋯Cli 0.98 2.88 3.776 (4) 152
C5—H4⋯Clii 0.99 2.95 3.931 (4) 172
C10—H14⋯Clii 1.00 2.93 3.643 (3) 129
C4—H2⋯Cliii 1.00 2.67 3.516 (3) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for 4 .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯Cl 0.87 (2) 2.32 (3) 3.175 (3) 169 (4)
C8—H9⋯Cli 0.98 2.84 3.728 (5) 151
C5—H4⋯Clii 0.99 2.98 3.963 (5) 172
C10—H14⋯Clii 1.00 2.98 3.679 (4) 128
C4—H2⋯Cliii 1.00 2.68 3.510 (4) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 4.

Figure 4

Mol­ecular structure of 5 in the crystal. Displacement ellipsoids are drawn at the 50% level, C-bound H atoms omitted for clarity.

Figure 5.

Figure 5

Mol­ecular structure of 6 in the crystal. Displacement ellipsoids are drawn at the 50% level, C-bound H atoms omitted for clarity.

Compound 3 represents a rare example of a complex of tetra-coordinated manganese with nitro­gen ligands, while a larger number of the corresponding iron and cobalt complexes are known. The Mn—N bond length in 3 is 2.160 (2) Å and therefore comparable with literature data (Handley et al., 2001; Wang, 2009). In the iron complexes, the Fe—N distances are very similar at 2.088 (3) Å (4), and 2.073 (2)–2.079 (2) Å (5). These values are in the range of Fe—N distances usually observed in MCl2 L 2-type complexes, where L is a ligand with an sp 2-hybridized nitro­gen donor (Benson et al., 2010; Xiao et al., 2011; Batcup et al., 2014). The same is true for the cobalt complex 6, having Co—N bond lengths of 2.041 (2) and 2.043 (2) Å (Riggio et al.; 2001; Jian et al., 2003; Xiao et al., 2011). The set of C—N bond lengths within the NCN group of the amidine ligands is virtually equal in 36, including one formal C=N double bond at 1.309 (2)–1.315 (4) Å, and one formal C—N single bond at 1.337 (4)–1.340 (2) Å. The small difference between single- and double-bond length may indicate some degree of delocalization of the π-electron density. The observed values are consistent with other metal complexes having metal-coordinated amidine moieties (Dröse et al., 2010a,b ; Harmgarth et al., 2014, 2017a,b ; Hillebrand et al., 2014). The hydrogen-bonded N⋯Cl separations are similar in 36, being in the narrow range of 3.175 (3)–3.251 (2) Å (Tables 1–4 ).

Table 3. Hydrogen-bond geometry (Å, °) for 5 .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯Cl2 0.84 (2) 2.42 (2) 3.2511 (19) 169 (2)
N4—H29⋯Cl1 0.85 (2) 2.41 (2) 3.2459 (18) 170 (2)
C22—H30⋯Cl1i 1.00 2.90 3.744 (3) 143
C35—H53⋯Cl1i 0.99 3.05 3.613 (2) 118
C28—H40⋯Cl2ii 0.99 2.91 3.699 (2) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 4. Hydrogen-bond geometry (Å, °) for 6 .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯Cl2 0.85 (2) 2.37 (2) 3.1979 (16) 166 (2)
N4—H29⋯Cl1 0.86 (2) 2.35 (2) 3.1917 (15) 168 (2)
C22—H30⋯Cl1i 1.00 2.95 3.800 (2) 144
C33—H49⋯Cl1i 0.99 3.09 3.628 (2) 115
C28—H40⋯Cl2ii 0.99 2.96 3.758 (2) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

All four title compounds 36 display weak intra- and inter­molecular C—H⋯Cl contacts (Tables 1–4 ) involving the cyclo-propyl and iso-propyl or cyclo-hexyl groups, respectively.

Chemistry of related structures  

For reviews on the coordination chemistry of neutral amidines, see Barker & Kilner (1994) and Coles (2006).

Synthesis and crystallization  

General Procedures: All reactions were carried out in oven-dried or flame-dried glassware in an inert atmosphere of dry argon employing standard Schlenk and glovebox techniques. The solvent THF was distilled from sodium/benzo­phenone in a nitro­gen atmosphere prior to use. n-Butyl­lithium (1.6 M in hexa­nes) was purchased from Sigma–Aldrich. 1H NMR (400 MHz) and 13C NMR (100.6 MHz) spectra were recorded in THF-d8 solutions using a Bruker DPX 400 spectrometer at 298 K. Chemical shifts are referenced to tetra­methyl­silane. IR spectra were measured with a Bruker Vertex 70V spectrom­eter equipped with a diamond ATR unit between 4000 and 50 cm−1. The relative intensities of the absorption bands are given as very strong (vs), strong (s), medium (m), weak (w) and shoulder (sh). Electron impact mass spectra were measured on a MAT95 spectrometer with an ionization energy of 70 eV. Microanalyses of the compounds were performed using a vario EL cube apparatus from Elementar Analysensysteme GmbH.

Synthesis of 3-cyclo­propyl- N,N-diiso­propyl­propynamidine, c -C3H5—CC—C(N i Pr)(NH i Pr) (1): A THF (80 ml) solution of cyclo­propyl­acetyl­ene (4.2 ml, 50 mmol) in a Schlenk flask (250 ml) was cooled to 253 K and treated slowly with n-butyl­lithium (50 mmol, 1.6 M solution in hexa­nes). After 30 min, neat N,N′-diiso­propyl­carbodi­imide (7.8 ml, 50 mmol) was added and the mixture was stirred for 15 min at 253 K. The solution was warmed to room temperature and stirred for 1 h. During this time, the solution colour turned yellow. 20 ml of distilled water were added and stirring was continued for 30 min. The solution was separated using a separatory funnel and allowed to stand overnight after adding 3.0 g of anhydrous magnesium sulfate to remove the remaining water. The solvents were removed under vacuum to obtain 1 as a yellow oil. Yield: 6.9 g, 72%. Elemental analysis for C12H20N2 (192.30 g mol−1): C, 74.95; H, 10.48; N, 14.57; found C, 74.74; H, 10.46; N, 14.58. MS (EI, M = 192.30): m/z (%) 107.04 (10) [M – 2iPr]+, 149.11 (68) [M − iPr]+, 164.12 (47) [M − 2CH3]+, 177.13 (100) [M − CH3]+, 191.14 (43) [M]+. 1H NMR (400.1 MHz, THF-d8, 298 K): δ (ppm) 4.71–4.78 (br, 1H, NH, NHCN), 3.72–3.88 (s, 2H, CH, iPr), 1.31–1.38 (m, 1H, CH, c-C3H5), 0.97–1.04 (d, 12H, CH 3, iPr), 0.79–0.84 (m, 4H, CH 2, c-C3H5), 0.66–0.69 (m, 4H, CH 2, c-C3H5). 13C NMR (100.6 MHz, THF-d8, 298 K): δ (ppm) 140.5 (NHCN), 96.6 (CH—C≡C), 69.2 (C≡C—C), 67.8 (CH, iPr), 26.8 (CH3, iPr), 9.83 (CH2, c-C3H5), 0.37 (CH, c-C3H5). IR (ATR): ν (cm−1) 3440 (w, N—H), 3415 (w, N—H), 3096 (w), 3014 (w), 2963 (s, C—H), 2931 (m), 2867 (m, C—H), 2614 (w), 2226 (m), 1606 (vs, N=C), 1487 (m), 1466 (m), 1453 (m), 1375 (m), 1360 (m), 1344 (m), 1317 (m), 1263 (m), 1178 (m), 1132 (m), 1088 (w), 1055 (w), 1031 (w), 970 (w), 943 (m), 880 (w), 849 (w), 812 (w), 685 (m), 616 (w), 472 (w), 424 (w), 254 (w), 105 (w), 71 (w), 60 (w).

Synthesis of 3-cyclo­propyl- N,N-di­cyclo­hexyl­propyn­amid­ine, c -C3H5—CC—C(NCy)(NHCy) (2): A THF (100 ml) solution of cyclo­propyl­acetyl­ene (4.2 ml, 50 mmol) in a Schlenk flask (250 ml) was cooled to 253 K and treated slowly with n-butyl­lithium (50 mmol, 1.6 M solution in hexa­nes). After 30 min, N,N′-di­cyclo­hexyl­carbodi­imide (10.3 g, 50 mmol) was added and the rest of the reaction mixture was worked up as described for 1. The solvent was removed under vacuum to obtain 2 as a yellow oil. Yield: 10.1 g, 74%. Elemental analysis for C18H28N2 (272.43 g mol−1): C, 79.36; H, 10.36; N, 10.28; found C, 79.36; H, 10.30; N, 10.38. MS (EI, M = 272.40): m/z (%) 109.06 (19) [M − 2Cy]+, 189.13 (75) [M − Cy]+, 272.23 (79) [M]+. 1H NMR (400.1 MHz, THF-d8, 293 K): δ (ppm) 4.87–4.95 (s, 1H, NHCN), 1.69–1.06 (m, 20H, CH 2, Cy), 1.40–1.34 (m, 1H, CH, c-C3H5), 0.79–0.86 (m, 2H, CH 2, c-C3H5), 0.61–0.69 (m, 2H, CH 2, c-C3H5). 13C NMR (100.6 MHz, THF-d8, 298 K): δ (ppm) 141.5 (NHCN), 95.6 (CH—C≡C), 69.2 (C≡C—C), 64.5 (CH, Cy), 25.1–26.8 (CH2, Cy), 8.83 (CH2, c-C3H5), 0.37 (CH, c-C3H5). IR (ATR): ν (cm−1) 3351 (w, N—H), 3062 (w), 2960 (vs, C—H), 2925 (s), 2866 (m, C—H), 2225 (w), 2116 (w), 1917 (w), 1855 (w), 1796 (w), 1661 (w), 1626 (m, N=C), 1601 (m), 1591 (m), 1530 (w), 1382 (m), 1361 (m), 1330 (m), 1314 (m), 1255 (s), 1177 (m), 1162 (m), 1146 (m), 1107 (m), 1058 (m), 1043 (m), 972 (w), 956 (w), 923 (m), 888 (w), 865 (w), 839 (w), 819 (m), 794 (s), 753 (vs), 706 (w), 678 (m), 622 (w), 601 (w), 577 (w), 527 (w), 519 (w), 465 (w), 441 (m), 416 (m), 326 (s), 275 (s), 169 (m), 152 (m), 114 (m), 88 (m), 57 (w).

Synthesis of di­chlorido­bis­(3-cyclo­propyl- N,N ′-diiso­propyl­prop-2-ynamidine)­manganese(II), MnCl2[ c -C3H5—CC—C(N i Pr)(NH i Pr)]2 (3): A solution of anhydrous MnCl2 (0.33 g, 2.6 mmol) in 30 ml of THF was added to a solution of 1 (1.0 g, 5.2 mmol) in 50 ml of THF. The reaction mixture was heated to 333 K by water bath and stirred at room temperature for 12 h, resulting in a brown suspension. The filtrate was concentrated to ca 10 ml. Crystallization at r.t. afforded 3 as colourless crystals. Yield: 0.52 g, 39%. M.p. = 395 K. Elemental analysis for C24H40Cl2MnN4 (510.45 g mol−1): C, 56.47; H, 7.90; N, 10.98; found C, 56.49; H, 7.93; N, 10.98. MS (EI, M = 510.45): m/z (%) 425.2 (50) [M − 2Cl − CH3]+, 433.2 (2) [M − Cl – iPr]+, 498.2 (100) [M − CH2 + 2H]+. IR (ATR): ν (cm−1) 3411 (w, N—H), 3239 (m, N—H), 3129 (w, N—H), 2967 (m), 2930 (w), 2872 (w), 2217 (s), 1628 (w), 1571 (vs, N=C), 1464 (s), 1432 (vs), 1382 (w), 1363 (m), 1330 (m), 1313 (m), 1243 (m), 1172 (m), 1132 (vs), 1061 (w), 1032 (w), 963 (s), 940 (w), 879 (w), 843 (m), 831 (m), 705 (s), 658 (m), 603 (w), 520 (w), 489 (w), 460 (w), 387 (w), 333 (m), 279 (vs, Mn—Cl), 207 (m), 173 (m), 128 (vs).

Synthesis of di­chlorido­bis­(3-cyclo­propyl- N,N ′-diiso­propyl­prop-2-ynamidine)­iron(II), FeCl2[ c -C3H5—CC—C(N i Pr)(NH i Pr)]2 (4): A solution of anhydrous FeCl2 (0.33 g, 2.6 mmol) in 30 ml of THF was added to a solution of 1 (1.0 g, 5.2 mmol) in 50 ml of THF following the procedure given for 3. Crystallization at room temperature afforded 4 as colourless crystals. Yield: 0.40 g, 30%. M.p. = 400 K. Elemental analysis for C24H40Cl2FeN4 (511.35 g mol−1): C, 56.37; H, 7.88; N, 10.96; found C, 56.34; H, 7.75; N, 10.98%. MS (EI, M = 511.35): m/z (%) 432.4 (100) [M − Cl − iPr]+, 439.1 (40) [M − 2Cl]+, 475.4 (63) [M − Cl]+, 501.0 (100) [M − CH2 + 2H]+. IR (ATR): ν (cm−1) 3290 (w, N—H), 3222 (w, N—H), 3119 (w, N—H), 2976 (m, C—H), 2933 (w), 2874 (w, C—H), 2225 (m), 1619 (s), 1568 (m, N=C), 1485 (w), 1463 (w), 1429 (w), 1392 (w), 1372 (w), 1309 (w), 1244 (w), 1169 (m), 1129 (m), 1062 (w), 1033 (w), 963 (m), 939 (m), 879 (m), 846 (m), 818 (w), 793 (w), 709 (s), 691 (s), 649 (s), 599 (s), 520 (s), 460 (s), 353 (vs), 313 (vs), 280 (vs), 211 (vs, Fe—Cl), 134 (s), 68 (s).

Synthesis of di­chlorido­bis­( N,N ′-di­cyclo­hexyl-3-cyclo­prop­yl­prop-2-ynamidine)­iron(II), FeCl2[ c -C3H5-CC—C(NCy)(NHCy)]2 (5): A solution of anhydrous FeCl2 (0.23 g, 1.8 mmol) in 30 ml of THF was added to a solution of 2 (1.0 g, 3.6 mmol) in 50 ml of THF. The reaction mixture was heated to 333 K by water bath and stirred at room temperature for 12 h, resulting in a brown suspension. The filtrate was concentrated to ca 10 ml. Crystallization at 278 K afforded 5 in the form of colorless crystals. Yield: 0.45 g, 37%. M.p. = 405 K. Elemental analysis for C36H56Cl2FeN4 (671.61 g mol−1): C, 65.66; H, 8.21; N, 8.57; found C, 64.38; H, 8.40; N, 8.34%. MS (EI, M = 671.61): m/z (%) 363.17 (24) [M − c-C3H5—C≡C—C(NCy)(NHCy) − Cl]+, 457.08 (74) [M − 3C3H7 − C6H11]+, 540.13 (100) [M − 3C3H7]+. IR (ATR): ν (cm−1) 3214 (w, N—H), 2928 (s, C—H), 2852 (s, C—H), 2227 (s), 1573 (vs, N=C), 1448 (s), 1365 (m), 1347 (w), 1308 (w), 1245 (m), 1188 (w), 1154 (w), 1062 (w), 1031 (w), 974 (m), 891 (w), 858 (w), 842 (w), 814 (w), 702 (m), 603 (w), 549 (w), 474 (w), 443 (w), 279 (s), 198 (vs, Fe—Cl), 140 (s), 121 (s), 107 (s), 89 (m).

Synthesis of di­chlorido­bis­( N,N ’-di­cyclo­hexyl-3-cyclo­propyl­prop-2-ynamidine)­cobalt(II), CoCl2[ c -C3H5-CC—C(NCy)(NHCy)]2CoCl2 (6): A solution of anhydrous CoCl2 (0.23 g, 1.8 mmol) in 30 ml of THF was added to a solution of 2 (1.0 g, 3.6 mmol) in 50 ml of THF following the procedure given for 5. Crystallization at 278 K afforded 6 in the form of blue crystals. Yield: 0.45 g, 37%. M.p. = 399 K. Elemental analysis for C36H56Cl2CoN4 (674.69 g mol−1): C, 64.09; H, 8.37; N, 8.30; found C, 63.69; H, 8.31; N, 9.26%. MS (EI, M = 674.69): m/z (%) 402.23 (24) [M − c-C3H5—C≡C—C(NCy)(NHCy)]+, 461.32 (89) [M − 3C3H7 − C6H11]+, 544.39 (15) [M − 3C3H7]+. IR (ATR): ν (cm−1) 3440 (w, N—H), 3212 (w, N—H), 3128 (w, N—H), 3090 (w), 3008 (w), 2925 (vs, C—H), 2850 (s, C—H), 2662 (w), 2228 (m), 1690 (w), 1635 (w), 1605 (m), 1575 (N=C), 1486 (m), 1447 (vs), 1433 (s), 1363 (s), 1346 (m), 1300 (w), 1257 (m), 1221 (w), 1188 (w), 1157 (w), 1090 (w), 1064 (m), 1031 (m), 973 (m), 889 (w), 858 (m), 841 (w), 815 (w), 788 (w), 701 (s), 656 (m), 549 (w), 475 (w), 444 (w), 430 (w), 392 (w), 349 (w), 292 (vs, Co—Cl), 228 (m), 204 (w), 166 (w), 127 (vs), 74 (w).

For comparison, the far infrared spectra of the anhydrous metal dichlorides MCl2 (M = Mn, Fe, Co) were also measured:

IR (KBr): ν MnCl2 (cm−1) 1064 (w), 1230 (w), 492 (w), 434 (w), 318 (w), 163 (vs, Mn—Cl) , 83 (s), 64 (s).

IR (KBr): ν FeCl2 (cm−1) 3461 (w), 2977 (w), 2113 (w), 1993 (w), 1599 (w), 1389 (w), 1096 (w), 931 (w), 812 (w), 330 (w), 144 (vs, Fe—Cl), 54 (s).

IR (KBr): ν CoCl2 (cm−1) 1599 (w), 615 (w), 348 (w), 189 (vs, Co—Cl).

X-ray quality single crystals of complexes 36 were obtained at r.t. from concentrated solutions in THF.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. H atoms attached to C atoms were fixed geometrically and refined using a riding model. The CH3 groups in 3 and 4 were allowed to rotate freely around the C—C vector, the corresponding C—H distances were constrained to 0.98 Å. C—H distances within CH2 groups were constrained to 0.99 Å, C—H distances within CH groups to 1.00 Å. H atoms attached to N atoms were located in the difference-Fourier map and refined, the N—H distances were restrained to 0.88 (2) Å. The U iso(H) values were set at 1.5U eq(C) for the methyl groups in 3 and 4, and at 1.2U eq(X) (X = C, N) in all other cases. For 6, the reflections (011) and (002) disagreed strongly with the structural model and were therefore omitted from the refinement.

Table 5. Experimental details.

  3 4 5 6
Crystal data
Chemical formula [MnCl2(C12H20N2)2] [FeCl2(C12H20N2)2] [FeCl2(C18H28N2)2] [CoCl2(C18H28N2)2]
M r 510.44 511.35 671.59 674.67
Crystal system, space group Orthorhombic, F d d2 Orthorhombic, F d d2 Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 153 153 100 153
a, b, c (Å) 17.6701 (10), 30.9809 (19), 10.1452 (5) 17.5703 (9), 30.9167 (12), 10.1110 (6) 13.905 (7), 12.500 (6), 20.742 (11) 13.8898 (3), 12.5574 (3), 20.8394 (5)
α, β, γ (°) 90, 90, 90 90, 90, 90 90, 92.24 (4), 90 90, 91.717 (2), 90
V3) 5553.8 (5) 5492.5 (5) 3603 (3) 3633.17 (15)
Z 8 8 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.69 0.76 0.60 0.65
Crystal size (mm) 0.33 × 0.24 × 0.10 0.27 × 0.25 × 0.25 0.26 × 0.19 × 0.12 0.39 × 0.19 × 0.10
 
Data collection
Diffractometer Stoe IPDS 2T Stoe IPDS 2T Stoe IPDS 2T Stoe IPDS 2T
Absorption correction Numerical X-AREA and X-RED (Stoe & Cie, 2002) Numerical X-AREA and X-RED (Stoe & Cie, 2002) Numerical X-AREA and X-RED (Stoe & Cie, 2002) Numerical X-AREA and X-RED (Stoe & Cie, 2002)
T min, T max 0.851, 0.932 0.837, 0.888 0.838, 0.908 0.807, 0.938
No. of measured, independent and observed [I > 2σ(I)] reflections 5371, 2432, 2203 5377, 2495, 2239 18866, 7036, 6355 22018, 7124, 5922
R int 0.030 0.037 0.029 0.042
(sin θ/λ)max−1) 0.617 0.616 0.617 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.026, 0.054, 0.98 0.033, 0.074, 1.01 0.033, 0.075, 1.14 0.035, 0.083, 1.03
No. of reflections 2432 2495 7036 7124
No. of parameters 148 148 395 394
No. of restraints 2 2 2 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.16 0.21, −0.42 0.40, −0.33 0.65, −0.36
Absolute structure Flack x determined using 804 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013). Flack x determined using 846 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013).
Absolute structure parameter 0.005 (17) −0.03 (3)

Computer programs: X-AREA X-AREA and X-RED (Stoe & Cie, 2002), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) 3, 4, 5, 6. DOI: 10.1107/S2056989018014895/zl2740sup1.cif

e-74-01658-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989018014895/zl27403sup2.hkl

e-74-01658-3sup2.hkl (195.8KB, hkl)

Structure factors: contains datablock(s) 4. DOI: 10.1107/S2056989018014895/zl27404sup3.hkl

e-74-01658-4sup3.hkl (200.8KB, hkl)

Structure factors: contains datablock(s) 5. DOI: 10.1107/S2056989018014895/zl27405sup4.hkl

e-74-01658-5sup4.hkl (559.1KB, hkl)

Structure factors: contains datablock(s) 6. DOI: 10.1107/S2056989018014895/zl27406sup5.hkl

e-74-01658-6sup5.hkl (566KB, hkl)

CCDC references: 1848876, 1848879, 1848878, 1848877

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Dichloridobis(3-cyclopropyl-N,N'-diisopropylprop-2-ynamidine)manganese(II) (3) . Crystal data

[MnCl2(C12H20N2)2] Dx = 1.221 Mg m3
Mr = 510.44 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2 Cell parameters from 5371 reflections
a = 17.6701 (10) Å θ = 2.4–26.0°
b = 30.9809 (19) Å µ = 0.69 mm1
c = 10.1452 (5) Å T = 153 K
V = 5553.8 (5) Å3 Plate, colorless
Z = 8 0.33 × 0.24 × 0.10 mm
F(000) = 2168

Dichloridobis(3-cyclopropyl-N,N'-diisopropylprop-2-ynamidine)manganese(II) (3) . Data collection

Stoe IPDS 2T diffractometer 2432 independent reflections
Radiation source: fine-focus sealed tube 2203 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.030
area detector scans θmax = 26.0°, θmin = 2.4°
Absorption correction: numerical X-Area and X-Red (Stoe & Cie, 2002) h = −21→19
Tmin = 0.851, Tmax = 0.932 k = −38→36
5371 measured reflections l = −10→12

Dichloridobis(3-cyclopropyl-N,N'-diisopropylprop-2-ynamidine)manganese(II) (3) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0295P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.054 (Δ/σ)max < 0.001
S = 0.98 Δρmax = 0.17 e Å3
2432 reflections Δρmin = −0.16 e Å3
148 parameters Absolute structure: Flack x determined using 804 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
2 restraints Absolute structure parameter: 0.005 (17)
Primary atom site location: dual

Dichloridobis(3-cyclopropyl-N,N'-diisopropylprop-2-ynamidine)manganese(II) (3) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Dichloridobis(3-cyclopropyl-N,N'-diisopropylprop-2-ynamidine)manganese(II) (3) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.36882 (15) 0.54929 (8) 0.4904 (3) 0.0249 (6)
C2 0.33550 (15) 0.58031 (8) 0.5793 (3) 0.0275 (6)
C3 0.30913 (16) 0.60729 (9) 0.6494 (3) 0.0302 (7)
C4 0.28074 (18) 0.63992 (9) 0.7356 (3) 0.0356 (7)
H2 0.319053 0.653154 0.795855 0.043*
C5 0.20206 (19) 0.63718 (12) 0.7899 (4) 0.0499 (9)
H4 0.170588 0.612238 0.763079 0.060*
H3 0.193744 0.647216 0.881390 0.060*
C6 0.2193 (2) 0.66970 (11) 0.6900 (4) 0.0533 (10)
H5 0.221801 0.700214 0.718620 0.064*
H6 0.198644 0.665236 0.600306 0.064*
C7 0.48948 (16) 0.58097 (9) 0.5311 (3) 0.0306 (7)
H7 0.459936 0.594392 0.604475 0.037*
C8 0.5092 (2) 0.61607 (9) 0.4321 (4) 0.0483 (9)
H8 0.462550 0.629138 0.398310 0.072*
H9 0.537769 0.603441 0.358799 0.072*
H10 0.539979 0.638262 0.475250 0.072*
C9 0.55984 (19) 0.56063 (11) 0.5888 (5) 0.0523 (10)
H11 0.545423 0.536465 0.645823 0.078*
H12 0.587472 0.582183 0.640576 0.078*
H13 0.592242 0.550058 0.517331 0.078*
C10 0.24079 (15) 0.51535 (9) 0.4664 (3) 0.0309 (6)
H14 0.231615 0.528595 0.554861 0.037*
C11 0.1891 (2) 0.53643 (15) 0.3699 (5) 0.0730 (14)
H15 0.198631 0.567589 0.368767 0.110*
H16 0.136417 0.531090 0.395577 0.110*
H17 0.198092 0.524486 0.281836 0.110*
C12 0.2262 (2) 0.46796 (10) 0.4771 (5) 0.0589 (11)
H18 0.263622 0.454904 0.536161 0.088*
H19 0.230123 0.454725 0.389606 0.088*
H20 0.175270 0.463185 0.512437 0.088*
Cl 0.40889 (4) 0.46957 (2) 0.20903 (8) 0.03750 (19)
N1 0.44187 (12) 0.54779 (6) 0.4682 (2) 0.0244 (5)
N2 0.32035 (14) 0.52226 (8) 0.4319 (3) 0.0329 (6)
H1 0.3386 (17) 0.5071 (10) 0.370 (3) 0.039*
Mn 0.500000 0.500000 0.35079 (6) 0.02229 (14)

Dichloridobis(3-cyclopropyl-N,N'-diisopropylprop-2-ynamidine)manganese(II) (3) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0270 (13) 0.0210 (12) 0.0267 (16) 0.0043 (11) 0.0022 (12) −0.0021 (10)
C2 0.0233 (13) 0.0260 (13) 0.0333 (18) −0.0001 (11) 0.0014 (13) −0.0054 (12)
C3 0.0241 (14) 0.0314 (14) 0.0350 (17) −0.0011 (12) 0.0005 (13) −0.0042 (12)
C4 0.0299 (15) 0.0393 (15) 0.038 (2) 0.0014 (12) 0.0019 (15) −0.0162 (14)
C5 0.0372 (19) 0.056 (2) 0.057 (2) −0.0006 (17) 0.0173 (18) −0.0191 (17)
C6 0.054 (2) 0.052 (2) 0.055 (3) 0.0212 (17) 0.0009 (19) −0.0145 (18)
C7 0.0229 (15) 0.0293 (14) 0.0396 (18) 0.0019 (12) 0.0027 (13) −0.0124 (12)
C8 0.045 (2) 0.0315 (15) 0.068 (3) −0.0095 (14) 0.0084 (19) −0.0053 (15)
C9 0.0413 (17) 0.0463 (17) 0.069 (3) 0.0074 (15) −0.020 (2) −0.024 (2)
C10 0.0228 (14) 0.0325 (13) 0.0372 (18) 0.0001 (11) 0.0046 (15) −0.0029 (12)
C11 0.0348 (18) 0.099 (3) 0.085 (4) 0.014 (2) 0.005 (2) 0.044 (3)
C12 0.0396 (18) 0.0394 (17) 0.098 (4) −0.0071 (15) 0.008 (2) 0.005 (2)
Cl 0.0345 (4) 0.0426 (4) 0.0354 (4) 0.0088 (3) −0.0083 (4) −0.0170 (3)
N1 0.0231 (11) 0.0225 (10) 0.0276 (14) 0.0023 (8) 0.0001 (11) −0.0048 (10)
N2 0.0239 (12) 0.0346 (12) 0.0402 (17) −0.0013 (10) 0.0060 (11) −0.0183 (11)
Mn 0.0229 (3) 0.0206 (2) 0.0234 (3) 0.0048 (3) 0.000 0.000

Dichloridobis(3-cyclopropyl-N,N'-diisopropylprop-2-ynamidine)manganese(II) (3) . Geometric parameters (Å, º)

C1—N1 1.311 (3) C8—H9 0.9800
C1—N2 1.337 (4) C8—H10 0.9800
C1—C2 1.444 (4) C9—H11 0.9800
C2—C3 1.192 (4) C9—H12 0.9800
C3—C4 1.428 (4) C9—H13 0.9800
C4—C5 1.498 (4) C10—N2 1.465 (3)
C4—C6 1.498 (5) C10—C11 1.491 (5)
C4—H2 1.0000 C10—C12 1.494 (4)
C5—C6 1.461 (6) C10—H14 1.0000
C5—H4 0.9900 C11—H15 0.9800
C5—H3 0.9900 C11—H16 0.9800
C6—H5 0.9900 C11—H17 0.9800
C6—H6 0.9900 C12—H18 0.9800
C7—N1 1.473 (3) C12—H19 0.9800
C7—C9 1.512 (4) C12—H20 0.9800
C7—C8 1.521 (5) Cl—Mn 2.3556 (8)
C7—H7 1.0000 N1—Mn 2.160 (2)
C8—H8 0.9800 N2—H1 0.85 (2)
N1—C1—N2 122.2 (2) C7—C9—H12 109.5
N1—C1—C2 122.2 (2) H11—C9—H12 109.5
N2—C1—C2 115.7 (2) C7—C9—H13 109.5
C3—C2—C1 177.2 (3) H11—C9—H13 109.5
C2—C3—C4 177.5 (3) H12—C9—H13 109.5
C3—C4—C5 120.7 (3) N2—C10—C11 111.6 (3)
C3—C4—C6 120.1 (3) N2—C10—C12 109.1 (2)
C5—C4—C6 58.4 (2) C11—C10—C12 111.9 (3)
C3—C4—H2 115.3 N2—C10—H14 108.1
C5—C4—H2 115.3 C11—C10—H14 108.1
C6—C4—H2 115.3 C12—C10—H14 108.1
C6—C5—C4 60.8 (2) C10—C11—H15 109.5
C6—C5—H4 117.7 C10—C11—H16 109.5
C4—C5—H4 117.7 H15—C11—H16 109.5
C6—C5—H3 117.7 C10—C11—H17 109.5
C4—C5—H3 117.7 H15—C11—H17 109.5
H4—C5—H3 114.8 H16—C11—H17 109.5
C5—C6—C4 60.8 (2) C10—C12—H18 109.5
C5—C6—H5 117.7 C10—C12—H19 109.5
C4—C6—H5 117.7 H18—C12—H19 109.5
C5—C6—H6 117.7 C10—C12—H20 109.5
C4—C6—H6 117.7 H18—C12—H20 109.5
H5—C6—H6 114.8 H19—C12—H20 109.5
N1—C7—C9 110.3 (2) C1—N1—C7 117.6 (2)
N1—C7—C8 110.1 (3) C1—N1—Mn 125.95 (18)
C9—C7—C8 111.4 (3) C7—N1—Mn 116.44 (16)
N1—C7—H7 108.3 C1—N2—C10 126.9 (2)
C9—C7—H7 108.3 C1—N2—H1 116 (2)
C8—C7—H7 108.3 C10—N2—H1 117 (2)
C7—C8—H8 109.5 N1—Mn—N1i 113.06 (13)
C7—C8—H9 109.5 N1—Mn—Cl 106.62 (6)
H8—C8—H9 109.5 N1i—Mn—Cl 112.79 (6)
C7—C8—H10 109.5 N1—Mn—Cli 112.80 (6)
H8—C8—H10 109.5 N1i—Mn—Cli 106.62 (6)
H9—C8—H10 109.5 Cl—Mn—Cli 104.74 (5)
C7—C9—H11 109.5
C3—C4—C5—C6 −108.6 (4) C8—C7—N1—C1 −100.7 (3)
C3—C4—C6—C5 109.7 (3) C9—C7—N1—Mn −42.7 (3)
N2—C1—N1—C7 176.0 (3) C8—C7—N1—Mn 80.7 (2)
C2—C1—N1—C7 −3.8 (4) N1—C1—N2—C10 167.7 (3)
N2—C1—N1—Mn −5.5 (4) C2—C1—N2—C10 −12.5 (4)
C2—C1—N1—Mn 174.66 (19) C11—C10—N2—C1 104.8 (4)
C9—C7—N1—C1 135.9 (3) C12—C10—N2—C1 −131.2 (3)

Symmetry code: (i) −x+1, −y+1, z.

Dichloridobis(3-cyclopropyl-N,N'-diisopropylprop-2-ynamidine)manganese(II) (3) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H1···Cl 0.85 (2) 2.36 (2) 3.197 (3) 170 (3)
C8—H9···Cli 0.98 2.88 3.776 (4) 152
C5—H4···Clii 0.99 2.95 3.931 (4) 172
C10—H14···Clii 1.00 2.93 3.643 (3) 129
C4—H2···Cliii 1.00 2.67 3.516 (3) 143

Symmetry codes: (i) −x+1, −y+1, z; (ii) −x+1/2, −y+1, z+1/2; (iii) −x+3/4, y+1/4, z+3/4.

Dichloridobis(3-cyclopropyl-N,N'-diisopropylprop-2-ynamidine)iron(II) (4) . Crystal data

[FeCl2(C12H20N2)2] Dx = 1.237 Mg m3
Mr = 511.35 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2 Cell parameters from 5377 reflections
a = 17.5703 (9) Å θ = 2.4–26.0°
b = 30.9167 (12) Å µ = 0.76 mm1
c = 10.1110 (6) Å T = 153 K
V = 5492.5 (5) Å3 Block, colorless
Z = 8 0.27 × 0.25 × 0.25 mm
F(000) = 2176

Dichloridobis(3-cyclopropyl-N,N'-diisopropylprop-2-ynamidine)iron(II) (4) . Data collection

Stoe IPDS 2T diffractometer 2495 independent reflections
Radiation source: fine-focus sealed tube 2239 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.037
area detector scans θmax = 26.0°, θmin = 2.4°
Absorption correction: numerical X-Area and X-Red (Stoe & Cie, 2002) h = −20→21
Tmin = 0.837, Tmax = 0.888 k = −38→36
5377 measured reflections l = −10→12

Dichloridobis(3-cyclopropyl-N,N'-diisopropylprop-2-ynamidine)iron(II) (4) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.045P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074 (Δ/σ)max < 0.001
S = 1.01 Δρmax = 0.21 e Å3
2495 reflections Δρmin = −0.42 e Å3
148 parameters Absolute structure: Flack x determined using 846 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
2 restraints Absolute structure parameter: −0.03 (3)
Primary atom site location: dual

Dichloridobis(3-cyclopropyl-N,N'-diisopropylprop-2-ynamidine)iron(II) (4) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Dichloridobis(3-cyclopropyl-N,N'-diisopropylprop-2-ynamidine)iron(II) (4) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3709 (2) 0.54820 (11) 0.4918 (4) 0.0256 (7)
C2 0.3378 (2) 0.57953 (11) 0.5794 (4) 0.0295 (8)
C3 0.3110 (2) 0.60671 (12) 0.6491 (4) 0.0311 (8)
C4 0.2823 (2) 0.63943 (13) 0.7355 (4) 0.0370 (9)
H2 0.320708 0.652558 0.796514 0.044*
C5 0.2031 (3) 0.63654 (17) 0.7896 (5) 0.0516 (12)
H4 0.171514 0.611617 0.761998 0.062*
H3 0.194600 0.646416 0.881537 0.062*
C6 0.2208 (3) 0.66945 (15) 0.6897 (5) 0.0506 (12)
H5 0.223392 0.699970 0.718986 0.061*
H6 0.200305 0.665170 0.599444 0.061*
C7 0.4920 (2) 0.58015 (12) 0.5319 (4) 0.0309 (8)
H7 0.462208 0.593479 0.605717 0.037*
C8 0.5106 (3) 0.61521 (13) 0.4324 (6) 0.0506 (12)
H8 0.463312 0.628650 0.401441 0.076*
H9 0.537663 0.602488 0.357185 0.076*
H10 0.542756 0.637176 0.474331 0.076*
C9 0.5635 (2) 0.56028 (15) 0.5897 (6) 0.0531 (13)
H11 0.549567 0.536538 0.649137 0.080*
H12 0.591635 0.582334 0.639198 0.080*
H13 0.595472 0.549128 0.517965 0.080*
C10 0.24171 (19) 0.51490 (12) 0.4677 (4) 0.0313 (8)
H14 0.232841 0.527648 0.557256 0.038*
C11 0.1912 (3) 0.5375 (2) 0.3711 (7) 0.0717 (17)
H15 0.204279 0.568265 0.368259 0.108*
H16 0.137983 0.534183 0.398571 0.108*
H17 0.198034 0.524779 0.283094 0.108*
C12 0.2255 (3) 0.46742 (15) 0.4745 (7) 0.0597 (14)
H18 0.261781 0.453556 0.534649 0.090*
H19 0.230443 0.454738 0.386081 0.090*
H20 0.173590 0.462874 0.507208 0.090*
Cl 0.41255 (5) 0.47033 (3) 0.20952 (10) 0.0389 (3)
N1 0.44457 (15) 0.54633 (9) 0.4699 (3) 0.0251 (6)
N2 0.32222 (17) 0.52105 (11) 0.4330 (4) 0.0323 (7)
H1 0.341 (2) 0.5058 (13) 0.369 (4) 0.039*
Fe 0.500000 0.500000 0.35458 (7) 0.02332 (17)

Dichloridobis(3-cyclopropyl-N,N'-diisopropylprop-2-ynamidine)iron(II) (4) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0283 (17) 0.0242 (16) 0.0243 (19) 0.0046 (15) 0.0015 (14) −0.0018 (14)
C2 0.0241 (17) 0.0299 (18) 0.035 (2) 0.0018 (15) −0.0011 (15) −0.0040 (16)
C3 0.0289 (19) 0.0305 (19) 0.034 (2) −0.0010 (17) 0.0009 (16) −0.0044 (16)
C4 0.0326 (19) 0.040 (2) 0.038 (2) 0.0020 (17) 0.0027 (17) −0.0109 (18)
C5 0.041 (2) 0.062 (3) 0.051 (3) −0.001 (2) 0.016 (2) −0.020 (2)
C6 0.051 (3) 0.053 (3) 0.047 (3) 0.021 (2) 0.001 (2) −0.013 (2)
C7 0.0254 (19) 0.0298 (19) 0.038 (2) 0.0034 (16) −0.0001 (16) −0.0123 (15)
C8 0.048 (3) 0.033 (2) 0.071 (3) −0.0063 (19) 0.011 (2) −0.005 (2)
C9 0.041 (2) 0.051 (2) 0.067 (4) 0.008 (2) −0.023 (2) −0.024 (3)
C10 0.0236 (17) 0.0345 (18) 0.036 (2) −0.0011 (15) 0.0012 (17) −0.0033 (16)
C11 0.037 (2) 0.099 (4) 0.080 (4) 0.016 (3) 0.001 (3) 0.039 (4)
C12 0.039 (2) 0.043 (2) 0.097 (5) −0.010 (2) 0.002 (3) 0.001 (3)
Cl 0.0359 (5) 0.0484 (5) 0.0324 (5) 0.0061 (4) −0.0068 (4) −0.0161 (4)
N1 0.0225 (13) 0.0273 (14) 0.0257 (16) 0.0020 (12) 0.0005 (12) −0.0032 (13)
N2 0.0243 (15) 0.0359 (16) 0.037 (2) −0.0002 (13) 0.0039 (13) −0.0130 (13)
Fe 0.0243 (3) 0.0243 (3) 0.0214 (3) 0.0044 (3) 0.000 0.000

Dichloridobis(3-cyclopropyl-N,N'-diisopropylprop-2-ynamidine)iron(II) (4) . Geometric parameters (Å, º)

C1—N1 1.315 (4) C8—H9 0.9800
C1—N2 1.337 (5) C8—H10 0.9800
C1—C2 1.435 (5) C9—H11 0.9800
C2—C3 1.193 (5) C9—H12 0.9800
C3—C4 1.429 (5) C9—H13 0.9800
C4—C5 1.497 (6) C10—N2 1.470 (4)
C4—C6 1.498 (6) C10—C11 1.493 (6)
C4—H2 1.0000 C10—C12 1.497 (6)
C5—C6 1.467 (7) C10—H14 1.0000
C5—H4 0.9900 C11—H15 0.9800
C5—H3 0.9900 C11—H16 0.9800
C6—H5 0.9900 C11—H17 0.9800
C6—H6 0.9900 C12—H18 0.9800
C7—N1 1.477 (5) C12—H19 0.9800
C7—C8 1.514 (6) C12—H20 0.9800
C7—C9 1.515 (6) Cl—Fe 2.3139 (10)
C7—H7 1.0000 N1—Fe 2.088 (3)
C8—H8 0.9800 N2—H1 0.87 (2)
N1—C1—N2 121.8 (3) C7—C9—H12 109.5
N1—C1—C2 122.1 (3) H11—C9—H12 109.5
N2—C1—C2 116.1 (3) C7—C9—H13 109.5
C3—C2—C1 177.6 (4) H11—C9—H13 109.5
C2—C3—C4 177.3 (4) H12—C9—H13 109.5
C3—C4—C5 120.6 (4) N2—C10—C11 110.8 (4)
C3—C4—C6 120.3 (4) N2—C10—C12 108.7 (3)
C5—C4—C6 58.6 (3) C11—C10—C12 112.0 (4)
C3—C4—H2 115.2 N2—C10—H14 108.4
C5—C4—H2 115.2 C11—C10—H14 108.4
C6—C4—H2 115.2 C12—C10—H14 108.4
C6—C5—C4 60.7 (3) C10—C11—H15 109.5
C6—C5—H4 117.7 C10—C11—H16 109.5
C4—C5—H4 117.7 H15—C11—H16 109.5
C6—C5—H3 117.7 C10—C11—H17 109.5
C4—C5—H3 117.7 H15—C11—H17 109.5
H4—C5—H3 114.8 H16—C11—H17 109.5
C5—C6—C4 60.7 (3) C10—C12—H18 109.5
C5—C6—H5 117.7 C10—C12—H19 109.5
C4—C6—H5 117.7 H18—C12—H19 109.5
C5—C6—H6 117.7 C10—C12—H20 109.5
C4—C6—H6 117.7 H18—C12—H20 109.5
H5—C6—H6 114.8 H19—C12—H20 109.5
N1—C7—C8 110.2 (3) C1—N1—C7 116.9 (3)
N1—C7—C9 110.1 (3) C1—N1—Fe 125.7 (2)
C8—C7—C9 111.6 (4) C7—N1—Fe 117.4 (2)
N1—C7—H7 108.3 C1—N2—C10 126.2 (3)
C8—C7—H7 108.3 C1—N2—H1 115 (3)
C9—C7—H7 108.3 C10—N2—H1 118 (3)
C7—C8—H8 109.5 N1i—Fe—N1 112.13 (17)
C7—C8—H9 109.5 N1i—Fe—Cl 113.06 (9)
H8—C8—H9 109.5 N1—Fe—Cl 108.42 (8)
C7—C8—H10 109.5 N1i—Fe—Cli 108.42 (8)
H8—C8—H10 109.5 N1—Fe—Cli 113.06 (9)
H9—C8—H10 109.5 Cl—Fe—Cli 101.32 (6)
C7—C9—H11 109.5
C3—C4—C5—C6 −109.0 (5) C9—C7—N1—C1 137.1 (4)
C3—C4—C6—C5 109.5 (4) C8—C7—N1—Fe 80.4 (3)
N2—C1—N1—C7 175.2 (3) C9—C7—N1—Fe −43.2 (4)
C2—C1—N1—C7 −4.4 (5) N1—C1—N2—C10 168.1 (4)
N2—C1—N1—Fe −4.5 (5) C2—C1—N2—C10 −12.3 (6)
C2—C1—N1—Fe 175.9 (3) C11—C10—N2—C1 102.8 (5)
C8—C7—N1—C1 −99.4 (4) C12—C10—N2—C1 −133.6 (5)

Symmetry code: (i) −x+1, −y+1, z.

Dichloridobis(3-cyclopropyl-N,N'-diisopropylprop-2-ynamidine)iron(II) (4) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H1···Cl 0.87 (2) 2.32 (3) 3.175 (3) 169 (4)
C8—H9···Cli 0.98 2.84 3.728 (5) 151
C5—H4···Clii 0.99 2.98 3.963 (5) 172
C10—H14···Clii 1.00 2.98 3.679 (4) 128
C4—H2···Cliii 1.00 2.68 3.510 (4) 140

Symmetry codes: (i) −x+1, −y+1, z; (ii) −x+1/2, −y+1, z+1/2; (iii) −x+3/4, y+1/4, z+3/4.

Dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)iron(II) (5) . Crystal data

[FeCl2(C18H28N2)2] F(000) = 1440
Mr = 671.59 Dx = 1.238 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 13.905 (7) Å Cell parameters from 17648 reflections
b = 12.500 (6) Å θ = 1.9–25.4°
c = 20.742 (11) Å µ = 0.60 mm1
β = 92.24 (4)° T = 100 K
V = 3603 (3) Å3 Plate, colorless
Z = 4 0.26 × 0.19 × 0.12 mm

Dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)iron(II) (5) . Data collection

Stoe IPDS 2T diffractometer 7036 independent reflections
Radiation source: fine-focus sealed tube 6355 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.029
area detector scans θmax = 26.0°, θmin = 1.9°
Absorption correction: numerical X-Area and X-Red (Stoe & Cie, 2002) h = −17→16
Tmin = 0.838, Tmax = 0.908 k = −14→15
18866 measured reflections l = −25→25

Dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)iron(II) (5) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0293P)2 + 1.8416P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075 (Δ/σ)max = 0.001
S = 1.14 Δρmax = 0.40 e Å3
7036 reflections Δρmin = −0.33 e Å3
395 parameters Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraints Extinction coefficient: 0.0028 (4)
Primary atom site location: dual

Dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)iron(II) (5) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)iron(II) (5) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.18374 (11) 0.73239 (12) 0.51035 (7) 0.0161 (3)
C2 0.18720 (11) 0.66376 (13) 0.45462 (7) 0.0168 (3)
C3 0.19066 (11) 0.60813 (13) 0.40810 (7) 0.0170 (3)
C4 0.19602 (12) 0.54251 (13) 0.35178 (8) 0.0177 (3)
H2 0.139809 0.546681 0.320304 0.021*
C5 0.24578 (12) 0.43512 (13) 0.35720 (8) 0.0212 (3)
H3 0.273324 0.413811 0.400026 0.025*
H4 0.219025 0.375546 0.330658 0.025*
C6 0.29280 (13) 0.52459 (14) 0.32327 (8) 0.0244 (4)
H5 0.295258 0.520379 0.275701 0.029*
H6 0.349545 0.558635 0.345053 0.029*
C7 0.34866 (11) 0.69174 (12) 0.53244 (7) 0.0155 (3)
H7 0.331881 0.624187 0.508755 0.019*
C8 0.40490 (12) 0.76358 (13) 0.48786 (8) 0.0194 (3)
H8 0.420275 0.831957 0.510038 0.023*
H9 0.364745 0.779817 0.448615 0.023*
C9 0.49799 (12) 0.70959 (15) 0.46867 (8) 0.0231 (4)
H10 0.482171 0.646833 0.441134 0.028*
H11 0.535678 0.760259 0.443040 0.028*
C10 0.55896 (12) 0.67335 (16) 0.52738 (8) 0.0261 (4)
H12 0.614416 0.631283 0.512864 0.031*
H13 0.584414 0.736967 0.550800 0.031*
C11 0.50120 (12) 0.60571 (14) 0.57284 (8) 0.0214 (3)
H14 0.541338 0.589208 0.612053 0.026*
H15 0.483612 0.537232 0.551501 0.026*
C12 0.41006 (11) 0.66312 (13) 0.59209 (7) 0.0173 (3)
H16 0.372995 0.616336 0.620556 0.021*
H17 0.427449 0.729027 0.616312 0.021*
C13 0.01049 (11) 0.75831 (13) 0.48221 (7) 0.0171 (3)
H18 0.026349 0.739901 0.436925 0.020*
C14 −0.05565 (12) 0.85514 (13) 0.47973 (8) 0.0196 (3)
H19 −0.023073 0.915540 0.458747 0.024*
H20 −0.070252 0.877139 0.524145 0.024*
C15 −0.14923 (12) 0.82858 (14) 0.44199 (8) 0.0210 (3)
H21 −0.193205 0.890760 0.443257 0.025*
H22 −0.135037 0.814825 0.396327 0.025*
C16 −0.19864 (12) 0.73113 (15) 0.46954 (8) 0.0234 (4)
H23 −0.256468 0.713587 0.442226 0.028*
H24 −0.219839 0.747881 0.513424 0.028*
C17 −0.13164 (13) 0.63472 (14) 0.47271 (9) 0.0246 (4)
H25 −0.116038 0.612820 0.428457 0.030*
H26 −0.164296 0.574063 0.493383 0.030*
C18 −0.03899 (12) 0.66161 (13) 0.51117 (8) 0.0225 (3)
H27 −0.054045 0.677124 0.556482 0.027*
H28 0.004969 0.599326 0.511027 0.027*
C19 0.34950 (11) 0.72475 (12) 0.75081 (7) 0.0143 (3)
C20 0.35781 (11) 0.64968 (12) 0.80354 (7) 0.0165 (3)
C21 0.35957 (11) 0.58263 (13) 0.84443 (7) 0.0179 (3)
C22 0.35866 (13) 0.50039 (14) 0.89235 (8) 0.0246 (4)
H30 0.422855 0.471409 0.907068 0.030*
C23 0.28235 (16) 0.50218 (17) 0.94202 (9) 0.0337 (4)
H31 0.300638 0.477198 0.986107 0.040*
H32 0.235451 0.561790 0.940136 0.040*
C24 0.27579 (14) 0.42104 (15) 0.88987 (9) 0.0289 (4)
H33 0.225023 0.430424 0.855535 0.035*
H34 0.290246 0.345786 0.901532 0.035*
C25 0.19047 (11) 0.65995 (12) 0.72937 (7) 0.0161 (3)
H35 0.217077 0.593327 0.749938 0.019*
C26 0.12855 (12) 0.71616 (14) 0.77799 (8) 0.0212 (3)
H36 0.167993 0.731520 0.817682 0.025*
H37 0.105625 0.785192 0.759745 0.025*
C27 0.04233 (13) 0.64810 (16) 0.79503 (8) 0.0278 (4)
H38 0.001660 0.688525 0.824667 0.033*
H39 0.065054 0.582447 0.817556 0.033*
C28 −0.01730 (12) 0.61746 (16) 0.73466 (8) 0.0263 (4)
H40 −0.071153 0.570605 0.746631 0.032*
H41 −0.044864 0.682696 0.714150 0.032*
C29 0.04498 (12) 0.55937 (14) 0.68713 (8) 0.0226 (4)
H42 0.005834 0.541935 0.647639 0.027*
H43 0.068426 0.491401 0.706556 0.027*
C30 0.13082 (11) 0.62796 (13) 0.66927 (7) 0.0173 (3)
H44 0.171569 0.587352 0.639778 0.021*
H45 0.107523 0.693073 0.646411 0.021*
C31 0.51602 (11) 0.78749 (12) 0.78087 (7) 0.0154 (3)
H46 0.501379 0.770673 0.826590 0.018*
C32 0.55969 (12) 0.89931 (13) 0.77874 (8) 0.0198 (3)
H47 0.514586 0.951259 0.797183 0.024*
H48 0.569124 0.919683 0.733302 0.024*
C33 0.65602 (12) 0.90446 (13) 0.81646 (8) 0.0212 (3)
H49 0.684691 0.976251 0.811104 0.025*
H50 0.645231 0.893817 0.862918 0.025*
C34 0.72569 (12) 0.82016 (14) 0.79387 (8) 0.0220 (3)
H51 0.785401 0.822357 0.821440 0.026*
H52 0.742891 0.835846 0.748973 0.026*
C35 0.68131 (12) 0.70902 (14) 0.79694 (8) 0.0223 (4)
H53 0.669835 0.690603 0.842419 0.027*
H54 0.726701 0.655847 0.780054 0.027*
C36 0.58615 (12) 0.70403 (13) 0.75741 (8) 0.0211 (3)
H55 0.598301 0.716785 0.711324 0.025*
H56 0.557596 0.631888 0.761341 0.025*
N1 0.25819 (9) 0.74443 (10) 0.55028 (6) 0.0152 (3)
N2 0.10047 (10) 0.78421 (11) 0.51761 (7) 0.0183 (3)
H1 0.0964 (14) 0.8248 (14) 0.5499 (8) 0.022*
N3 0.27221 (9) 0.72905 (10) 0.71271 (6) 0.0152 (3)
N4 0.42557 (10) 0.78865 (11) 0.74247 (6) 0.0164 (3)
H29 0.4208 (14) 0.8347 (14) 0.7126 (8) 0.020*
Fe 0.25601 (2) 0.83290 (2) 0.63472 (2) 0.01437 (8)
Cl1 0.37746 (3) 0.95842 (3) 0.62727 (2) 0.02006 (10)
Cl2 0.11601 (3) 0.92675 (3) 0.64870 (2) 0.02200 (10)

Dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)iron(II) (5) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0192 (8) 0.0150 (7) 0.0144 (7) −0.0004 (6) 0.0018 (6) 0.0015 (6)
C2 0.0155 (7) 0.0178 (8) 0.0171 (8) 0.0012 (6) 0.0000 (6) 0.0017 (6)
C3 0.0161 (7) 0.0175 (8) 0.0172 (8) 0.0000 (6) −0.0004 (6) 0.0018 (6)
C4 0.0191 (8) 0.0179 (8) 0.0159 (7) 0.0001 (6) −0.0013 (6) −0.0025 (6)
C5 0.0242 (8) 0.0186 (8) 0.0209 (8) 0.0027 (7) 0.0011 (7) −0.0009 (6)
C6 0.0272 (9) 0.0245 (9) 0.0218 (8) 0.0012 (7) 0.0064 (7) −0.0033 (7)
C7 0.0165 (7) 0.0159 (7) 0.0140 (7) 0.0021 (6) 0.0020 (6) −0.0008 (6)
C8 0.0212 (8) 0.0210 (8) 0.0163 (8) 0.0007 (7) 0.0034 (6) 0.0032 (6)
C9 0.0222 (8) 0.0286 (9) 0.0188 (8) 0.0022 (7) 0.0062 (7) 0.0037 (7)
C10 0.0164 (8) 0.0380 (10) 0.0240 (9) 0.0031 (7) 0.0026 (7) 0.0010 (8)
C11 0.0214 (8) 0.0267 (9) 0.0161 (8) 0.0074 (7) 0.0001 (6) 0.0011 (7)
C12 0.0186 (8) 0.0191 (8) 0.0142 (7) 0.0023 (6) 0.0015 (6) 0.0009 (6)
C13 0.0162 (8) 0.0187 (8) 0.0162 (7) 0.0004 (6) −0.0005 (6) −0.0011 (6)
C14 0.0190 (8) 0.0174 (8) 0.0223 (8) 0.0017 (6) −0.0003 (6) −0.0005 (6)
C15 0.0168 (8) 0.0241 (8) 0.0220 (8) 0.0028 (7) −0.0002 (6) −0.0005 (7)
C16 0.0176 (8) 0.0324 (10) 0.0201 (8) −0.0038 (7) 0.0013 (6) −0.0010 (7)
C17 0.0259 (9) 0.0227 (9) 0.0252 (9) −0.0072 (7) 0.0003 (7) 0.0012 (7)
C18 0.0248 (8) 0.0197 (8) 0.0229 (8) 0.0007 (7) −0.0013 (7) 0.0031 (7)
C19 0.0177 (7) 0.0127 (7) 0.0125 (7) 0.0012 (6) 0.0028 (6) −0.0017 (6)
C20 0.0162 (7) 0.0178 (8) 0.0154 (7) −0.0016 (6) 0.0004 (6) −0.0014 (6)
C21 0.0180 (8) 0.0205 (8) 0.0153 (7) −0.0008 (6) 0.0019 (6) −0.0019 (6)
C22 0.0275 (9) 0.0249 (9) 0.0213 (8) −0.0021 (7) 0.0000 (7) 0.0084 (7)
C23 0.0471 (12) 0.0335 (10) 0.0215 (9) −0.0152 (9) 0.0115 (8) 0.0009 (8)
C24 0.0387 (10) 0.0209 (9) 0.0272 (9) −0.0069 (8) 0.0034 (8) 0.0049 (7)
C25 0.0173 (7) 0.0163 (7) 0.0147 (7) −0.0029 (6) 0.0016 (6) 0.0001 (6)
C26 0.0208 (8) 0.0270 (9) 0.0161 (8) −0.0055 (7) 0.0036 (6) −0.0053 (7)
C27 0.0257 (9) 0.0401 (11) 0.0180 (8) −0.0120 (8) 0.0067 (7) −0.0055 (7)
C28 0.0200 (8) 0.0377 (10) 0.0215 (8) −0.0109 (8) 0.0040 (7) −0.0023 (7)
C29 0.0246 (9) 0.0267 (9) 0.0164 (8) −0.0093 (7) 0.0002 (7) −0.0010 (7)
C30 0.0196 (8) 0.0186 (8) 0.0138 (7) −0.0028 (6) 0.0021 (6) −0.0018 (6)
C31 0.0164 (7) 0.0163 (7) 0.0134 (7) −0.0024 (6) −0.0002 (6) −0.0001 (6)
C32 0.0197 (8) 0.0163 (8) 0.0232 (8) −0.0018 (6) −0.0007 (6) 0.0011 (6)
C33 0.0207 (8) 0.0182 (8) 0.0244 (8) −0.0044 (7) −0.0025 (7) 0.0009 (7)
C34 0.0179 (8) 0.0270 (9) 0.0210 (8) −0.0029 (7) −0.0012 (6) 0.0022 (7)
C35 0.0208 (8) 0.0210 (8) 0.0247 (8) 0.0039 (7) −0.0025 (7) −0.0027 (7)
C36 0.0213 (8) 0.0196 (8) 0.0221 (8) 0.0007 (7) −0.0023 (7) −0.0042 (7)
N1 0.0154 (6) 0.0160 (6) 0.0141 (6) 0.0015 (5) 0.0010 (5) 0.0004 (5)
N2 0.0179 (7) 0.0204 (7) 0.0166 (7) 0.0026 (6) −0.0017 (5) −0.0047 (5)
N3 0.0168 (6) 0.0157 (6) 0.0133 (6) −0.0012 (5) 0.0020 (5) −0.0011 (5)
N4 0.0179 (7) 0.0172 (7) 0.0140 (6) −0.0023 (5) −0.0006 (5) 0.0040 (5)
Fe 0.01670 (12) 0.01337 (12) 0.01306 (12) 0.00048 (9) 0.00100 (8) −0.00022 (8)
Cl1 0.0227 (2) 0.01594 (18) 0.02139 (19) −0.00324 (15) −0.00072 (15) 0.00174 (14)
Cl2 0.0226 (2) 0.0198 (2) 0.0237 (2) 0.00596 (15) 0.00141 (15) −0.00294 (15)

Dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)iron(II) (5) . Geometric parameters (Å, º)

C1—N1 1.309 (2) C20—C21 1.192 (2)
C1—N2 1.340 (2) C21—C22 1.430 (2)
C1—C2 1.442 (2) C22—C23 1.508 (3)
C2—C3 1.192 (2) C22—C24 1.520 (3)
C3—C4 1.432 (2) C22—H30 1.0000
C4—C6 1.508 (2) C23—C24 1.483 (3)
C4—C5 1.512 (2) C23—H31 0.9900
C4—H2 1.0000 C23—H32 0.9900
C5—C6 1.486 (2) C24—H33 0.9900
C5—H3 0.9900 C24—H34 0.9900
C5—H4 0.9900 C25—N3 1.479 (2)
C6—H5 0.9900 C25—C26 1.523 (2)
C6—H6 0.9900 C25—C30 1.524 (2)
C7—N1 1.480 (2) C25—H35 1.0000
C7—C12 1.518 (2) C26—C27 1.523 (2)
C7—C8 1.526 (2) C26—H36 0.9900
C7—H7 1.0000 C26—H37 0.9900
C8—C9 1.526 (2) C27—C28 1.524 (2)
C8—H8 0.9900 C27—H38 0.9900
C8—H9 0.9900 C27—H39 0.9900
C9—C10 1.525 (2) C28—C29 1.522 (3)
C9—H10 0.9900 C28—H40 0.9900
C9—H11 0.9900 C28—H41 0.9900
C10—C11 1.519 (2) C29—C30 1.527 (2)
C10—H12 0.9900 C29—H42 0.9900
C10—H13 0.9900 C29—H43 0.9900
C11—C12 1.523 (2) C30—H44 0.9900
C11—H14 0.9900 C30—H45 0.9900
C11—H15 0.9900 C31—N4 1.462 (2)
C12—H16 0.9900 C31—C36 1.521 (2)
C12—H17 0.9900 C31—C32 1.525 (2)
C13—N2 1.462 (2) C31—H46 1.0000
C13—C14 1.520 (2) C32—C33 1.526 (2)
C13—C18 1.526 (2) C32—H47 0.9900
C13—H18 1.0000 C32—H48 0.9900
C14—C15 1.529 (2) C33—C34 1.518 (2)
C14—H19 0.9900 C33—H49 0.9900
C14—H20 0.9900 C33—H50 0.9900
C15—C16 1.521 (2) C34—C35 1.522 (2)
C15—H21 0.9900 C34—H51 0.9900
C15—H22 0.9900 C34—H52 0.9900
C16—C17 1.523 (3) C35—C36 1.531 (2)
C16—H23 0.9900 C35—H53 0.9900
C16—H24 0.9900 C35—H54 0.9900
C17—C18 1.526 (2) C36—H55 0.9900
C17—H25 0.9900 C36—H56 0.9900
C17—H26 0.9900 N1—Fe 2.0727 (15)
C18—H27 0.9900 N2—H1 0.844 (15)
C18—H28 0.9900 N3—Fe 2.0795 (15)
C19—N3 1.310 (2) N4—H29 0.847 (15)
C19—N4 1.342 (2) Fe—Cl2 2.3009 (10)
C19—C20 1.442 (2) Fe—Cl1 2.3147 (9)
N1—C1—N2 122.59 (15) C23—C22—H30 116.1
N1—C1—C2 121.70 (15) C24—C22—H30 116.1
N2—C1—C2 115.70 (14) C24—C23—C22 61.07 (13)
C3—C2—C1 179.10 (18) C24—C23—H31 117.7
C2—C3—C4 179.02 (18) C22—C23—H31 117.7
C3—C4—C6 118.74 (14) C24—C23—H32 117.7
C3—C4—C5 119.09 (14) C22—C23—H32 117.7
C6—C4—C5 58.96 (11) H31—C23—H32 114.8
C3—C4—H2 116.0 C23—C24—C22 60.26 (13)
C6—C4—H2 116.0 C23—C24—H33 117.7
C5—C4—H2 116.0 C22—C24—H33 117.7
C6—C5—C4 60.36 (11) C23—C24—H34 117.7
C6—C5—H3 117.7 C22—C24—H34 117.7
C4—C5—H3 117.7 H33—C24—H34 114.9
C6—C5—H4 117.7 N3—C25—C26 110.16 (13)
C4—C5—H4 117.7 N3—C25—C30 111.15 (13)
H3—C5—H4 114.9 C26—C25—C30 111.04 (13)
C5—C6—C4 60.67 (11) N3—C25—H35 108.1
C5—C6—H5 117.7 C26—C25—H35 108.1
C4—C6—H5 117.7 C30—C25—H35 108.1
C5—C6—H6 117.7 C27—C26—C25 111.50 (14)
C4—C6—H6 117.7 C27—C26—H36 109.3
H5—C6—H6 114.8 C25—C26—H36 109.3
N1—C7—C12 110.96 (13) C27—C26—H37 109.3
N1—C7—C8 110.50 (13) C25—C26—H37 109.3
C12—C7—C8 110.32 (13) H36—C26—H37 108.0
N1—C7—H7 108.3 C26—C27—C28 110.96 (14)
C12—C7—H7 108.3 C26—C27—H38 109.4
C8—C7—H7 108.3 C28—C27—H38 109.4
C7—C8—C9 110.96 (14) C26—C27—H39 109.4
C7—C8—H8 109.4 C28—C27—H39 109.4
C9—C8—H8 109.4 H38—C27—H39 108.0
C7—C8—H9 109.4 C29—C28—C27 110.32 (15)
C9—C8—H9 109.4 C29—C28—H40 109.6
H8—C8—H9 108.0 C27—C28—H40 109.6
C10—C9—C8 111.94 (14) C29—C28—H41 109.6
C10—C9—H10 109.2 C27—C28—H41 109.6
C8—C9—H10 109.2 H40—C28—H41 108.1
C10—C9—H11 109.2 C28—C29—C30 111.05 (14)
C8—C9—H11 109.2 C28—C29—H42 109.4
H10—C9—H11 107.9 C30—C29—H42 109.4
C11—C10—C9 111.72 (14) C28—C29—H43 109.4
C11—C10—H12 109.3 C30—C29—H43 109.4
C9—C10—H12 109.3 H42—C29—H43 108.0
C11—C10—H13 109.3 C25—C30—C29 110.77 (13)
C9—C10—H13 109.3 C25—C30—H44 109.5
H12—C10—H13 107.9 C29—C30—H44 109.5
C10—C11—C12 111.46 (14) C25—C30—H45 109.5
C10—C11—H14 109.3 C29—C30—H45 109.5
C12—C11—H14 109.3 H44—C30—H45 108.1
C10—C11—H15 109.3 N4—C31—C36 112.40 (13)
C12—C11—H15 109.3 N4—C31—C32 108.07 (13)
H14—C11—H15 108.0 C36—C31—C32 111.00 (14)
C7—C12—C11 110.16 (13) N4—C31—H46 108.4
C7—C12—H16 109.6 C36—C31—H46 108.4
C11—C12—H16 109.6 C32—C31—H46 108.4
C7—C12—H17 109.6 C31—C32—C33 111.49 (13)
C11—C12—H17 109.6 C31—C32—H47 109.3
H16—C12—H17 108.1 C33—C32—H47 109.3
N2—C13—C14 110.21 (13) C31—C32—H48 109.3
N2—C13—C18 111.59 (13) C33—C32—H48 109.3
C14—C13—C18 111.26 (14) H47—C32—H48 108.0
N2—C13—H18 107.9 C34—C33—C32 111.75 (14)
C14—C13—H18 107.9 C34—C33—H49 109.3
C18—C13—H18 107.9 C32—C33—H49 109.3
C13—C14—C15 110.26 (13) C34—C33—H50 109.3
C13—C14—H19 109.6 C32—C33—H50 109.3
C15—C14—H19 109.6 H49—C33—H50 107.9
C13—C14—H20 109.6 C33—C34—C35 110.85 (14)
C15—C14—H20 109.6 C33—C34—H51 109.5
H19—C14—H20 108.1 C35—C34—H51 109.5
C16—C15—C14 111.69 (14) C33—C34—H52 109.5
C16—C15—H21 109.3 C35—C34—H52 109.5
C14—C15—H21 109.3 H51—C34—H52 108.1
C16—C15—H22 109.3 C34—C35—C36 110.99 (14)
C14—C15—H22 109.3 C34—C35—H53 109.4
H21—C15—H22 107.9 C36—C35—H53 109.4
C15—C16—C17 111.43 (14) C34—C35—H54 109.4
C15—C16—H23 109.3 C36—C35—H54 109.4
C17—C16—H23 109.3 H53—C35—H54 108.0
C15—C16—H24 109.3 C31—C36—C35 110.63 (13)
C17—C16—H24 109.3 C31—C36—H55 109.5
H23—C16—H24 108.0 C35—C36—H55 109.5
C16—C17—C18 110.53 (14) C31—C36—H56 109.5
C16—C17—H25 109.5 C35—C36—H56 109.5
C18—C17—H25 109.5 H55—C36—H56 108.1
C16—C17—H26 109.5 C1—N1—C7 116.72 (13)
C18—C17—H26 109.5 C1—N1—Fe 123.97 (11)
H25—C17—H26 108.1 C7—N1—Fe 119.30 (10)
C13—C18—C17 110.69 (14) C1—N2—C13 124.24 (14)
C13—C18—H27 109.5 C1—N2—H1 117.7 (14)
C17—C18—H27 109.5 C13—N2—H1 116.7 (14)
C13—C18—H28 109.5 C19—N3—C25 117.06 (13)
C17—C18—H28 109.5 C19—N3—Fe 123.80 (11)
H27—C18—H28 108.1 C25—N3—Fe 119.04 (10)
N3—C19—N4 122.01 (14) C19—N4—C31 126.11 (13)
N3—C19—C20 121.58 (14) C19—N4—H29 117.3 (13)
N4—C19—C20 116.41 (14) C31—N4—H29 116.6 (13)
C21—C20—C19 174.78 (17) N1—Fe—N3 108.64 (6)
C20—C21—C22 177.90 (18) N1—Fe—Cl2 114.76 (5)
C21—C22—C23 119.33 (16) N3—Fe—Cl2 106.66 (5)
C21—C22—C24 118.22 (15) N1—Fe—Cl1 105.69 (5)
C23—C22—C24 58.66 (12) N3—Fe—Cl1 114.71 (5)
C21—C22—H30 116.1 Cl2—Fe—Cl1 106.61 (4)
C3—C4—C5—C6 −107.90 (17) C31—C32—C33—C34 54.38 (19)
C3—C4—C6—C5 108.49 (17) C32—C33—C34—C35 −54.99 (19)
N1—C7—C8—C9 −179.50 (13) C33—C34—C35—C36 56.42 (19)
C12—C7—C8—C9 57.43 (17) N4—C31—C36—C35 177.45 (13)
C7—C8—C9—C10 −53.92 (19) C32—C31—C36—C35 56.28 (18)
C8—C9—C10—C11 52.2 (2) C34—C35—C36—C31 −57.25 (19)
C9—C10—C11—C12 −54.00 (19) N2—C1—N1—C7 −173.40 (14)
N1—C7—C12—C11 178.12 (13) C2—C1—N1—C7 5.2 (2)
C8—C7—C12—C11 −59.07 (18) N2—C1—N1—Fe 5.9 (2)
C10—C11—C12—C7 57.54 (18) C2—C1—N1—Fe −175.49 (11)
N2—C13—C14—C15 179.28 (13) C12—C7—N1—C1 −151.55 (14)
C18—C13—C14—C15 −56.38 (18) C8—C7—N1—C1 85.76 (17)
C13—C14—C15—C16 55.25 (19) C12—C7—N1—Fe 29.09 (16)
C14—C15—C16—C17 −55.31 (19) C8—C7—N1—Fe −93.61 (13)
C15—C16—C17—C18 55.58 (19) N1—C1—N2—C13 −167.61 (15)
N2—C13—C18—C17 −178.89 (14) C2—C1—N2—C13 13.7 (2)
C14—C13—C18—C17 57.55 (18) C14—C13—N2—C1 −156.41 (15)
C16—C17—C18—C13 −56.52 (19) C18—C13—N2—C1 79.44 (19)
C21—C22—C23—C24 107.03 (19) N4—C19—N3—C25 −175.90 (14)
C21—C22—C24—C23 −108.9 (2) C20—C19—N3—C25 5.0 (2)
N3—C25—C26—C27 178.69 (13) N4—C19—N3—Fe 0.3 (2)
C30—C25—C26—C27 55.11 (18) C20—C19—N3—Fe −178.76 (11)
C25—C26—C27—C28 −55.9 (2) C26—C25—N3—C19 85.50 (17)
C26—C27—C28—C29 56.7 (2) C30—C25—N3—C19 −150.99 (14)
C27—C28—C29—C30 −57.4 (2) C26—C25—N3—Fe −90.90 (14)
N3—C25—C30—C29 −178.35 (13) C30—C25—N3—Fe 32.62 (16)
C26—C25—C30—C29 −55.34 (18) N3—C19—N4—C31 −177.79 (14)
C28—C29—C30—C25 56.85 (19) C20—C19—N4—C31 1.3 (2)
N4—C31—C32—C33 −178.60 (13) C36—C31—N4—C19 84.39 (19)
C36—C31—C32—C33 −54.92 (18) C32—C31—N4—C19 −152.79 (15)

Dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)iron(II) (5) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H1···Cl2 0.84 (2) 2.42 (2) 3.2511 (19) 169 (2)
N4—H29···Cl1 0.85 (2) 2.41 (2) 3.2459 (18) 170 (2)
C22—H30···Cl1i 1.00 2.90 3.744 (3) 143
C35—H53···Cl1i 0.99 3.05 3.613 (2) 118
C28—H40···Cl2ii 0.99 2.91 3.699 (2) 138

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x, y−1/2, −z+3/2.

Dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)cobalt(II) (6) . Crystal data

[CoCl2(C18H28N2)2] F(000) = 1444
Mr = 674.67 Dx = 1.233 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 13.8898 (3) Å Cell parameters from 25049 reflections
b = 12.5574 (3) Å θ = 1.9–27.3°
c = 20.8394 (5) Å µ = 0.65 mm1
β = 91.717 (2)° T = 153 K
V = 3633.17 (15) Å3 Rod, blue
Z = 4 0.39 × 0.19 × 0.10 mm

Dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)cobalt(II) (6) . Data collection

Stoe IPDS 2T diffractometer 7124 independent reflections
Radiation source: fine-focus sealed tube 5922 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.042
area detector scans θmax = 26.0°, θmin = 2.2°
Absorption correction: numerical X-Area and X-Red (Stoe & Cie, 2002) h = −15→17
Tmin = 0.807, Tmax = 0.938 k = −15→15
22018 measured reflections l = −25→25

Dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)cobalt(II) (6) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0426P)2 + 1.0094P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
7124 reflections Δρmax = 0.65 e Å3
394 parameters Δρmin = −0.36 e Å3
2 restraints

Dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)cobalt(II) (6) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)cobalt(II) (6) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.68127 (13) 0.26772 (14) 0.01098 (8) 0.0221 (4)
C2 0.68620 (13) 0.33626 (15) −0.04462 (8) 0.0246 (4)
C3 0.69022 (13) 0.39139 (14) −0.09095 (8) 0.0238 (4)
C4 0.69597 (14) 0.45734 (15) −0.14694 (8) 0.0255 (4)
H2 0.639622 0.453885 −0.177878 0.031*
C5 0.74656 (15) 0.56342 (15) −0.14185 (9) 0.0314 (4)
H3 0.720164 0.623037 −0.168012 0.038*
H4 0.774340 0.584306 −0.099389 0.038*
C6 0.79318 (16) 0.47400 (17) −0.17614 (10) 0.0357 (5)
H5 0.849734 0.439518 −0.154864 0.043*
H6 0.795549 0.478255 −0.223499 0.043*
C7 0.84593 (13) 0.30851 (14) 0.03345 (8) 0.0216 (4)
H7 0.829147 0.375167 0.009358 0.026*
C8 0.90582 (13) 0.33917 (15) 0.09268 (8) 0.0242 (4)
H8 0.923234 0.274419 0.117521 0.029*
H9 0.867750 0.386219 0.120380 0.029*
C9 0.99708 (14) 0.39662 (17) 0.07312 (9) 0.0311 (4)
H11 0.979370 0.464254 0.051400 0.037*
H10 1.036606 0.414083 0.112028 0.037*
C10 1.05599 (15) 0.3288 (2) 0.02837 (10) 0.0386 (5)
H13 1.111608 0.370733 0.013820 0.046*
H12 1.081342 0.266023 0.052129 0.046*
C11 0.99668 (15) 0.29143 (18) −0.02980 (9) 0.0344 (5)
H15 1.035268 0.240872 −0.054871 0.041*
H14 0.980910 0.353300 −0.057618 0.041*
C12 0.90331 (14) 0.23711 (15) −0.01041 (8) 0.0275 (4)
H17 0.863810 0.220094 −0.049399 0.033*
H16 0.918831 0.169466 0.012003 0.033*
C13 0.50831 (13) 0.24230 (15) −0.01777 (8) 0.0251 (4)
H18 0.525235 0.259981 −0.062842 0.030*
C14 0.44241 (14) 0.14592 (16) −0.01981 (9) 0.0293 (4)
H19 0.427183 0.124519 0.024470 0.035*
H20 0.475377 0.085598 −0.040437 0.035*
C15 0.34929 (14) 0.17201 (16) −0.05751 (9) 0.0303 (4)
H22 0.364137 0.184913 −0.103020 0.036*
H21 0.305130 0.110251 −0.055881 0.036*
C16 0.29970 (14) 0.26938 (18) −0.03075 (9) 0.0345 (5)
H24 0.242165 0.286411 −0.058018 0.041*
H23 0.277878 0.253451 0.013014 0.041*
C17 0.36628 (16) 0.36497 (17) −0.02816 (10) 0.0369 (5)
H25 0.333240 0.425682 −0.007993 0.044*
H26 0.382614 0.386012 −0.072302 0.044*
C18 0.45860 (15) 0.33863 (16) 0.01048 (10) 0.0328 (4)
H27 0.502652 0.400597 0.010098 0.039*
H28 0.442784 0.323783 0.055614 0.039*
C19 0.84880 (13) 0.27434 (14) 0.25053 (8) 0.0213 (4)
C20 0.85597 (13) 0.34902 (14) 0.30319 (8) 0.0236 (4)
C21 0.85812 (14) 0.41499 (15) 0.34448 (8) 0.0259 (4)
C22 0.85834 (17) 0.49612 (17) 0.39270 (9) 0.0364 (5)
H30 0.922987 0.522900 0.407681 0.044*
C23 0.7774 (2) 0.57704 (18) 0.39069 (11) 0.0444 (6)
H31 0.793351 0.651330 0.402858 0.053*
H32 0.727111 0.569752 0.356306 0.053*
C24 0.7808 (2) 0.4955 (2) 0.44195 (11) 0.0510 (7)
H34 0.732534 0.437550 0.439489 0.061*
H33 0.798758 0.519109 0.486029 0.061*
C25 0.68956 (13) 0.33810 (15) 0.22933 (8) 0.0235 (4)
H35 0.715959 0.403773 0.250527 0.028*
C26 0.63157 (14) 0.37183 (15) 0.16962 (8) 0.0255 (4)
H37 0.607557 0.307863 0.146445 0.031*
H36 0.673432 0.412041 0.140594 0.031*
C27 0.54659 (15) 0.44134 (17) 0.18814 (9) 0.0336 (5)
H38 0.570996 0.508103 0.207974 0.040*
H39 0.508123 0.460339 0.149046 0.040*
C28 0.48268 (16) 0.3839 (2) 0.23505 (10) 0.0408 (5)
H40 0.429548 0.431574 0.247395 0.049*
H41 0.454034 0.320153 0.214098 0.049*
C29 0.54070 (16) 0.3506 (2) 0.29479 (10) 0.0420 (6)
H43 0.498800 0.310458 0.323824 0.050*
H42 0.564340 0.414812 0.317882 0.050*
C30 0.62621 (14) 0.28122 (17) 0.27699 (9) 0.0310 (4)
H44 0.664916 0.263746 0.316245 0.037*
H45 0.602324 0.213672 0.257887 0.037*
C31 1.01589 (13) 0.21371 (14) 0.28045 (8) 0.0223 (4)
H46 1.000389 0.228954 0.326094 0.027*
C32 1.08503 (14) 0.29842 (16) 0.25785 (9) 0.0296 (4)
H47 1.055450 0.369628 0.262519 0.036*
H48 1.097814 0.287215 0.211865 0.036*
C33 1.17997 (15) 0.29393 (16) 0.29703 (10) 0.0319 (4)
H50 1.224839 0.348128 0.280692 0.038*
H49 1.167746 0.310826 0.342464 0.038*
C34 1.22609 (14) 0.18423 (17) 0.29290 (10) 0.0323 (4)
H52 1.244067 0.170104 0.248086 0.039*
H51 1.285534 0.182371 0.320300 0.039*
C35 1.15711 (15) 0.09852 (16) 0.31466 (10) 0.0311 (4)
H53 1.145601 0.107716 0.360982 0.037*
H54 1.186802 0.027682 0.308657 0.037*
C36 1.06089 (14) 0.10306 (15) 0.27715 (9) 0.0289 (4)
H56 1.071126 0.084213 0.231730 0.035*
H55 1.016155 0.050150 0.295016 0.035*
N1 0.75490 (11) 0.25596 (12) 0.05117 (7) 0.0213 (3)
N2 0.59761 (11) 0.21671 (13) 0.01815 (7) 0.0262 (3)
H1 0.5925 (16) 0.1765 (16) 0.0506 (9) 0.031*
N3 0.77203 (11) 0.26909 (11) 0.21253 (7) 0.0211 (3)
N4 0.92585 (11) 0.21171 (13) 0.24215 (7) 0.0232 (3)
H29 0.9211 (16) 0.1646 (15) 0.2125 (9) 0.028*
Co 0.75507 (2) 0.17118 (2) 0.13474 (2) 0.02071 (7)
Cl1 0.87506 (4) 0.04756 (3) 0.12921 (2) 0.02899 (11)
Cl2 0.61692 (4) 0.07705 (4) 0.14621 (2) 0.03201 (11)

Dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)cobalt(II) (6) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0268 (9) 0.0219 (8) 0.0176 (8) −0.0004 (7) 0.0012 (7) −0.0010 (6)
C2 0.0229 (9) 0.0268 (9) 0.0240 (9) −0.0021 (8) −0.0024 (7) −0.0011 (7)
C3 0.0233 (9) 0.0248 (9) 0.0234 (9) −0.0012 (7) −0.0011 (7) −0.0010 (7)
C4 0.0279 (10) 0.0252 (9) 0.0232 (8) −0.0019 (8) −0.0026 (7) 0.0047 (7)
C5 0.0367 (11) 0.0265 (10) 0.0310 (10) −0.0053 (9) 0.0014 (8) 0.0010 (8)
C6 0.0396 (12) 0.0349 (11) 0.0330 (10) 0.0008 (10) 0.0105 (9) 0.0058 (9)
C7 0.0220 (9) 0.0234 (9) 0.0196 (8) −0.0034 (7) 0.0007 (7) 0.0013 (7)
C8 0.0263 (9) 0.0264 (9) 0.0199 (8) −0.0044 (8) 0.0012 (7) −0.0021 (7)
C9 0.0273 (10) 0.0412 (11) 0.0248 (9) −0.0108 (9) −0.0008 (7) −0.0020 (8)
C10 0.0245 (10) 0.0573 (14) 0.0342 (11) −0.0047 (10) 0.0040 (8) −0.0021 (10)
C11 0.0308 (11) 0.0451 (12) 0.0277 (9) −0.0036 (9) 0.0081 (8) −0.0068 (9)
C12 0.0285 (10) 0.0314 (10) 0.0227 (9) −0.0033 (8) 0.0038 (7) −0.0042 (7)
C13 0.0232 (9) 0.0290 (9) 0.0227 (8) −0.0016 (8) −0.0029 (7) 0.0026 (7)
C14 0.0273 (10) 0.0281 (10) 0.0323 (10) −0.0023 (8) −0.0014 (8) 0.0014 (8)
C15 0.0238 (9) 0.0354 (10) 0.0316 (10) −0.0052 (8) −0.0024 (8) 0.0019 (8)
C16 0.0248 (10) 0.0504 (13) 0.0282 (10) 0.0069 (9) 0.0013 (8) 0.0012 (9)
C17 0.0363 (12) 0.0352 (11) 0.0389 (11) 0.0105 (10) −0.0014 (9) −0.0026 (9)
C18 0.0343 (11) 0.0303 (10) 0.0335 (10) 0.0003 (9) −0.0027 (8) −0.0062 (8)
C19 0.0250 (9) 0.0219 (8) 0.0171 (8) 0.0009 (7) 0.0027 (7) 0.0018 (6)
C20 0.0242 (9) 0.0256 (9) 0.0211 (8) 0.0020 (8) 0.0006 (7) 0.0014 (7)
C21 0.0282 (10) 0.0280 (9) 0.0214 (8) 0.0023 (8) −0.0002 (7) 0.0014 (7)
C22 0.0416 (12) 0.0371 (11) 0.0304 (10) 0.0013 (10) −0.0008 (9) −0.0133 (9)
C23 0.0635 (16) 0.0295 (11) 0.0404 (12) 0.0109 (11) 0.0054 (11) −0.0069 (9)
C24 0.0733 (18) 0.0509 (14) 0.0297 (11) 0.0245 (13) 0.0150 (11) −0.0016 (10)
C25 0.0246 (9) 0.0261 (9) 0.0200 (8) 0.0056 (8) 0.0010 (7) 0.0001 (7)
C26 0.0274 (10) 0.0292 (9) 0.0201 (8) 0.0069 (8) 0.0017 (7) 0.0026 (7)
C27 0.0367 (11) 0.0393 (11) 0.0247 (9) 0.0175 (9) −0.0003 (8) 0.0022 (8)
C28 0.0305 (11) 0.0610 (15) 0.0313 (10) 0.0196 (11) 0.0069 (8) 0.0055 (10)
C29 0.0371 (12) 0.0635 (15) 0.0260 (10) 0.0199 (11) 0.0098 (9) 0.0089 (10)
C30 0.0280 (10) 0.0415 (11) 0.0238 (9) 0.0102 (9) 0.0046 (8) 0.0091 (8)
C31 0.0243 (9) 0.0239 (8) 0.0185 (8) 0.0026 (7) −0.0019 (7) 0.0002 (7)
C32 0.0300 (10) 0.0267 (9) 0.0318 (10) −0.0011 (8) −0.0043 (8) 0.0069 (8)
C33 0.0287 (10) 0.0299 (10) 0.0366 (10) −0.0046 (9) −0.0070 (8) 0.0046 (8)
C34 0.0242 (10) 0.0399 (11) 0.0324 (10) 0.0027 (9) −0.0030 (8) −0.0040 (8)
C35 0.0306 (10) 0.0259 (9) 0.0365 (10) 0.0079 (8) −0.0057 (8) −0.0002 (8)
C36 0.0280 (10) 0.0233 (9) 0.0353 (10) 0.0018 (8) −0.0021 (8) −0.0022 (8)
N1 0.0217 (8) 0.0223 (7) 0.0198 (7) −0.0024 (6) 0.0009 (6) 0.0000 (6)
N2 0.0230 (8) 0.0312 (8) 0.0242 (7) −0.0041 (7) −0.0040 (6) 0.0077 (6)
N3 0.0236 (8) 0.0213 (7) 0.0183 (7) 0.0027 (6) 0.0003 (6) 0.0023 (6)
N4 0.0241 (8) 0.0253 (8) 0.0200 (7) 0.0034 (7) −0.0027 (6) −0.0052 (6)
Co 0.02311 (13) 0.02012 (12) 0.01881 (12) −0.00067 (10) −0.00071 (9) 0.00079 (9)
Cl1 0.0338 (3) 0.0225 (2) 0.0304 (2) 0.00481 (19) −0.00324 (18) −0.00277 (17)
Cl2 0.0329 (3) 0.0295 (2) 0.0336 (2) −0.0093 (2) 0.00000 (19) 0.00584 (18)

Dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)cobalt(II) (6) . Geometric parameters (Å, º)

C1—N1 1.311 (2) C20—C21 1.194 (3)
C1—N2 1.339 (2) C21—C22 1.431 (3)
C1—C2 1.447 (2) C22—C24 1.510 (3)
C2—C3 1.191 (3) C22—C23 1.515 (3)
C3—C4 1.435 (2) C22—H30 1.0000
C4—C5 1.508 (3) C23—C24 1.479 (3)
C4—C6 1.512 (3) C23—H31 0.9900
C4—H2 1.0000 C23—H32 0.9900
C5—C6 1.490 (3) C24—H34 0.9900
C5—H3 0.9900 C24—H33 0.9900
C5—H4 0.9900 C25—N3 1.487 (2)
C6—H5 0.9900 C25—C26 1.522 (2)
C6—H6 0.9900 C25—C30 1.524 (2)
C7—N1 1.483 (2) C25—H35 1.0000
C7—C8 1.517 (2) C26—C27 1.527 (3)
C7—C12 1.523 (2) C26—H37 0.9900
C7—H7 1.0000 C26—H36 0.9900
C8—C9 1.525 (3) C27—C28 1.522 (3)
C8—H8 0.9900 C27—H38 0.9900
C8—H9 0.9900 C27—H39 0.9900
C9—C10 1.520 (3) C28—C29 1.521 (3)
C9—H11 0.9900 C28—H40 0.9900
C9—H10 0.9900 C28—H41 0.9900
C10—C11 1.519 (3) C29—C30 1.528 (3)
C10—H13 0.9900 C29—H43 0.9900
C10—H12 0.9900 C29—H42 0.9900
C11—C12 1.530 (3) C30—H44 0.9900
C11—H15 0.9900 C30—H45 0.9900
C11—H14 0.9900 C31—N4 1.463 (2)
C12—H17 0.9900 C31—C32 1.517 (3)
C12—H16 0.9900 C31—C36 1.526 (3)
C13—N2 1.465 (2) C31—H46 1.0000
C13—C14 1.517 (3) C32—C33 1.531 (3)
C13—C18 1.520 (3) C32—H47 0.9900
C13—H18 1.0000 C32—H48 0.9900
C14—C15 1.529 (3) C33—C34 1.523 (3)
C14—H19 0.9900 C33—H50 0.9900
C14—H20 0.9900 C33—H49 0.9900
C15—C16 1.518 (3) C34—C35 1.519 (3)
C15—H22 0.9900 C34—H52 0.9900
C15—H21 0.9900 C34—H51 0.9900
C16—C17 1.515 (3) C35—C36 1.529 (3)
C16—H24 0.9900 C35—H53 0.9900
C16—H23 0.9900 C35—H54 0.9900
C17—C18 1.530 (3) C36—H56 0.9900
C17—H25 0.9900 C36—H55 0.9900
C17—H26 0.9900 N1—Co 2.0412 (14)
C18—H27 0.9900 N2—H1 0.848 (15)
C18—H28 0.9900 N3—Co 2.0426 (14)
C19—N3 1.311 (2) N4—H29 0.856 (15)
C19—N4 1.344 (2) Co—Cl2 2.2725 (5)
C19—C20 1.445 (2) Co—Cl1 2.2830 (5)
N1—C1—N2 122.55 (16) C24—C22—H30 116.2
N1—C1—C2 121.60 (16) C23—C22—H30 116.2
N2—C1—C2 115.85 (16) C24—C23—C22 60.54 (15)
C3—C2—C1 179.04 (19) C24—C23—H31 117.7
C2—C3—C4 179.4 (2) C22—C23—H31 117.7
C3—C4—C5 119.33 (16) C24—C23—H32 117.7
C3—C4—C6 118.63 (17) C22—C23—H32 117.7
C5—C4—C6 59.10 (13) H31—C23—H32 114.8
C3—C4—H2 116.0 C23—C24—C22 60.89 (16)
C5—C4—H2 116.0 C23—C24—H34 117.7
C6—C4—H2 116.0 C22—C24—H34 117.7
C6—C5—C4 60.58 (13) C23—C24—H33 117.7
C6—C5—H3 117.7 C22—C24—H33 117.7
C4—C5—H3 117.7 H34—C24—H33 114.8
C6—C5—H4 117.7 N3—C25—C26 111.25 (14)
C4—C5—H4 117.7 N3—C25—C30 110.13 (15)
H3—C5—H4 114.8 C26—C25—C30 111.19 (16)
C5—C6—C4 60.33 (13) N3—C25—H35 108.0
C5—C6—H5 117.7 C26—C25—H35 108.0
C4—C6—H5 117.7 C30—C25—H35 108.0
C5—C6—H6 117.7 C25—C26—C27 110.28 (14)
C4—C6—H6 117.7 C25—C26—H37 109.6
H5—C6—H6 114.9 C27—C26—H37 109.6
N1—C7—C8 111.17 (13) C25—C26—H36 109.6
N1—C7—C12 110.67 (14) C27—C26—H36 109.6
C8—C7—C12 110.71 (15) H37—C26—H36 108.1
N1—C7—H7 108.1 C28—C27—C26 111.21 (17)
C8—C7—H7 108.1 C28—C27—H38 109.4
C12—C7—H7 108.1 C26—C27—H38 109.4
C7—C8—C9 110.03 (14) C28—C27—H39 109.4
C7—C8—H8 109.7 C26—C27—H39 109.4
C9—C8—H8 109.7 H38—C27—H39 108.0
C7—C8—H9 109.7 C29—C28—C27 110.56 (19)
C9—C8—H9 109.7 C29—C28—H40 109.5
H8—C8—H9 108.2 C27—C28—H40 109.5
C10—C9—C8 111.47 (17) C29—C28—H41 109.5
C10—C9—H11 109.3 C27—C28—H41 109.5
C8—C9—H11 109.3 H40—C28—H41 108.1
C10—C9—H10 109.3 C28—C29—C30 110.79 (16)
C8—C9—H10 109.3 C28—C29—H43 109.5
H11—C9—H10 108.0 C30—C29—H43 109.5
C11—C10—C9 111.94 (18) C28—C29—H42 109.5
C11—C10—H13 109.2 C30—C29—H42 109.5
C9—C10—H13 109.2 H43—C29—H42 108.1
C11—C10—H12 109.2 C25—C30—C29 111.05 (17)
C9—C10—H12 109.2 C25—C30—H44 109.4
H13—C10—H12 107.9 C29—C30—H44 109.4
C10—C11—C12 111.75 (16) C25—C30—H45 109.4
C10—C11—H15 109.3 C29—C30—H45 109.4
C12—C11—H15 109.3 H44—C30—H45 108.0
C10—C11—H14 109.3 N4—C31—C32 112.41 (14)
C12—C11—H14 109.3 N4—C31—C36 107.71 (15)
H15—C11—H14 107.9 C32—C31—C36 111.12 (16)
C7—C12—C11 111.04 (16) N4—C31—H46 108.5
C7—C12—H17 109.4 C32—C31—H46 108.5
C11—C12—H17 109.4 C36—C31—H46 108.5
C7—C12—H16 109.4 C31—C32—C33 110.59 (15)
C11—C12—H16 109.4 C31—C32—H47 109.5
H17—C12—H16 108.0 C33—C32—H47 109.5
N2—C13—C14 109.88 (15) C31—C32—H48 109.5
N2—C13—C18 111.35 (15) C33—C32—H48 109.5
C14—C13—C18 111.41 (16) H47—C32—H48 108.1
N2—C13—H18 108.0 C34—C33—C32 111.12 (16)
C14—C13—H18 108.0 C34—C33—H50 109.4
C18—C13—H18 108.0 C32—C33—H50 109.4
C13—C14—C15 110.11 (16) C34—C33—H49 109.4
C13—C14—H19 109.6 C32—C33—H49 109.4
C15—C14—H19 109.6 H50—C33—H49 108.0
C13—C14—H20 109.6 C35—C34—C33 110.73 (16)
C15—C14—H20 109.6 C35—C34—H52 109.5
H19—C14—H20 108.2 C33—C34—H52 109.5
C16—C15—C14 111.73 (16) C35—C34—H51 109.5
C16—C15—H22 109.3 C33—C34—H51 109.5
C14—C15—H22 109.3 H52—C34—H51 108.1
C16—C15—H21 109.3 C34—C35—C36 111.74 (16)
C14—C15—H21 109.3 C34—C35—H53 109.3
H22—C15—H21 107.9 C36—C35—H53 109.3
C17—C16—C15 111.59 (16) C34—C35—H54 109.3
C17—C16—H24 109.3 C36—C35—H54 109.3
C15—C16—H24 109.3 H53—C35—H54 107.9
C17—C16—H23 109.3 C31—C36—C35 111.34 (16)
C15—C16—H23 109.3 C31—C36—H56 109.4
H24—C16—H23 108.0 C35—C36—H56 109.4
C16—C17—C18 110.40 (17) C31—C36—H55 109.4
C16—C17—H25 109.6 C35—C36—H55 109.4
C18—C17—H25 109.6 H56—C36—H55 108.0
C16—C17—H26 109.6 C1—N1—C7 116.47 (14)
C18—C17—H26 109.6 C1—N1—Co 125.79 (12)
H25—C17—H26 108.1 C7—N1—Co 117.74 (11)
C13—C18—C17 110.58 (16) C1—N2—C13 124.21 (15)
C13—C18—H27 109.5 C1—N2—H1 117.9 (16)
C17—C18—H27 109.5 C13—N2—H1 116.6 (16)
C13—C18—H28 109.5 C19—N3—C25 116.56 (14)
C17—C18—H28 109.5 C19—N3—Co 125.60 (12)
H27—C18—H28 108.1 C25—N3—Co 117.81 (11)
N3—C19—N4 121.93 (16) C19—N4—C31 126.16 (15)
N3—C19—C20 121.86 (16) C19—N4—H29 117.0 (15)
N4—C19—C20 116.20 (16) C31—N4—H29 116.8 (15)
C21—C20—C19 175.8 (2) N1—Co—N3 111.12 (6)
C20—C21—C22 178.0 (2) N1—Co—Cl2 112.43 (4)
C21—C22—C24 119.2 (2) N3—Co—Cl2 107.90 (4)
C21—C22—C23 118.18 (19) N1—Co—Cl1 107.08 (4)
C24—C22—C23 58.57 (15) N3—Co—Cl1 112.48 (4)
C21—C22—H30 116.2 Cl2—Co—Cl1 105.76 (2)
C3—C4—C5—C6 107.7 (2) C31—C32—C33—C34 57.3 (2)
C3—C4—C6—C5 −108.88 (19) C32—C33—C34—C35 −56.4 (2)
N1—C7—C8—C9 −177.91 (15) C33—C34—C35—C36 55.0 (2)
C12—C7—C8—C9 58.6 (2) N4—C31—C36—C35 178.57 (15)
C7—C8—C9—C10 −57.1 (2) C32—C31—C36—C35 55.0 (2)
C8—C9—C10—C11 54.2 (2) C34—C35—C36—C31 −54.4 (2)
C9—C10—C11—C12 −52.3 (3) N2—C1—N1—C7 173.79 (16)
N1—C7—C12—C11 179.12 (15) C2—C1—N1—C7 −5.4 (2)
C8—C7—C12—C11 −57.1 (2) N2—C1—N1—Co −5.6 (2)
C10—C11—C12—C7 53.7 (2) C2—C1—N1—Co 175.14 (12)
N2—C13—C14—C15 −179.74 (15) C8—C7—N1—C1 150.77 (16)
C18—C13—C14—C15 56.4 (2) C12—C7—N1—C1 −85.76 (19)
C13—C14—C15—C16 −55.0 (2) C8—C7—N1—Co −29.76 (18)
C14—C15—C16—C17 55.4 (2) C12—C7—N1—Co 93.71 (15)
C15—C16—C17—C18 −55.7 (2) N1—C1—N2—C13 167.74 (17)
N2—C13—C18—C17 179.27 (16) C2—C1—N2—C13 −13.0 (3)
C14—C13—C18—C17 −57.7 (2) C14—C13—N2—C1 156.28 (17)
C16—C17—C18—C13 56.6 (2) C18—C13—N2—C1 −79.8 (2)
C21—C22—C23—C24 108.7 (2) N4—C19—N3—C25 176.46 (15)
C21—C22—C24—C23 −107.0 (2) C20—C19—N3—C25 −4.6 (2)
N3—C25—C26—C27 179.25 (16) N4—C19—N3—Co −1.4 (2)
C30—C25—C26—C27 56.1 (2) C20—C19—N3—Co 177.62 (12)
C25—C26—C27—C28 −56.9 (2) C26—C25—N3—C19 149.59 (16)
C26—C27—C28—C29 57.3 (2) C30—C25—N3—C19 −86.66 (19)
C27—C28—C29—C30 −56.5 (3) C26—C25—N3—Co −32.41 (18)
N3—C25—C30—C29 −179.81 (16) C30—C25—N3—Co 91.34 (15)
C26—C25—C30—C29 −56.0 (2) N3—C19—N4—C31 177.89 (16)
C28—C29—C30—C25 56.0 (3) C20—C19—N4—C31 −1.1 (3)
N4—C31—C32—C33 −177.17 (15) C32—C31—N4—C19 −83.8 (2)
C36—C31—C32—C33 −56.4 (2) C36—C31—N4—C19 153.48 (17)

Dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)cobalt(II) (6) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H1···Cl2 0.85 (2) 2.37 (2) 3.1979 (16) 166 (2)
N4—H29···Cl1 0.86 (2) 2.35 (2) 3.1917 (15) 168 (2)
C22—H30···Cl1i 1.00 2.95 3.800 (2) 144
C33—H49···Cl1i 0.99 3.09 3.628 (2) 115
C28—H40···Cl2ii 0.99 2.96 3.758 (2) 139

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2.

Funding Statement

This work was funded by China Scholarship Council grant 201508080111 to S. Wang. Universität Magdeburg grant .

References

  1. Barker, J. & Kilner, M. (1994). Coord. Chem. Rev. 133, 219–300.
  2. Batcup, R., Annibale, V. T. & Song, D. (2014). Dalton Trans. 43, 8951–8958. [DOI] [PubMed]
  3. Benson, E. E., Rheingold, A. L. & Kubiak, C. P. (2010). Inorg. Chem. 49, 1458–1464. [DOI] [PubMed]
  4. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  5. Clark, J. H. & Williams, C. S. (1965). Inorg. Chem. 4, 350–357.
  6. Coles, M. P. (2006). Dalton Trans. pp. 985–1001. [DOI] [PubMed]
  7. Collins, S. (2011). Coord. Chem. Rev. 255, 118–138.
  8. Dröse, P., Hrib, C. G., Blaurock, S. & Edelmann, F. T. (2010a). Acta Cryst. E66, m1474. [DOI] [PMC free article] [PubMed]
  9. Dröse, P., Hrib, C. G. & Edelmann, F. T. (2010b). J. Organomet. Chem. 695, 1953–1956.
  10. Edelmann, F. T. (2009). Chem. Soc. Rev. 38, 2253–2268. [DOI] [PubMed]
  11. Edelmann, F. T. (2012). Chem. Soc. Rev. 41, 7657–7672.
  12. Edelmann, F. T. (2013). Adv. Organomet. Chem. 61, 55–374.
  13. Handley, D. A., Hitchcock, P. B., Lee, T. H. & Leigh, G. J. (2001). Inorg. Chim. Acta, 314, 14–21.
  14. Harmgarth, N., Gräsing, D., Dröse, P., Hrib, C. G., Jones, P. G., Lorenz, V., Hilfert, L., Busse, S. & Edelmann, F. T. (2014). Dalton Trans. 43, 5001–5013. [DOI] [PubMed]
  15. Harmgarth, N., Liebing, P., Förster, A., Hilfert, L., Busse, S. & Edelmann, F. T. (2017a). Eur. J. Inorg. Chem. pp. 4473–4479.
  16. Harmgarth, N., Liebing, P., Hillebrand, P., Busse, S. & Edelmann, F. T. (2017b). Acta Cryst. E73, 1443–1448. [DOI] [PMC free article] [PubMed]
  17. Hillebrand, P., Hrib, C. G., Harmgarth, N., Jones, P. G., Lorenz, V., Kühling, M. & Edelmann, F. T. (2014). Inorg. Chem. Commun. 46, 127–129.
  18. Jian, F. F., Bei, F. L. & Wang, X. (2003). Pol. J. Chem. 77, 821–828.
  19. Ong, T.-G., O’Brien, J. S., Korobkov, I. & Richeson, D. S. (2006). Organometallics, 25, 4728–4730.
  20. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  21. Riggio, I., van Albada, G. A., Ellis, D. D., Mutikainen, I., Spek, A. L., Turpeinen, U. & Reedijk, J. (2001). Polyhedron, 20, 2659–2666.
  22. Rowley, C. N., DiLabio, G. A. & Barry, S. T. (2005). Inorg. Chem. 44, 1983–1991. [DOI] [PubMed]
  23. Seidel, W. W., Dachtler, W. & Pape, T. (2012). Z. Anorg. Allg. Chem. 638, 116–121.
  24. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  25. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  26. Sienkiewicz, P., Bielawski, K., Bielawska, A. & Pałka, J. (2005). Environ. Toxicol. Pharmacol. 20, 118–124. [DOI] [PubMed]
  27. Sroor, F. M., Hrib, C. G., Hilfert, L., Busse, S. & Edelmann, F. T. (2015a). New J. Chem. 39, 7595–7601.
  28. Sroor, F. M., Hrib, C. G., Hilfert, L. & Edelmann, F. T. (2013). Z. Anorg. Allg. Chem. 639, 2390–2394.
  29. Sroor, F. M., Hrib, C. G., Hilfert, L. & Edelmann, F. T. (2015b). Z. Anorg. Allg. Chem. 641, 2041–2046.
  30. Sroor, F. M., Hrib, C. G., Hilfert, K., Hartenstein, L., Roesky, P. W. & Edelmann, F. T. (2015c). J. Organomet. Chem. 799–800, 160–165.
  31. Sroor, F. M., Hrib, C. G., Hilfert, L., Jones, P. G. & Edelmann, F. T. (2015d). J. Organomet. Chem. 785, 1–10.
  32. Sroor, F. M., Hrib, C. G., Liebing, P., Hilfert, L., Busse, S. & Edelmann, F. T. (2016). Dalton Trans. 45, 13332–13346. [DOI] [PubMed]
  33. Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.
  34. Takemoto, J. H., Streusand, B. & Hutchinson, B. (1974). Spectrochim. Acta A, 30, 827–834.
  35. Wang, X. (2009). Acta Cryst. E65, m1659. [DOI] [PMC free article] [PubMed]
  36. Wang, S., Sroor, F. M., Liebing, P., Lorenz, V., Hilfert, L. & Edelmann, F. T. (2016). Acta Cryst. E72, 1229–1233. [DOI] [PMC free article] [PubMed]
  37. Weingärtner, W. & Maas, G. (2012). Eur. J. Org. Chem. pp. 6372–6382.
  38. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  39. Xiao, T., Zhang, S., Kehr, G., Hao, X., Erker, G. & Sun, W.-H. (2011). Organometallics, 30, 3658–3665.
  40. Xu, X., Gao, D., Cheng, D., Li, J., Qiang, G. & Guo, H. (2008). Adv. Synth. Catal. 350, 61–64.
  41. Xu, L., Wang, Y.-C., Zhang, W.-X. & Xi, Z. (2013). Dalton Trans. 42, 16466–16469. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 3, 4, 5, 6. DOI: 10.1107/S2056989018014895/zl2740sup1.cif

e-74-01658-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989018014895/zl27403sup2.hkl

e-74-01658-3sup2.hkl (195.8KB, hkl)

Structure factors: contains datablock(s) 4. DOI: 10.1107/S2056989018014895/zl27404sup3.hkl

e-74-01658-4sup3.hkl (200.8KB, hkl)

Structure factors: contains datablock(s) 5. DOI: 10.1107/S2056989018014895/zl27405sup4.hkl

e-74-01658-5sup4.hkl (559.1KB, hkl)

Structure factors: contains datablock(s) 6. DOI: 10.1107/S2056989018014895/zl27406sup5.hkl

e-74-01658-6sup5.hkl (566KB, hkl)

CCDC references: 1848876, 1848879, 1848878, 1848877

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES