Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Oct 19;74(Pt 11):1628–1632. doi: 10.1107/S2056989018014627

Synthesis, crystallographic analysis and Hirshfeld surface analysis of 4-bromo-2-{[2-(5-bromo-2-nitro­phen­yl)hydrazin-1-yl­idene]meth­yl}-5-fluoro­phenol

Mavise Yaman a, Ercan Aydemir b,c, Necmi Dege a, Erbil Agar b, Turganbay S Iskenderov d,*
PMCID: PMC6218898  PMID: 30443395

The title compound is nearly planar with a dihedral angle of 10.6 (4)° between the two benzene rings.

Keywords: crystal structure, Hirshfeld surface, Hydrazone, crystal structure, hydrogen bonding, 5-bromo-4-fluoro-2-hy­droxy­benzaldehyde

Abstract

The title compound, C13H8Br2FN3O3, is nearly planar with a dihedral angle of 10.6 (4)° between the two benzene rings. Intra­molecular N—H⋯O and O—H⋯N hydrogen bonds occur. In the crystal, the mol­ecules are linked by weak C—H⋯O and C—H⋯Br hydrogen bonds. The roles of the inter­molecular inter­actions in the crystal packing were clarified using Hirshfeld surface analysis.

Chemical context  

Hydrazones, the most important derivatives of carboxaldehyde, are widely used both in organic synthesis and in industrial work because of their reaction abilities, such as ring closing, oxidation-reduction, replacement reactions and coupling (Öztürk et al., 2003). They are generally considered to be useful starting materials for the production of pharmaceuticals, pesticides, textile dyestuffs as well as compounds that serve as stabilizers and inhibitors in photography (Kaban & Ocal, 1993). In addition, they exhibit a wide range of applications in the fields of biology, optics, catalysis and analytical chemistry. Their broad spectrum of biological activities includes anti­microbial, anti­fungal, anti­viral, anti­tumor, anti-HIV, anti-inflammatory, anti­neoplastic and analgesic activities (Sudheer et al., 2015; Soujanya & Rajitha, 2017). Hydrazone-based mol­ecular switches, metalloassemblies and sensors have also been developed (Sudheer et al., 2015). Unlike oximes (Sliva et al., 1997; Penkova et al., 2010; Pavlishchuk et al., 2010), hydrazones are mostly obtained as a mixture of E and Z isomers and both isomers are generally weak acids (Mori et al., 2015). Tautomerism between the isomers might also occur in the case of the hydrazone and azo forms (Aydemir & Kaban, 2018). In this study, the structure of the newly synthesized compound has been evaluated by spectroscopic techniques. In view of this, in order to obtain information about the stereochemistry of the mol­ecule and to confirm the assigned structure, X-ray analysis of the title compound was undertaken.graphic file with name e-74-01628-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is illustrated in Fig. 1. The dihedral angle between the aromatic rings is 10.6 (4)°. The N1—N2 and N2–C8 bond lengths are 1.368 (7) and 1.374 (8) Å, respectively. The C13–N3 bond [1.451 (8) Å] in the nitro group is close to the standard value for this type of bond (Allen et al., 1987). Intra­molecular N2—H2⋯O3 and O1—H1⋯N1 hydrogen-bonding inter­actions (Table 1) occur.

Figure 1.

Figure 1

An ORTEP view of 4-bromo-2-{[2-(5-bromo-2-nitro­phen­yl)hydrazin-1-yl­idene]meth­yl}-5-fluoro­phenol. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.91 2.631 (7) 146
N2—H2⋯O3 0.86 2.01 2.619 (7) 127
N2—H2⋯O3i 0.86 2.50 3.293 (7) 155
C4—H4⋯O1ii 0.93 2.60 3.494 (8) 162
C7—H7⋯O3i 0.93 2.66 3.461 (7) 145
C12—H12⋯Br1iii 0.93 3.02 3.908 (7) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

In the crystal, the mol­ecules are linked by weak C—H⋯O and C—H⋯Br hydrogen bonds (Table 1, Fig. 2).

Figure 2.

Figure 2

The view of the crystal packing of the title compound.

Hirshfeld surface analysis  

A Hirshfeld surface analysis was performed to qu­antify the nature of the inter­molecular inter­actions. The Hirshfeld surfaces were generated using CrystalExplorer17.5 (Turner et al., 2017) using a standard (high) surface resolution. Fig. 3 shows the Hirshfeld surfaces mapped over d norm in the range −0.2247 (red) to 1.3787 (blue) a.u. If the value of d norm is negative, the inter­molecular contacts are shorter than the van der Waals radius; these are shown as red regions. A positive value of d norm, shown in blue, indicates that the inter­molecular contacts are longer than the van der Waals radius (Şen et al., 2017). The red regions on the d norm surface correspond to C—H⋯O hydrogen-bonding inter­actions, which comprise 20.2% of the total Hirshfeld surfaces.

Figure 3.

Figure 3

Views of the Hirshfeld surface of the title compound mapped over d norm.

The two-dimensional fingerprint (FP) plots are used to analyse significant differences between the inter­molecular inter­action patterns (Gumus et al., 2018; Kansız & Dege, 2018; Kansiz et al., 2018). Fig. 4 represents the FP plot for the sum of the contacts contributing to the Hirshfeld surface displayed in normal mode. In Fig. 5 distinct spikes indicate different inter­actions between two adjacent mol­ecules in the crystal structure. The contribution from the Br⋯H/H⋯Br contacts make the largest (21.7%) to the Hirshfeld surface (Fig. 5 b). The 20.2% contribution from the O—H⋯O hydrogen bond is seen as a pair of sharp spikes at d e + d i = 2.3 Å) in Fig. 5 a. The distribution of positive and negative potential over the Hirshfeld surface is represented in Fig. 6 (positive electrostatic potential shown in blue region and negative electrostatic potential in red).

Figure 4.

Figure 4

Fingerprint plot of the title compound showing all inter­actions.

Figure 5.

Figure 5

Two-dimensional fingerprint plots with a d norm view of the (a) O⋯H/H⋯O (20.2%), (b) Br⋯H/H⋯Br (21.7%), (c) F⋯H/H⋯F (7.4%), (d) C⋯H/H⋯C (9.7%), (e) N⋯H/H⋯N (3.3%) and (f) H⋯H (6.0%) contacts in the title compound.

Figure 6.

Figure 6

A view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential.

Database survey  

There are no direct precedents for the structure of C13H8Br2FN3O3 in the crystallographic literature (CSD, version 5.39, update of May 2018; Groom et al., 2016) but some similar structures including 2-nitro­phenyl­hydrazine have been reported. All geometric parameters in the title compound agree well with those reported in the literature with the N1—N2 and N2—C8 bond distances being comparable to those in N-(4-chloro-2-nitro­phen­yl)-N′-methyl-N-(quinolin-4-yl­meth­yl­ene)hydrazine [1.367 (2) and 1.386 (3) Å; Karadayı et al., 2005] and N-(4-bromo-2-nitro­phen­yl)-N-methyl-N′-(quinolin-4-yl­methyl­ene)hydrazine [1.359 (3) and 1.393 (4) Å; Öztürk et al., 2003].

Synthesis and crystallization  

5-Bromo-4-fluoro-2-hy­droxy­benzaldehyde (0.5 mmol) was dissolved in hot absolute ethanol (10 mL) and an equimolar amount of 5-bromo-2-nitro­phenyl­hydrazine, dissolved in a minimum volume of absolute ethanol, was slowly added. The product appeared in the first minute. The reaction mixture was refluxed for an additional hour to complete the condensation and then allowed to cool in room temperature. The separated solid was then filtered and washed with ethanol and diethyl ether. The crude product was recrystallized from toluene as pink needle-shaped crystals, 96% yield, m.p. 569–570 K (dec.). The reaction scheme is shown in Fig. 7. UV (CHCl3): λmax 340, 430 nm; IR (KBr): υ 3610 (–OH), 3285 and 1155 (N—H), 3120–2985 (=C—H), 2915 (C—H), 1608 (C=N), 1558 (C=C), 1515 (N—N), 1475 and 1310 (N=O), 1195, 690 and 665 (C—X) cm−1; MS (ESI+): 434.01 ([M + H]+, C13H8Br2FN3O3; calculated 433.03).

Figure 7.

Figure 7

The synthesis of the title compound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound hydrogen atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.97 Å with U iso(H) = 1.2U eq(C)

Table 2. Experimental details.

Crystal data
Chemical formula C13H8Br2FN3O3
M r 433.04
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 16.1360 (14), 4.1745 (3), 21.468 (2)
β (°) 95.026 (7)
V3) 1440.5 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.65
Crystal size (mm) 0.46 × 0.17 × 0.02
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.296, 0.883
No. of measured, independent and observed [I > 2σ(I)] reflections 9546, 2775, 1270
R int 0.113
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.051, 0.098, 0.84
No. of reflections 2775
No. of parameters 200
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.28

Computer programs: X-AREA and X-RED (Stoe & Cie, 2002), SHELXT2014 (Sheldrick, 2015a ), SHELXL2017 (Sheldrick, 2015b ), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018014627/xu5944sup1.cif

e-74-01628-sup1.cif (453.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018014627/xu5944Isup2.hkl

e-74-01628-Isup2.hkl (222KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018014627/xu5944Isup3.cml

CCDC reference: 1864935

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Crystal data

C13H8Br2FN3O3 F(000) = 840
Mr = 433.04 Dx = 1.997 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 16.1360(14) Å Cell parameters from 5914 reflections
b = 4.1745 (3) Å θ = 1.5–29.7°
c = 21.468 (2) Å µ = 5.65 mm1
β = 95.026 (7)° T = 296 K
V = 1440.5 (2) Å3 Needle, pink
Z = 4 0.46 × 0.17 × 0.02 mm

Data collection

Stoe IPDS 2 diffractometer 2775 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 1270 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.113
rotation method scans θmax = 26.0°, θmin = 1.5°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) h = −19→19
Tmin = 0.296, Tmax = 0.883 k = −4→5
9546 measured reflections l = −26→26

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0267P)2] where P = (Fo2 + 2Fc2)/3
S = 0.84 (Δ/σ)max < 0.001
2775 reflections Δρmax = 0.42 e Å3
200 parameters Δρmin = −0.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br2 0.19136 (4) −0.4176 (2) 0.67484 (4) 0.0714 (3)
Br1 0.12607 (5) 1.1323 (3) 0.25304 (4) 0.0787 (3)
O3 0.5159 (3) 0.2810 (14) 0.5457 (2) 0.0689 (16)
F1 −0.0194 (2) 0.9500 (15) 0.3236 (2) 0.107 (2)
N1 0.2772 (3) 0.3510 (15) 0.4968 (3) 0.0503 (14)
N3 0.5145 (3) 0.0903 (18) 0.5895 (3) 0.0566 (15)
N2 0.3538 (3) 0.2591 (14) 0.5232 (3) 0.0564 (18)
H2 0.398154 0.325205 0.507843 0.068*
O2 0.5792 (3) −0.0104 (14) 0.6187 (2) 0.0800 (19)
O1 0.1152 (3) 0.4263 (18) 0.4954 (3) 0.0892 (19)
H1 0.161084 0.357911 0.508414 0.134*
C8 0.3593 (4) 0.0605 (18) 0.5745 (3) 0.0470 (18)
C1 0.1976 (4) 0.8061 (17) 0.3618 (3) 0.0496 (19)
H1A 0.248599 0.848552 0.346371 0.060*
C13 0.4351 (4) −0.0228 (17) 0.6077 (3) 0.050 (2)
C7 0.2755 (4) 0.5174 (18) 0.4473 (3) 0.050 (2)
H7 0.324917 0.564799 0.430059 0.060*
C11 0.3659 (4) −0.3285 (19) 0.6826 (3) 0.062 (2)
H11 0.367763 −0.454009 0.718527 0.074*
C12 0.4369 (4) −0.2110 (18) 0.6608 (3) 0.053 (2)
H12 0.487920 −0.259040 0.682367 0.064*
C6 0.1965 (4) 0.636 (2) 0.4169 (3) 0.0542 (19)
C9 0.2876 (4) −0.0681 (18) 0.5974 (3) 0.0497 (18)
H9 0.236095 −0.024328 0.576206 0.060*
C10 0.2909 (4) −0.2535 (18) 0.6492 (3) 0.055 (2)
C2 0.1272 (4) 0.913 (2) 0.3293 (3) 0.0569 (19)
C5 0.1212 (4) 0.584 (2) 0.4414 (3) 0.067 (2)
C4 0.0481 (4) 0.692 (2) 0.4105 (4) 0.078 (3)
H4 −0.002785 0.660131 0.426706 0.093*
C3 0.0533 (4) 0.849 (2) 0.3552 (3) 0.067 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br2 0.0566 (5) 0.0778 (7) 0.0821 (6) −0.0020 (5) 0.0197 (4) 0.0045 (5)
Br1 0.0781 (6) 0.0915 (8) 0.0632 (5) −0.0096 (5) −0.0115 (4) 0.0140 (5)
O3 0.053 (3) 0.084 (5) 0.070 (3) 0.002 (3) 0.007 (3) 0.023 (3)
F1 0.052 (2) 0.167 (6) 0.098 (3) 0.020 (3) −0.010 (2) 0.037 (3)
N1 0.043 (3) 0.054 (5) 0.053 (4) 0.006 (3) −0.002 (3) −0.005 (3)
N3 0.046 (3) 0.066 (5) 0.058 (4) −0.002 (4) 0.002 (3) −0.006 (4)
N2 0.040 (3) 0.070 (5) 0.060 (4) 0.003 (3) 0.008 (3) 0.006 (3)
O2 0.040 (3) 0.116 (6) 0.082 (4) 0.010 (3) −0.006 (3) 0.016 (3)
O1 0.052 (3) 0.136 (6) 0.080 (4) 0.010 (4) 0.011 (3) 0.042 (4)
C8 0.043 (4) 0.056 (5) 0.043 (4) 0.003 (4) 0.005 (3) −0.004 (4)
C1 0.042 (4) 0.049 (6) 0.058 (5) −0.001 (3) 0.002 (3) 0.000 (4)
C13 0.040 (4) 0.053 (6) 0.060 (5) −0.004 (3) 0.007 (3) −0.006 (4)
C7 0.033 (4) 0.068 (7) 0.048 (4) −0.004 (3) 0.005 (3) 0.000 (4)
C11 0.064 (5) 0.069 (7) 0.053 (4) 0.007 (4) 0.010 (4) 0.009 (4)
C12 0.043 (4) 0.061 (6) 0.054 (4) 0.009 (4) −0.004 (3) −0.003 (4)
C6 0.041 (4) 0.073 (6) 0.047 (4) −0.002 (4) 0.001 (3) 0.001 (4)
C9 0.041 (4) 0.047 (5) 0.061 (4) 0.007 (4) 0.007 (3) −0.011 (4)
C10 0.059 (4) 0.056 (6) 0.049 (4) 0.012 (4) 0.006 (4) −0.001 (4)
C2 0.049 (4) 0.059 (5) 0.062 (4) −0.003 (4) 0.003 (3) −0.007 (4)
C5 0.041 (4) 0.097 (7) 0.064 (5) 0.003 (5) 0.010 (4) 0.018 (5)
C4 0.042 (4) 0.124 (9) 0.069 (5) 0.008 (5) 0.012 (4) 0.015 (5)
C3 0.041 (4) 0.093 (7) 0.062 (5) 0.009 (4) −0.019 (4) −0.002 (5)

Geometric parameters (Å, º)

Br2—C10 1.872 (7) C1—H1A 0.9300
Br1—C2 1.874 (7) C13—C12 1.383 (9)
O3—N3 1.234 (7) C7—C6 1.465 (9)
F1—C3 1.369 (7) C7—H7 0.9300
N1—C7 1.268 (8) C11—C12 1.366 (9)
N1—N2 1.368 (7) C11—C10 1.388 (9)
N3—O2 1.243 (7) C11—H11 0.9300
N3—C13 1.451 (8) C12—H12 0.9300
N2—C8 1.374 (8) C6—C5 1.383 (8)
N2—H2 0.8600 C9—C10 1.353 (10)
O1—C5 1.343 (8) C9—H9 0.9300
O1—H1 0.8200 C2—C3 1.386 (9)
C8—C9 1.402 (8) C5—C4 1.378 (10)
C8—C13 1.406 (9) C4—C3 1.363 (10)
C1—C2 1.356 (9) C4—H4 0.9300
C1—C6 1.381 (9)
C7—N1—N2 117.0 (5) C11—C12—H12 119.0
O3—N3—O2 122.2 (6) C13—C12—H12 119.0
O3—N3—C13 119.4 (6) C1—C6—C5 119.0 (6)
O2—N3—C13 118.4 (6) C1—C6—C7 118.6 (6)
N1—N2—C8 119.6 (5) C5—C6—C7 122.4 (6)
N1—N2—H2 120.2 C10—C9—C8 122.3 (6)
C8—N2—H2 120.2 C10—C9—H9 118.9
C5—O1—H1 109.5 C8—C9—H9 118.9
N2—C8—C9 120.9 (6) C9—C10—C11 121.6 (7)
N2—C8—C13 123.3 (6) C9—C10—Br2 118.6 (5)
C9—C8—C13 115.8 (6) C11—C10—Br2 119.8 (6)
C2—C1—C6 122.5 (6) C1—C2—C3 116.2 (7)
C2—C1—H1A 118.8 C1—C2—Br1 123.6 (5)
C6—C1—H1A 118.8 C3—C2—Br1 120.1 (5)
C12—C13—C8 120.9 (6) O1—C5—C4 116.9 (6)
C12—C13—N3 116.9 (6) O1—C5—C6 122.5 (6)
C8—C13—N3 122.2 (6) C4—C5—C6 120.5 (7)
N1—C7—C6 120.9 (6) C3—C4—C5 117.5 (6)
N1—C7—H7 119.6 C3—C4—H4 121.2
C6—C7—H7 119.6 C5—C4—H4 121.2
C12—C11—C10 117.5 (7) C4—C3—F1 117.7 (6)
C12—C11—H11 121.2 C4—C3—C2 124.2 (6)
C10—C11—H11 121.2 F1—C3—C2 118.1 (7)
C11—C12—C13 122.0 (6)
C7—N1—N2—C8 −175.6 (6) C13—C8—C9—C10 1.7 (10)
N1—N2—C8—C9 4.6 (10) C8—C9—C10—C11 −0.3 (12)
N1—N2—C8—C13 −174.2 (6) C8—C9—C10—Br2 −179.0 (5)
N2—C8—C13—C12 176.8 (7) C12—C11—C10—C9 −0.7 (11)
C9—C8—C13—C12 −2.1 (10) C12—C11—C10—Br2 178.0 (5)
N2—C8—C13—N3 −1.4 (10) C6—C1—C2—C3 1.4 (12)
C9—C8—C13—N3 179.7 (6) C6—C1—C2—Br1 −177.9 (6)
O3—N3—C13—C12 −173.8 (7) C1—C6—C5—O1 −178.7 (8)
O2—N3—C13—C12 6.4 (9) C7—C6—C5—O1 1.5 (13)
O3—N3—C13—C8 4.4 (10) C1—C6—C5—C4 1.6 (13)
O2—N3—C13—C8 −175.3 (7) C7—C6—C5—C4 −178.3 (8)
N2—N1—C7—C6 −177.9 (6) O1—C5—C4—C3 −179.2 (9)
C10—C11—C12—C13 0.3 (11) C6—C5—C4—C3 0.6 (14)
C8—C13—C12—C11 1.2 (11) C5—C4—C3—F1 178.3 (8)
N3—C13—C12—C11 179.5 (7) C5—C4—C3—C2 −1.9 (14)
C2—C1—C6—C5 −2.6 (12) C1—C2—C3—C4 1.0 (13)
C2—C1—C6—C7 177.3 (7) Br1—C2—C3—C4 −179.8 (8)
N1—C7—C6—C1 −177.6 (7) C1—C2—C3—F1 −179.3 (7)
N1—C7—C6—C5 2.3 (12) Br1—C2—C3—F1 −0.1 (11)
N2—C8—C9—C10 −177.2 (7)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.91 2.631 (7) 146
N2—H2···O3 0.86 2.01 2.619 (7) 127
N2—H2···O3i 0.86 2.50 3.293 (7) 155
C4—H4···O1ii 0.93 2.60 3.494 (8) 162
C7—H7···O3i 0.93 2.66 3.461 (7) 145
C12—H12···Br1iii 0.93 3.02 3.908 (7) 161

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) x+1/2, −y+1/2, z+1/2.

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Aydemir, E. & Kaban, S. (2018). Asian J. Chem. 30, 1460–1464.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Gumus, M. K., Kansiz, S., Dege, N. & Kalibabchuk, V. A. (2018). Acta Cryst. E74, 1211–1214. [DOI] [PMC free article] [PubMed]
  6. Kaban, S. & Ocal, N. (1993). Pak. J. Sci. Ind. Res. 36, 357–359.
  7. Kansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42–51.
  8. Kansiz, S., Macit, M., Dege, N. & Tsapyuk, G. G. (2018). Acta Cryst. E74, 1513–1516. [DOI] [PMC free article] [PubMed]
  9. Karadayı, N., Aydemir, E., Kazak, C., Kirpi, E., Tuğcu, F. T., Gümü˛ş, M. K. & Kaban, Ş. (2005). Acta Cryst. E61, o2671–o2673.
  10. Mori, A., Suzuki, T. & Nakajima, K. (2015). Acta Cryst. E71, 142–145. [DOI] [PMC free article] [PubMed]
  11. Öztürk, S., Akkurt, M., Aydemír, E. & Fun, H.-K. (2003). Acta Cryst. E59, o488–o489.
  12. Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858.
  13. Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040.
  14. Şen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517–524. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997). J. Chem. Soc. Dalton Trans. pp. 273–276.
  18. Soujanya, M. & Rajitha, G. (2017). Int. J. Pharm. Sci. Res 8, 3786–3794.
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  20. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  21. Sudheer, R., Sithambaresan, M., Sajitha, N. R., Manoj, E. & Kurup, M. R. P. (2015). Acta Cryst. E71, 702–705. [DOI] [PMC free article] [PubMed]
  22. Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018014627/xu5944sup1.cif

e-74-01628-sup1.cif (453.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018014627/xu5944Isup2.hkl

e-74-01628-Isup2.hkl (222KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018014627/xu5944Isup3.cml

CCDC reference: 1864935

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES