Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Oct 19;74(Pt 11):1613–1618. doi: 10.1107/S2056989018014500

Crystal structure and Hirshfeld surface analysis of (E)-N′-benzyl­idene-4-chloro­benzene­sulfono­hydrazide and of its (E)-4-chloro-N′-(ortho- and para-methyl­benzyl­idene)benzene­sulfono­hydrazide derivatives

Akshatha R Salian a, Sabine Foro b, B Thimme Gowda a,c,*
PMCID: PMC6218900  PMID: 30443392

The crystal structures of (E)-N′-(benzyl­idene)-4-chloro­benzene­sulfono­hydrazide (I) and its ortho- and para-methyl-substituted benzyl­idene derivatives, (E)-N′-(2-methyl­benzyl­idene)-4-chloro-benzene­sulfono­hydrazide (II) and (E)-N′-(4-methyl­benzyl­idene)-4-chloro­benzene­sulfono­hydrazide (III), have been studied to investigate the effect of substitution on the structural and supra­molecular features of these compounds.

Keywords: crystal structure, benzyl­idene, benzene­sulfono­hydrazide, ortho- and para-methyl-substituted derivatives, N—H⋯O hydrogen bonding, C—Cl⋯π inter­actions, Hirshfeld surface analysis, fingerprint plots

Abstract

(E)-N′-Benzyl­idene-4-chloro­benzene­sulfono­hydrazide, C13H11ClN2O2S, (I), and its ortho- and para-methyl­substituted derivatives, C14H13ClN2O2S, namely (E)-4-chloro-N′-(2-methyl­benzyl­idene)benzene­sulfono­hydrazide, (II), and (E)-4-chloro-N′-(4-methyl­benzyl­idene)benzene­sulfono­hydrazide, (III), have been synthesized, characterized spectroscopically and their crystal structures determined to investigate the effect of the substitution site of the benzyl­idene group on the structural and supra­molecular features in these compounds. Compounds (I) and (II) are isotypic while compound (III) is different. All three mol­ecules are bent at the S atom with C—S—N—N torsion angles of −66.0 (3), −66.0 (3) and −58.4 (2)° for (I), (II) and (III), respectively. The hydrazone portions of the mol­ecules, S—N—N=C, are slightly twisted from planarity, with a torsion angle of 166.5 (3)° in (I), 165.4 (3)° in (II) and 157.9 (2)° in (III). The two aromatic rings present in the compounds are inclined to each other by 78.4 (2), 74.8 (2) and 76.9 (1)° in (I), (II) and (III), respectively. In the crystal structure of the parent compound (I), and of the ortho-methyl derivative (II), an N—H⋯O hydrogen bond links the mol­ecules into chains along [001], which are inter­connected by weak inter­molecular C—H⋯O inter­actions, generating layers lying parallel to the bc plane. In the crystal of the para derivative (III), however, the packing is significantly different. Here mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R 2 2(8) ring motif. The dimers are then linked by C—Cl⋯π inter­actions, forming ribbons propagating along [1Inline graphic0]. Hirshfeld surface analyses show that the van der Waals inter­actions constitute the major contribution to the inter­molecular inter­actions in the crystal structures of all three compounds. The fingerprint plots indicate that the H⋯H contacts make the largest contributions to the Hirshfeld surfaces.

Chemical context  

Schiff bases are an important class of compounds in the field of coordination chemistry and catalysis (Mahfouz et al., 2015). The photochromic and thermochromic properties of Schiff bases make their study inter­esting (Girisha et al., 2018). They form second-order NLO organic materials, which are being used in computers, optical communication and medical imaging (Zarei et al., 2015). Hydrazones also play an important role in curing diseases effectively with less toxicity. Sulfonyl hydrazones are known for their good enzymatic modulation, analgesic, anti-Alzheimer’s, anti­depressant and anti­diabetic activities (Cunha et al., 2016). To investigate the impact of substitution, and also the variation of the site of substituent, on the structural parameters and the hydrogen-bonding inter­actions, we report herein on the synthesis and crystal structures of (E)-N′-(benzyl­idene)-4-chloro­benzene­sulfono­hydrazide (I) and its ortho- and para-methyl­substituted benzyl­idene derivatives, (II) and (III), respectively.graphic file with name e-74-01613-scheme1.jpg

Structural commentary  

The title hydrazide (I) and its derivatives, (II) and (III), crystallize in the monoclinic crystal system with space group P21/c for (I) and (II) and P21/n for (III). The mol­ecular structures of compounds (I), (II) and (III) are illustrated in Figs. 1, 2 and 3, respectively. All three mol­ecules adopt an E configuration about the C=N bond of the central imine group. In the ortho-methyl-substituted derivative (II), the N—H and C—H bonds in the hydrazide part are anti with respect to the methyl substituent. These parts of the mol­ecules, S—N—N=C, show similar bond lengths of 1.258 (5), 1.272 (5) and 1.273 (3) Å for C7=N2 and 1.394 (5), 1.407 (5) and 1.393 (2) Å for N1—N2 in compounds (I), (II) and (III), respectively. These bond lengths are consistent with the C=N double-bond and N—N single-bond lengths, respectively. Furthermore, the S—N—N=C segments are slightly twisted from planarity, with torsion angles of 166.5 (3)° in (I), 165.4 (3)° in (II) and 157.9 (2)° in (III). All three compounds are bent at the S atom with C—S—N—N torsion angles of −66.0 (3), −66.0 (3) and −58.4 (2)° for (I), (II) and (III), respectively. The two aromatic rings present in these compounds are inclined to each other by 78.4 (2), 74.8 (2) and 76.9 (1)° in (I), (II) and (III), respectively. Hence the conformations of (I) and (II) are very similar while that of (III) is slightly different.

Figure 1.

Figure 1

Mol­ecular structure of (I), showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.

Figure 2.

Figure 2

Mol­ecular structure of (II), showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.

Figure 3.

Figure 3

Mol­ecular structure of (III), showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.

Supra­molecular features  

In the crystals of all three compounds, an O atom of the sulfonyl group acts as an acceptor and the amino H atom of the hydrazide segment as a donor in N—H⋯O hydrogen-bonding inter­actions with neighbouring mol­ecules (Tables 1, 2 and 3). The patterns of the hydrogen-bonding inter­actions in the crystal structures of (I) and (II) are very similar, and will be illustrated for compound (II) only. The N—H⋯O hydrogen-bonding inter­actions result in a C(4) graph-set motif generating chains propagating along the c-axis direction (Fig. 4). These chains are linked by weak C—H⋯O inter­actions involving an aromatic H atom of the benzyl­idenephenyl ring and a sulfonyl O atom, resulting in the formation of layers lying parallel to the bc plane (Tables 2 and 3, and Fig. 5). On changing the position of the methyl substituent from ortho- to para- the crystal packing changes significantly. Mol­ecules are now linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers enclosing Inline graphic(8) loops (Fig. 6, Table 3). The dimers are linked by a C—Cl⋯π inter­action, forming ribbons that propagate along the [1Inline graphic0] direction (Fig. 6, Table 3).

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.83 (2) 2.14 (3) 2.897 (4) 152 (4)
C3—H3⋯O2ii 0.93 2.43 3.305 (5) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 (2) 2.06 (2) 2.913 (4) 168 (4)
C5—H5⋯O1ii 0.93 2.44 3.303 (5) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 3. Hydrogen-bond geometry (Å, °) for (III) .

Cg1 is the centroid of ring C8-C13.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (2) 2.09 (2) 2.935 (2) 177 (2)
C4—Cl1⋯Cg1ii 1.74 (1) 3.47 (1) 5.175 (3) 168 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 4.

Figure 4

A partial view along the b axis of the crystal packing of (II), with hydrogen bonds shown as dashed lines. Only the H atoms involved in the intermolecular interactions have been included.

Figure 5.

Figure 5

A view along the c axis of the crystal packing of (II), with hydrogen bonds shown as dashed lines. Only the H atoms involved in the intermolecular interactions have been included.

Figure 6.

Figure 6

A view along the b axis of the crystal packing of (III), with hydrogen bonds shown as dashed lines. Only the H atoms involved in the intermolecular interactions have been included. The C—Cl⋯π interactions are indicated by blue arrows.

Hirshfeld Surface analysis  

The nature of the inter­molecular contacts and their qu­anti­tative contributions to the crystal packing in all the three title compounds were analysed by Hirshfeld surface analysis and two-dimensional fingerprint plots, generated using CrystalExplorer3.1 (McKinnon et al., 2004; Spackman & Jayatilaka, 2009; Wolff et al., 2012). The Hirshfeld surfaces of the three compounds mapped over d norm are shown in Fig. 7. The N—H⋯O inter­actions between the corresponding donor and acceptor atoms are visualized as bright-red spots and represent the short inter­atomic inter­actions in the crystal structures. The presence of two other light-red spots in (I) and (II) correspond to the C—H⋯O inter­actions, which are considered to be weak inter­actions.

Figure 7.

Figure 7

Hirshfeld surface mapped over d norm for (I), (II) and (III).

The two-dimensional fingerprint plots for the contacts H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, Cl⋯H/H⋯Cl, C⋯C and N⋯H/H⋯N are illustrated in Figs. 8 and 9, for (I) and (III), respectively. The fingerprint plots of various contacts and their percentage contribution to the Hirshfeld surfaces are similar in (I) and (II) but, as expected, different from those for (III) (see Table 4). H⋯H contacts are the major contributors to the Hirshfeld surface: 30.1% in (I), 34.0% (II) and 38.0% in (III). The C⋯H/H⋯C contacts make the second largest contribution, i.e. 22.7, 20.2 and 18.0% for (I), (II) and (III), respectively. This is followed by O⋯H/H⋯O contacts arising from N—H⋯O and C—H⋯O inter­actions, contributing 16.1% in (I) and (II), and 15.7% in (III). N⋯H/H⋯N contacts arising from O—H⋯N hydrogen bonds contribute 6.3, 5.2 and 3.9%, respectively, in (I), (II) and (III). Cl⋯H/H⋯Cl inter­actions make a relatively significant contribution to the total Hirshfeld surfaces, comprising 12.1% in (I), 12.3% in (II) and 9.4% in (III). The C⋯C contacts representing π–π inter­actions contribute 5.2, 5.0 and 2.1% in (I), (II) and (III), respectively. Cl⋯O/O⋯Cl contacts comprise 5.0% in (I), 4.8% in (II) and 2.3% in (III). Weak Cl⋯Cl, C⋯O/O⋯C and C⋯S/S⋯C inter­actions are also observed; however, they exhibit minimal respect contributions of 0.5, 1.0 and 0% in (I), 0.5, 1.0, 0.1% in (II) and 0, 2.6 and 0.1% in (III), reflecting negligible or no effect on the mol­ecular packing.

Figure 8.

Figure 8

Two-dimensional fingerprint plots for (I), showing the contributions of different types of inter­actions.

Figure 9.

Figure 9

Two-dimensional fingerprint plots for (III), showing the contributions of different types of inter­actions.

Table 4. Hirshfeld contact inter­actions (%).

Contact type (I) (II) (III)
H⋯H 30.1 34.0 38.0
C⋯H/H⋯C 22.7 20.2 18.0
O⋯H/H⋯O 16.1 16.1 15.7
Cl⋯H/H⋯Cl 12.1 12.3 9.4
N⋯H/H⋯N 6.3 5.2 3.9
C⋯C 5.2 5.0 2.1
Cl⋯C/C⋯Cl 0 0 5.3
Cl⋯O/O⋯Cl 5.0 4.8 2.3
C⋯O/O⋯C 1.0 1.0 2.6
Cl⋯Cl 0.5 0.5 0
C⋯S/S⋯C 0 0.1 0.1

The most significant difference for compounds (I) and (II) compared to compound (III) is the presence of a relatively strong Cl⋯C/C⋯Cl inter­action in (III), in accordance with the C—Cl⋯π inter­action in the crystal (Table 3), which makes a contribution of 5.3%, while for (I) and (II) this inter­action is not present.

Database survey  

The crystal structures of (E)-N′-(4-chloro­benzyl­idene)-4-methyl­benzene­sulfono­hydrazide (IV) (Balaji et al., 2014) and N′-[(E)-4-methyl­benzyl­idene]4-methyl­benzene­sulfono­hydra­zide (V) (Tabatabaee et al., 2007) have been reported. They exhibit an E configuration with respect to the C=N bond and an almost perpendicular orientation of the two aromatic rings with dihedral angles of 81.9 (3)° in (IV) and 82.4 (1)° in (V), very similar to the values of 78.4 (2), 74.8 (2) and 76.9 (1)° in (I), (II) and (III), respectively. In the structures of these related compounds (I)–(V) and also those of benzyl­idene, 3,3-di­phenyl­allyl­idene (Mehrabi & Kia, 2009; Mehrabi et al., 2008), 4-bromo/5-bromo-2-hy­droxy/5-chloro-2-hy­droxy (Kia et al., 2008a ,b ) and 2-hy­droxy-5-iodo (Ghorbanloo & Notash, 2012) derivatives of p-toluene­sulfono­hydrazide, the aryl­sulfono­hydrazide mol­ecules are directly connected to one another via significant N—H⋯O hydrogen-bonding inter­actions involving a sulfonyl oxygen atom and the amino hydrogen atom.

Synthesis and crystallization  

Synthesis of 4-chloro­benzene­sulfono­hydrazide

To 4-chlro­benzene­sulfonyl chloride (0.01 mol) dissolved in propanol (30 ml), 99% hydrazine hydrate (5 ml) was added at 273 K under constant stirring. The stirring continued for 15 min at 273 K and then at 303 K for 3 h. After completion of the reaction (monitored by TLC), the reaction mixture was concentrated by evaporating the excess propanol. The solid product, 4-chloro­benzene­sulfono­hydrazide was washed with cold water and dried.

Synthesis of compounds (I), (II) and (III)

The parent, ortho- and para- substituted (E)-N′-(benzyl­idene)-4-chloro­benzene­sulfono­hydrazides (I), (II) and (III), were synthesized by refluxing mixtures of 4-chloro­benzene­sulfono­hydrazide (0.01 mol) and benzaldehyde, 2-methyl-benzaldehyde or 4-methyl­benzaldehyde (0.01 mol), respect­ively, in ethanol (30 ml) and two drops of glacial acetic acid for 4 h. The reaction mixtures were cooled to room temperature and concentrated by evaporating the excess of solvent. The solid products (I), (II) and (III) obtained were washed with cold water, dried and recrystallized to constant melting points from ethanol to obtain the pure compounds. The purity of the compounds was checked by TLC. Single crystals of the hydrazides suitable for single crystal X-ray diffraction analysis were obtained by slow evaporation of their DMF solutions at room temperature. All three compounds were characterized by measuring their IR, 1H and 13C NMR spectra.

( E )- N -(benzyl­idene) 4-chloro­benzene­sulfono­hydrazide (I):

Plate-like colourless single crystals; m.p. 381–382 K; IR (cm−1): 3174.8 (N—H asym stretch), 1577.8 (C=N), 1323.2 (S=O asym stretch) and 1159.2 (S=O sym stretch); 1H NMR (400 MHz, CDCl3, δ ppm): 7.29–7.33 (m, 3H, Ar-H), 7.52 (t, 2H, Ar-H, J = 7.44), 7.53–7.56 (m, 3H, Ar-H), 7.94 (d, 1H, Ar-H, J = 8.4Hz), 7.93 (s, 1H), 11.54 (s, 1H) and 13C NMR (400 MHz, CDCl3, δ ppm): 125.46, 127.21, 127.72, 127.86, 128.63, 132.23, 136.52, 136.99, 146.11.

( E )- N -(2-methyl­benzyl­idene) 4-chloro­benzene­sulfono­hydrazide (II):

Rod-shaped colourless single crystals; m.p. 399–400 K; IR (cm−1): 3155.5 (N—H asym stretch), 1585.6 (C=N), 1325.1 (S=O asym stretch) and 1153.4 (S=O sym stretch); 1H NMR (400 MHz, CDCl3, δ ppm): 2.33 (s, 3H), 7.09–7.17 (m, 1H, Ar-H), 7.21–7.26 (m, 1H, Ar-H), 7.43–7.48 (m, 1H, Ar-H), 7.63 (d, 1H, Ar-H, J = 7.7 Hz), 7.86 (d, 2H, Ar-H, J = 8.6 Hz), 7.93 (d, 2H, Ar-H, J = 8.5 Hz), 8.08 (s, 1H), 11.67 (s, 1H) and 13C NMR (400 MHz, CDCl3, δ ppm): 19.77, 126.17, 127.27, 129.13, 129.31, 129.81, 130.23, 131.14, 136.88, 139.72, 140.26, 147.62.

( E )- N -(4-methyl­benzyl­idene) 4-chloro­benzene­sulfono­hydrazide (III):

Rod-shaped colourless single crystals; m.p. 425–426K; IR (cm−1): 3184.5 (N—H asym stretch), 1580.7 (C=N), 1326.5 (S=O asym stretch) and 1163.3 (S=O sym stretch); 1H NMR (400 MHz, CDCl3, δ ppm): 2.27 (s, 3H), 7.12 (d, 2H, Ar-H, J = 8.0 Hz), 7.41 (d, 2H, Ar-H, J = 8.0Hz), 7.52–7.57 (m, 2H, Ar-H), 7.86–7.90 (m, 2H, Ar-H), 7.92 (s, 1H), 11.40 (s, 1H) and 13C NMR (400 MHz, CDCl3, δ ppm): 20.96, 126.64, 128.95, 129.61, 130.75, 137.75, 139.41, 139.78, 145.66.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. For all three compounds, the H atom of the NH group was located in difference-Fourier maps and later restrained to N—H = 0.86 (2) Å. C-bound H atoms were positioned with idealized geometry and refined using a riding model: C—H = 0.93–0.96 Å with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C-aromatic, N) for other H atoms. The Uij components of C9, C10, C11 and C12 in (I) and C10, C11, C12 and C13 in (II) and (III) were restrained to approximate isotropic behaviour.

Table 5. Experimental details.

  (I) (II) (III)
Crystal data
Chemical formula C13H11ClN2O2S C14H13ClN2O2S C14H13ClN2O2S
M r 294.75 308.77 308.77
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 293 293 293
a, b, c (Å) 14.949 (2), 10.020 (1), 9.641 (1) 15.034 (2), 10.180 (1), 9.8119 (9) 9.406 (1), 5.8353 (6), 26.930 (2)
β (°) 104.27 (1) 106.34 (1) 99.621 (9)
V3) 1399.6 (3) 1441.0 (3) 1457.3 (2)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.42 0.41 0.41
Crystal size (mm) 0.20 × 0.16 × 0.08 0.22 × 0.16 × 0.08 0.48 × 0.16 × 0.14
 
Data collection
Diffractometer Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009)
T min, T max 0.921, 0.967 0.915, 0.968 0.829, 0.945
No. of measured, independent and observed [I > 2σ(I)] reflections 4831, 2547, 1034 5157, 2636, 1713 9653, 2652, 2106
R int 0.075 0.038 0.027
(sin θ/λ)max−1) 0.602 0.602 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.062, 0.113, 0.91 0.067, 0.195, 1.07 0.040, 0.095, 1.05
No. of reflections 2547 2636 2652
No. of parameters 175 185 185
No. of restraints 30 32 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.21 0.66, −0.32 0.21, −0.31

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXS2013 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, II, III, global. DOI: 10.1107/S2056989018014500/su5455sup1.cif

e-74-01613-sup1.cif (804.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018014500/su5455Isup2.hkl

e-74-01613-Isup2.hkl (204KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018014500/su5455IIsup3.hkl

e-74-01613-IIsup3.hkl (211KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989018014500/su5455IIIsup4.hkl

e-74-01613-IIIsup4.hkl (212.3KB, hkl)

CCDC references: 1578698, 1578700, 1578702

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the SAIF, Panjab University, for extending the services of their NMR facility, and Mangalore University for providing all the facilities required.

supplementary crystallographic information

(E)-N'-Benzylidene-4-chlorobenzenesulfonohydrazide (I) . Crystal data

C13H11ClN2O2S F(000) = 608
Mr = 294.75 Dx = 1.399 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 14.949 (2) Å Cell parameters from 692 reflections
b = 10.020 (1) Å θ = 2.8–28.0°
c = 9.641 (1) Å µ = 0.42 mm1
β = 104.27 (1)° T = 293 K
V = 1399.6 (3) Å3 Plate, colourless
Z = 4 0.20 × 0.16 × 0.08 mm

(E)-N'-Benzylidene-4-chlorobenzenesulfonohydrazide (I) . Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector 1034 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.075
Rotation method data acquisition using ω scans. θmax = 25.4°, θmin = 2.8°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −16→18
Tmin = 0.921, Tmax = 0.967 k = −12→8
4831 measured reflections l = −8→11
2547 independent reflections

(E)-N'-Benzylidene-4-chlorobenzenesulfonohydrazide (I) . Refinement

Refinement on F2 30 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0368P)2] where P = (Fo2 + 2Fc2)/3
S = 0.91 (Δ/σ)max < 0.001
2547 reflections Δρmax = 0.23 e Å3
175 parameters Δρmin = −0.21 e Å3

(E)-N'-Benzylidene-4-chlorobenzenesulfonohydrazide (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-N'-Benzylidene-4-chlorobenzenesulfonohydrazide (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.1391 (3) −0.4315 (4) −0.0093 (5) 0.0399 (11)
C2 −0.0889 (3) −0.4861 (5) 0.1175 (5) 0.0475 (12)
H2 −0.0645 −0.4313 0.1955 0.057*
C3 −0.0749 (3) −0.6222 (5) 0.1283 (5) 0.0506 (13)
H3 −0.0400 −0.6591 0.2129 0.061*
C4 −0.1128 (3) −0.7031 (4) 0.0134 (5) 0.0494 (13)
C5 −0.1615 (3) −0.6477 (5) −0.1149 (5) 0.0612 (15)
H5 −0.1848 −0.7023 −0.1936 0.073*
C6 −0.1751 (3) −0.5130 (5) −0.1255 (4) 0.0572 (14)
H6 −0.2087 −0.4759 −0.2110 0.069*
C7 −0.4066 (4) −0.3017 (4) −0.0120 (5) 0.0566 (14)
H7 −0.4032 −0.2745 0.0814 0.068*
C8 −0.4945 (4) −0.3538 (5) −0.1000 (6) 0.0631 (15)
C9 −0.4990 (4) −0.4207 (5) −0.2256 (6) 0.0806 (18)
H9 −0.4455 −0.4349 −0.2562 0.097*
C10 −0.5837 (5) −0.4678 (5) −0.3082 (7) 0.0977 (18)
H10 −0.5875 −0.5122 −0.3942 0.117*
C11 −0.6607 (5) −0.4463 (6) −0.2579 (7) 0.0966 (18)
H11 −0.7171 −0.4770 −0.3127 0.116*
C12 −0.6596 (5) −0.3852 (6) −0.1370 (7) 0.0965 (18)
H12 −0.7135 −0.3750 −0.1062 0.116*
C13 −0.5748 (4) −0.3354 (5) −0.0552 (6) 0.0836 (17)
H13 −0.5728 −0.2898 0.0295 0.100*
N1 −0.2581 (3) −0.2379 (4) 0.0314 (3) 0.0489 (10)
H1N −0.254 (3) −0.240 (4) 0.119 (2) 0.059*
N2 −0.3361 (3) −0.2933 (3) −0.0607 (4) 0.0484 (10)
O1 −0.1806 (2) −0.2192 (3) −0.1656 (3) 0.0587 (9)
O2 −0.0928 (2) −0.1919 (3) 0.0868 (3) 0.0574 (9)
Cl1 −0.09997 (10) −0.87458 (12) 0.02899 (14) 0.0712 (5)
S1 −0.16184 (9) −0.25981 (12) −0.01912 (12) 0.0476 (4)

(E)-N'-Benzylidene-4-chlorobenzenesulfonohydrazide (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.035 (3) 0.046 (3) 0.034 (3) 0.000 (2) 0.002 (2) −0.001 (2)
C2 0.040 (3) 0.051 (4) 0.045 (3) −0.001 (3) −0.001 (2) −0.001 (3)
C3 0.042 (3) 0.058 (4) 0.044 (3) 0.002 (3) −0.006 (2) 0.007 (3)
C4 0.044 (3) 0.053 (3) 0.053 (3) 0.004 (3) 0.017 (3) 0.001 (3)
C5 0.074 (4) 0.058 (4) 0.044 (3) −0.007 (3) 0.000 (3) −0.010 (3)
C6 0.068 (4) 0.051 (4) 0.041 (3) 0.006 (3) −0.008 (3) 0.004 (3)
C7 0.048 (4) 0.054 (3) 0.062 (3) 0.001 (3) 0.003 (3) 0.003 (3)
C8 0.049 (4) 0.046 (3) 0.087 (4) 0.002 (3) 0.004 (3) 0.013 (3)
C9 0.074 (4) 0.065 (3) 0.091 (3) −0.013 (3) −0.003 (3) 0.001 (3)
C10 0.099 (4) 0.083 (3) 0.101 (3) −0.016 (3) 0.007 (3) −0.002 (3)
C11 0.082 (3) 0.081 (4) 0.113 (3) −0.014 (3) −0.002 (3) 0.017 (3)
C12 0.070 (3) 0.093 (4) 0.121 (4) −0.004 (3) 0.013 (3) 0.016 (3)
C13 0.073 (4) 0.068 (4) 0.103 (4) 0.004 (3) 0.010 (3) 0.015 (3)
N1 0.044 (2) 0.060 (3) 0.037 (2) −0.001 (2) −0.001 (2) −0.006 (2)
N2 0.041 (3) 0.046 (3) 0.049 (2) −0.003 (2) −0.005 (2) −0.0005 (19)
O1 0.073 (2) 0.066 (2) 0.0337 (17) −0.0022 (18) 0.0068 (15) 0.0120 (16)
O2 0.057 (2) 0.055 (2) 0.0502 (19) −0.0147 (17) −0.0068 (17) −0.0039 (15)
Cl1 0.0744 (11) 0.0529 (9) 0.0819 (10) 0.0069 (8) 0.0112 (8) 0.0037 (7)
S1 0.0490 (8) 0.0505 (8) 0.0378 (7) −0.0037 (7) 0.0001 (6) 0.0014 (7)

(E)-N'-Benzylidene-4-chlorobenzenesulfonohydrazide (I) . Geometric parameters (Å, º)

C1—C2 1.380 (5) C8—C13 1.385 (7)
C1—C6 1.383 (5) C9—C10 1.400 (7)
C1—S1 1.752 (4) C9—H9 0.9300
C2—C3 1.379 (5) C10—C11 1.372 (7)
C2—H2 0.9300 C10—H10 0.9300
C3—C4 1.377 (5) C11—C12 1.313 (7)
C3—H3 0.9300 C11—H11 0.9300
C4—C5 1.387 (6) C12—C13 1.409 (7)
C4—Cl1 1.732 (5) C12—H12 0.9300
C5—C6 1.365 (6) C13—H13 0.9300
C5—H5 0.9300 N1—N2 1.394 (5)
C6—H6 0.9300 N1—S1 1.644 (4)
C7—N2 1.258 (5) N1—H1N 0.831 (18)
C7—C8 1.473 (6) O1—S1 1.429 (3)
C7—H7 0.9300 O2—S1 1.432 (3)
C8—C9 1.371 (6)
C2—C1—C6 120.1 (4) C8—C9—H9 119.7
C2—C1—S1 119.5 (4) C10—C9—H9 119.7
C6—C1—S1 120.3 (4) C11—C10—C9 117.7 (6)
C3—C2—C1 119.8 (4) C11—C10—H10 121.1
C3—C2—H2 120.1 C9—C10—H10 121.1
C1—C2—H2 120.1 C12—C11—C10 124.0 (7)
C4—C3—C2 119.8 (4) C12—C11—H11 118.0
C4—C3—H3 120.1 C10—C11—H11 118.0
C2—C3—H3 120.1 C11—C12—C13 118.3 (7)
C3—C4—C5 120.3 (4) C11—C12—H12 120.9
C3—C4—Cl1 120.0 (4) C13—C12—H12 120.9
C5—C4—Cl1 119.8 (4) C8—C13—C12 120.5 (6)
C6—C5—C4 119.8 (4) C8—C13—H13 119.7
C6—C5—H5 120.1 C12—C13—H13 119.7
C4—C5—H5 120.1 N2—N1—S1 114.5 (3)
C5—C6—C1 120.1 (4) N2—N1—H1N 118 (3)
C5—C6—H6 119.9 S1—N1—H1N 117 (3)
C1—C6—H6 119.9 C7—N2—N1 115.8 (4)
N2—C7—C8 121.3 (5) O1—S1—O2 120.03 (19)
N2—C7—H7 119.4 O1—S1—N1 106.33 (18)
C8—C7—H7 119.4 O2—S1—N1 104.79 (18)
C9—C8—C13 118.9 (6) O1—S1—C1 108.75 (19)
C9—C8—C7 121.7 (5) O2—S1—C1 109.4 (2)
C13—C8—C7 119.5 (6) N1—S1—C1 106.7 (2)
C8—C9—C10 120.5 (6)
C6—C1—C2—C3 −0.3 (7) C10—C11—C12—C13 1.6 (9)
S1—C1—C2—C3 176.6 (3) C9—C8—C13—C12 0.4 (8)
C1—C2—C3—C4 −1.4 (6) C7—C8—C13—C12 −179.5 (5)
C2—C3—C4—C5 2.8 (7) C11—C12—C13—C8 −1.6 (9)
C2—C3—C4—Cl1 −177.1 (3) C8—C7—N2—N1 177.8 (4)
C3—C4—C5—C6 −2.7 (7) S1—N1—N2—C7 166.5 (3)
Cl1—C4—C5—C6 177.2 (4) N2—N1—S1—O1 49.9 (3)
C4—C5—C6—C1 1.1 (7) N2—N1—S1—O2 178.0 (3)
C2—C1—C6—C5 0.4 (7) N2—N1—S1—C1 −66.0 (3)
S1—C1—C6—C5 −176.4 (4) C2—C1—S1—O1 157.4 (3)
N2—C7—C8—C9 13.9 (7) C6—C1—S1—O1 −25.7 (4)
N2—C7—C8—C13 −166.2 (5) C2—C1—S1—O2 24.6 (4)
C13—C8—C9—C10 0.9 (8) C6—C1—S1—O2 −158.6 (3)
C7—C8—C9—C10 −179.2 (5) C2—C1—S1—N1 −88.2 (4)
C8—C9—C10—C11 −0.9 (8) C6—C1—S1—N1 88.6 (4)
C9—C10—C11—C12 −0.4 (9)

(E)-N'-Benzylidene-4-chlorobenzenesulfonohydrazide (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.83 (2) 2.14 (3) 2.897 (4) 152 (4)
C3—H3···O2ii 0.93 2.43 3.305 (5) 158

Symmetry codes: (i) x, −y−1/2, z+1/2; (ii) −x, y−1/2, −z+1/2.

(E)-4-Chloro-N'-(2-methylbenzylidene)benzenesulfonohydrazide (II) . Crystal data

C14H13ClN2O2S F(000) = 640
Mr = 308.77 Dx = 1.423 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 15.034 (2) Å Cell parameters from 1546 reflections
b = 10.180 (1) Å θ = 2.8–27.7°
c = 9.8119 (9) Å µ = 0.41 mm1
β = 106.34 (1)° T = 293 K
V = 1441.0 (3) Å3 Rod, colourless
Z = 4 0.22 × 0.16 × 0.08 mm

(E)-4-Chloro-N'-(2-methylbenzylidene)benzenesulfonohydrazide (II) . Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector 1713 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.038
Rotation method data acquisition using ω scans. θmax = 25.4°, θmin = 2.8°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −13→18
Tmin = 0.915, Tmax = 0.968 k = −9→12
5157 measured reflections l = −11→11
2636 independent reflections

(E)-4-Chloro-N'-(2-methylbenzylidene)benzenesulfonohydrazide (II) . Refinement

Refinement on F2 32 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.067 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.195 w = 1/[σ2(Fo2) + (0.0912P)2 + 1.1282P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
2636 reflections Δρmax = 0.66 e Å3
185 parameters Δρmin = −0.32 e Å3

(E)-4-Chloro-N'-(2-methylbenzylidene)benzenesulfonohydrazide (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-4-Chloro-N'-(2-methylbenzylidene)benzenesulfonohydrazide (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1380 (3) 0.5693 (5) 0.0113 (4) 0.0511 (11)
C2 0.1696 (3) 0.4872 (5) 0.1299 (4) 0.0603 (12)
H2 0.2001 0.5234 0.2176 0.072*
C3 0.1560 (3) 0.3542 (5) 0.1178 (5) 0.0637 (13)
H3 0.1783 0.2995 0.1959 0.076*
C4 0.1083 (3) 0.3027 (5) −0.0130 (5) 0.0592 (12)
C5 0.0748 (3) 0.3818 (5) −0.1302 (5) 0.0604 (12)
H5 0.0424 0.3454 −0.2168 0.072*
C6 0.0896 (3) 0.5142 (5) −0.1179 (4) 0.0586 (12)
H6 0.0671 0.5679 −0.1967 0.070*
C7 0.4065 (3) 0.6873 (4) 0.0171 (5) 0.0568 (11)
H7 0.3990 0.7111 −0.0770 0.068*
C8 0.4969 (3) 0.6382 (5) 0.0999 (6) 0.0679 (11)
C9 0.5125 (4) 0.5615 (5) 0.2183 (6) 0.0810 (12)
C10 0.6096 (4) 0.5259 (6) 0.2885 (7) 0.0973 (16)
H10 0.6255 0.4756 0.3710 0.117*
C11 0.6757 (4) 0.5696 (7) 0.2276 (8) 0.1023 (18)
H11 0.7370 0.5475 0.2724 0.123*
C12 0.6595 (5) 0.6409 (7) 0.1098 (9) 0.109 (2)
H12 0.7078 0.6654 0.0733 0.130*
C13 0.5728 (4) 0.6766 (6) 0.0452 (7) 0.0871 (15)
H13 0.5608 0.7274 −0.0368 0.104*
C14 0.4420 (5) 0.5137 (7) 0.2741 (6) 0.0985 (19)
H14A 0.4687 0.4582 0.3543 0.148*
H14B 0.3981 0.4642 0.2025 0.148*
H14C 0.4110 0.5863 0.3036 0.148*
N1 0.2586 (2) 0.7565 (4) −0.0264 (3) 0.0539 (9)
H1N 0.245 (3) 0.748 (4) −0.118 (2) 0.065*
N2 0.3375 (2) 0.6990 (4) 0.0672 (3) 0.0539 (9)
O1 0.0942 (2) 0.8064 (3) −0.0839 (3) 0.0690 (9)
O2 0.1843 (2) 0.7771 (3) 0.1677 (3) 0.0685 (9)
Cl1 0.09551 (9) 0.13260 (14) −0.02983 (15) 0.0787 (5)
S1 0.16318 (7) 0.73763 (12) 0.02214 (10) 0.0551 (4)

(E)-4-Chloro-N'-(2-methylbenzylidene)benzenesulfonohydrazide (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.041 (2) 0.075 (3) 0.037 (2) 0.000 (2) 0.0101 (16) −0.004 (2)
C2 0.060 (3) 0.077 (4) 0.041 (2) −0.005 (2) 0.0085 (19) 0.000 (2)
C3 0.066 (3) 0.072 (4) 0.051 (3) −0.002 (2) 0.013 (2) 0.006 (2)
C4 0.043 (2) 0.081 (3) 0.056 (3) −0.004 (2) 0.0170 (19) −0.005 (2)
C5 0.046 (2) 0.082 (4) 0.047 (2) −0.005 (2) 0.0034 (19) −0.007 (2)
C6 0.044 (2) 0.085 (4) 0.041 (2) 0.006 (2) 0.0023 (17) 0.005 (2)
C7 0.058 (3) 0.052 (3) 0.058 (3) 0.003 (2) 0.013 (2) 0.003 (2)
C8 0.062 (2) 0.049 (3) 0.087 (3) 0.001 (2) 0.012 (2) −0.0128 (18)
C9 0.088 (2) 0.062 (3) 0.082 (3) 0.006 (3) 0.006 (2) −0.011 (2)
C10 0.096 (3) 0.084 (3) 0.099 (3) 0.020 (3) 0.006 (2) 0.001 (3)
C11 0.085 (2) 0.095 (4) 0.112 (4) 0.007 (3) 0.004 (3) −0.012 (3)
C12 0.089 (4) 0.104 (4) 0.131 (4) −0.001 (3) 0.027 (3) −0.018 (3)
C13 0.066 (3) 0.083 (3) 0.112 (3) 0.000 (2) 0.025 (2) −0.016 (3)
C14 0.123 (5) 0.087 (4) 0.079 (4) 0.020 (4) 0.019 (4) 0.012 (3)
N1 0.053 (2) 0.066 (2) 0.0376 (17) 0.0006 (17) 0.0055 (15) 0.0026 (18)
N2 0.049 (2) 0.061 (2) 0.0474 (19) 0.0036 (17) 0.0057 (16) 0.0021 (17)
O1 0.0607 (19) 0.081 (2) 0.0580 (18) 0.0250 (17) 0.0050 (15) 0.0039 (17)
O2 0.080 (2) 0.083 (2) 0.0421 (16) 0.0000 (17) 0.0162 (15) −0.0115 (15)
Cl1 0.0758 (9) 0.0776 (9) 0.0815 (9) −0.0119 (7) 0.0200 (7) −0.0071 (7)
S1 0.0512 (6) 0.0729 (8) 0.0384 (6) 0.0101 (5) 0.0081 (4) −0.0012 (5)

(E)-4-Chloro-N'-(2-methylbenzylidene)benzenesulfonohydrazide (II) . Geometric parameters (Å, º)

C1—C6 1.390 (6) C9—C14 1.409 (8)
C1—C2 1.403 (6) C9—C10 1.474 (8)
C1—S1 1.751 (5) C10—C11 1.369 (9)
C2—C3 1.369 (7) C10—H10 0.9300
C2—H2 0.9300 C11—C12 1.328 (9)
C3—C4 1.385 (6) C11—H11 0.9300
C3—H3 0.9300 C12—C13 1.329 (8)
C4—C5 1.378 (6) C12—H12 0.9300
C4—Cl1 1.745 (5) C13—H13 0.9300
C5—C6 1.365 (7) C14—H14A 0.9600
C5—H5 0.9300 C14—H14B 0.9600
C6—H6 0.9300 C14—H14C 0.9600
C7—N2 1.272 (5) N1—N2 1.407 (5)
C7—C8 1.461 (6) N1—S1 1.645 (4)
C7—H7 0.9300 N1—H1N 0.864 (19)
C8—C9 1.365 (7) O1—S1 1.428 (3)
C8—C13 1.446 (8) O2—S1 1.431 (3)
C6—C1—C2 118.9 (5) C11—C10—H10 121.3
C6—C1—S1 119.9 (3) C9—C10—H10 121.3
C2—C1—S1 121.1 (3) C12—C11—C10 125.4 (7)
C3—C2—C1 120.7 (4) C12—C11—H11 117.3
C3—C2—H2 119.7 C10—C11—H11 117.3
C1—C2—H2 119.7 C13—C12—C11 118.7 (7)
C2—C3—C4 118.7 (5) C13—C12—H12 120.7
C2—C3—H3 120.6 C11—C12—H12 120.7
C4—C3—H3 120.6 C12—C13—C8 121.3 (7)
C5—C4—C3 121.6 (5) C12—C13—H13 119.3
C5—C4—Cl1 119.8 (4) C8—C13—H13 119.3
C3—C4—Cl1 118.6 (4) C9—C14—H14A 109.5
C6—C5—C4 119.4 (4) C9—C14—H14B 109.5
C6—C5—H5 120.3 H14A—C14—H14B 109.5
C4—C5—H5 120.3 C9—C14—H14C 109.5
C5—C6—C1 120.6 (4) H14A—C14—H14C 109.5
C5—C6—H6 119.7 H14B—C14—H14C 109.5
C1—C6—H6 119.7 N2—N1—S1 114.0 (3)
N2—C7—C8 123.3 (4) N2—N1—H1N 123 (3)
N2—C7—H7 118.3 S1—N1—H1N 108 (3)
C8—C7—H7 118.3 C7—N2—N1 114.6 (4)
C9—C8—C13 120.4 (5) O1—S1—O2 120.1 (2)
C9—C8—C7 125.4 (5) O1—S1—N1 104.20 (19)
C13—C8—C7 114.2 (5) O2—S1—N1 106.83 (19)
C8—C9—C14 124.1 (5) O1—S1—C1 109.6 (2)
C8—C9—C10 116.7 (6) O2—S1—C1 108.58 (19)
C14—C9—C10 119.2 (6) N1—S1—C1 106.73 (19)
C11—C10—C9 117.5 (6)
C6—C1—C2—C3 2.3 (6) C14—C9—C10—C11 177.3 (6)
S1—C1—C2—C3 −174.8 (4) C9—C10—C11—C12 −0.4 (10)
C1—C2—C3—C4 −1.6 (7) C10—C11—C12—C13 1.5 (11)
C2—C3—C4—C5 0.1 (7) C11—C12—C13—C8 −0.6 (10)
C2—C3—C4—Cl1 177.3 (4) C9—C8—C13—C12 −1.4 (8)
C3—C4—C5—C6 0.7 (7) C7—C8—C13—C12 179.2 (5)
Cl1—C4—C5—C6 −176.4 (3) C8—C7—N2—N1 175.8 (4)
C4—C5—C6—C1 0.0 (7) S1—N1—N2—C7 165.4 (3)
C2—C1—C6—C5 −1.5 (6) N2—N1—S1—O1 178.1 (3)
S1—C1—C6—C5 175.6 (3) N2—N1—S1—O2 50.0 (3)
N2—C7—C8—C9 22.4 (7) N2—N1—S1—C1 −66.0 (3)
N2—C7—C8—C13 −158.3 (5) C6—C1—S1—O1 28.2 (4)
C13—C8—C9—C14 −176.4 (5) C2—C1—S1—O1 −154.8 (3)
C7—C8—C9—C14 2.9 (8) C6—C1—S1—O2 161.1 (3)
C13—C8—C9—C10 2.4 (7) C2—C1—S1—O2 −21.9 (4)
C7—C8—C9—C10 −178.3 (5) C6—C1—S1—N1 −84.1 (3)
C8—C9—C10—C11 −1.6 (8) C2—C1—S1—N1 92.9 (4)

(E)-4-Chloro-N'-(2-methylbenzylidene)benzenesulfonohydrazide (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.86 (2) 2.06 (2) 2.913 (4) 168 (4)
C5—H5···O1ii 0.93 2.44 3.303 (5) 155

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x, y−1/2, −z−1/2.

(E)-4-Chloro-N'-(4-methylbenzylidene)benzenesulfonohydrazide (III) . Crystal data

C14H13ClN2O2S F(000) = 640
Mr = 308.77 Dx = 1.407 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.406 (1) Å Cell parameters from 3029 reflections
b = 5.8353 (6) Å θ = 2.9–27.8°
c = 26.930 (2) Å µ = 0.41 mm1
β = 99.621 (9)° T = 293 K
V = 1457.3 (2) Å3 Rod, colourless
Z = 4 0.48 × 0.16 × 0.14 mm

(E)-4-Chloro-N'-(4-methylbenzylidene)benzenesulfonohydrazide (III) . Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector 2106 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.027
Rotation method data acquisition using ω scans. θmax = 25.4°, θmin = 3.1°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −11→11
Tmin = 0.829, Tmax = 0.945 k = −7→7
9653 measured reflections l = −31→32
2652 independent reflections

(E)-4-Chloro-N'-(4-methylbenzylidene)benzenesulfonohydrazide (III) . Refinement

Refinement on F2 1 restraint
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0352P)2 + 0.7905P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
2652 reflections Δρmax = 0.21 e Å3
185 parameters Δρmin = −0.30 e Å3

(E)-4-Chloro-N'-(4-methylbenzylidene)benzenesulfonohydrazide (III) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-4-Chloro-N'-(4-methylbenzylidene)benzenesulfonohydrazide (III) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.21023 (8) 0.70656 (16) 0.14097 (3) 0.0843 (3)
S1 0.69509 (6) 0.24496 (9) 0.00160 (2) 0.03860 (16)
O1 0.62933 (17) 0.4035 (3) −0.03599 (5) 0.0493 (4)
O2 0.74225 (17) 0.0275 (3) −0.01324 (6) 0.0501 (4)
N1 0.5723 (2) 0.2120 (3) 0.03686 (7) 0.0445 (5)
H1N 0.517 (2) 0.326 (3) 0.0367 (9) 0.053*
N2 0.60598 (19) 0.0841 (3) 0.08093 (7) 0.0434 (4)
C1 0.8426 (2) 0.3768 (4) 0.03983 (7) 0.0361 (5)
C2 0.8228 (3) 0.5883 (4) 0.06121 (8) 0.0464 (6)
H2 0.7336 0.6608 0.0546 0.056*
C3 0.9362 (3) 0.6891 (4) 0.09212 (9) 0.0537 (6)
H3 0.9244 0.8305 0.1069 0.064*
C4 1.0678 (3) 0.5796 (4) 0.10118 (8) 0.0511 (6)
C5 1.0885 (2) 0.3719 (4) 0.07935 (9) 0.0523 (6)
H5 1.1783 0.3014 0.0853 0.063*
C6 0.9746 (2) 0.2696 (4) 0.04858 (8) 0.0441 (5)
H6 0.9869 0.1286 0.0338 0.053*
C7 0.5267 (2) 0.1280 (4) 0.11369 (8) 0.0457 (6)
H7 0.4591 0.2450 0.1070 0.055*
C8 0.5363 (2) 0.0042 (4) 0.16116 (8) 0.0447 (5)
C9 0.6130 (3) −0.1985 (4) 0.17103 (10) 0.0557 (7)
H9 0.6628 −0.2591 0.1470 0.067*
C10 0.6159 (3) −0.3103 (5) 0.21616 (10) 0.0654 (7)
H10 0.6690 −0.4448 0.2223 0.078*
C11 0.5422 (3) −0.2279 (5) 0.25255 (10) 0.0614 (7)
C12 0.4659 (3) −0.0281 (5) 0.24265 (10) 0.0653 (8)
H12 0.4155 0.0308 0.2667 0.078*
C13 0.4623 (3) 0.0876 (5) 0.19761 (9) 0.0572 (7)
H13 0.4096 0.2226 0.1918 0.069*
C14 0.5452 (4) −0.3541 (7) 0.30183 (11) 0.0970 (11)
H14A 0.4539 −0.3369 0.3129 0.146*
H14B 0.6201 −0.2918 0.3268 0.146*
H14C 0.5636 −0.5138 0.2971 0.146*

(E)-4-Chloro-N'-(4-methylbenzylidene)benzenesulfonohydrazide (III) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0677 (5) 0.1156 (7) 0.0697 (5) −0.0376 (5) 0.0119 (4) −0.0303 (5)
S1 0.0379 (3) 0.0396 (3) 0.0393 (3) 0.0037 (3) 0.0093 (2) −0.0012 (3)
O1 0.0511 (9) 0.0574 (10) 0.0403 (8) 0.0112 (8) 0.0099 (7) 0.0085 (8)
O2 0.0505 (9) 0.0428 (9) 0.0572 (10) 0.0034 (7) 0.0097 (7) −0.0130 (8)
N1 0.0398 (10) 0.0472 (12) 0.0483 (10) 0.0086 (9) 0.0129 (8) 0.0081 (10)
N2 0.0406 (10) 0.0415 (10) 0.0485 (10) −0.0008 (8) 0.0086 (9) 0.0067 (9)
C1 0.0388 (12) 0.0348 (11) 0.0370 (11) 0.0014 (9) 0.0129 (9) 0.0011 (9)
C2 0.0519 (14) 0.0378 (12) 0.0504 (13) 0.0075 (11) 0.0109 (11) −0.0011 (11)
C3 0.0678 (17) 0.0410 (13) 0.0547 (14) −0.0065 (12) 0.0173 (13) −0.0093 (12)
C4 0.0499 (14) 0.0629 (16) 0.0423 (12) −0.0185 (12) 0.0131 (11) −0.0075 (12)
C5 0.0368 (13) 0.0638 (16) 0.0569 (14) 0.0016 (12) 0.0099 (11) −0.0040 (13)
C6 0.0410 (12) 0.0433 (13) 0.0504 (13) 0.0021 (11) 0.0146 (10) −0.0066 (11)
C7 0.0381 (12) 0.0483 (14) 0.0507 (13) 0.0032 (11) 0.0071 (10) 0.0029 (11)
C8 0.0408 (12) 0.0482 (13) 0.0455 (13) −0.0054 (11) 0.0089 (10) 0.0015 (11)
C9 0.0562 (15) 0.0554 (16) 0.0595 (15) 0.0073 (12) 0.0210 (12) 0.0073 (13)
C10 0.0693 (18) 0.0591 (17) 0.0704 (17) 0.0118 (14) 0.0197 (14) 0.0191 (14)
C11 0.0667 (17) 0.0654 (17) 0.0535 (15) −0.0035 (14) 0.0138 (13) 0.0098 (14)
C12 0.079 (2) 0.0709 (19) 0.0507 (15) 0.0037 (16) 0.0239 (14) −0.0005 (14)
C13 0.0621 (16) 0.0549 (15) 0.0565 (15) 0.0074 (13) 0.0156 (12) 0.0029 (13)
C14 0.126 (3) 0.105 (3) 0.0663 (19) 0.014 (2) 0.0326 (19) 0.032 (2)

(E)-4-Chloro-N'-(4-methylbenzylidene)benzenesulfonohydrazide (III) . Geometric parameters (Å, º)

Cl1—C4 1.735 (2) C6—H6 0.9300
S1—O2 1.4232 (16) C7—C8 1.458 (3)
S1—O1 1.4330 (15) C7—H7 0.9300
S1—N1 1.6248 (18) C8—C13 1.383 (3)
S1—C1 1.761 (2) C8—C9 1.388 (3)
N1—N2 1.393 (2) C9—C10 1.376 (3)
N1—H1N 0.845 (16) C9—H9 0.9300
N2—C7 1.273 (3) C10—C11 1.378 (4)
C1—C6 1.375 (3) C10—H10 0.9300
C1—C2 1.387 (3) C11—C12 1.372 (4)
C2—C3 1.371 (3) C11—C14 1.514 (4)
C2—H2 0.9300 C12—C13 1.383 (3)
C3—C4 1.378 (3) C12—H12 0.9300
C3—H3 0.9300 C13—H13 0.9300
C4—C5 1.375 (3) C14—H14A 0.9600
C5—C6 1.376 (3) C14—H14B 0.9600
C5—H5 0.9300 C14—H14C 0.9600
O2—S1—O1 119.69 (9) N2—C7—C8 123.4 (2)
O2—S1—N1 110.11 (10) N2—C7—H7 118.3
O1—S1—N1 102.95 (9) C8—C7—H7 118.3
O2—S1—C1 107.55 (10) C13—C8—C9 118.1 (2)
O1—S1—C1 109.63 (10) C13—C8—C7 118.9 (2)
N1—S1—C1 106.13 (10) C9—C8—C7 123.0 (2)
N2—N1—S1 118.59 (14) C10—C9—C8 120.4 (2)
N2—N1—H1N 118.5 (16) C10—C9—H9 119.8
S1—N1—H1N 113.8 (17) C8—C9—H9 119.8
C7—N2—N1 113.99 (18) C9—C10—C11 121.6 (3)
C6—C1—C2 120.9 (2) C9—C10—H10 119.2
C6—C1—S1 120.14 (16) C11—C10—H10 119.2
C2—C1—S1 118.94 (17) C12—C11—C10 117.9 (2)
C3—C2—C1 119.3 (2) C12—C11—C14 121.1 (3)
C3—C2—H2 120.4 C10—C11—C14 121.0 (3)
C1—C2—H2 120.4 C11—C12—C13 121.4 (3)
C2—C3—C4 119.5 (2) C11—C12—H12 119.3
C2—C3—H3 120.2 C13—C12—H12 119.3
C4—C3—H3 120.2 C12—C13—C8 120.6 (3)
C5—C4—C3 121.3 (2) C12—C13—H13 119.7
C5—C4—Cl1 119.4 (2) C8—C13—H13 119.7
C3—C4—Cl1 119.3 (2) C11—C14—H14A 109.5
C4—C5—C6 119.3 (2) C11—C14—H14B 109.5
C4—C5—H5 120.4 H14A—C14—H14B 109.5
C6—C5—H5 120.4 C11—C14—H14C 109.5
C1—C6—C5 119.7 (2) H14A—C14—H14C 109.5
C1—C6—H6 120.2 H14B—C14—H14C 109.5
C5—C6—H6 120.2
O2—S1—N1—N2 57.73 (19) C2—C1—C6—C5 0.6 (3)
O1—S1—N1—N2 −173.56 (16) S1—C1—C6—C5 −178.67 (17)
C1—S1—N1—N2 −58.39 (18) C4—C5—C6—C1 0.5 (3)
S1—N1—N2—C7 157.85 (17) N1—N2—C7—C8 175.80 (19)
O2—S1—C1—C6 2.2 (2) N2—C7—C8—C13 169.8 (2)
O1—S1—C1—C6 −129.39 (17) N2—C7—C8—C9 −12.3 (4)
N1—S1—C1—C6 120.07 (18) C13—C8—C9—C10 −0.8 (4)
O2—S1—C1—C2 −177.10 (16) C7—C8—C9—C10 −178.7 (2)
O1—S1—C1—C2 51.28 (18) C8—C9—C10—C11 0.9 (4)
N1—S1—C1—C2 −59.26 (18) C9—C10—C11—C12 −0.6 (4)
C6—C1—C2—C3 −1.1 (3) C9—C10—C11—C14 179.4 (3)
S1—C1—C2—C3 178.25 (17) C10—C11—C12—C13 0.2 (4)
C1—C2—C3—C4 0.4 (3) C14—C11—C12—C13 −179.8 (3)
C2—C3—C4—C5 0.8 (4) C11—C12—C13—C8 −0.1 (4)
C2—C3—C4—Cl1 −179.19 (17) C9—C8—C13—C12 0.4 (4)
C3—C4—C5—C6 −1.2 (4) C7—C8—C13—C12 178.4 (2)
Cl1—C4—C5—C6 178.76 (18)

(E)-4-Chloro-N'-(4-methylbenzylidene)benzenesulfonohydrazide (III) . Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of ring C8-C13.

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.85 (2) 2.09 (2) 2.935 (2) 177 (2)
C4—Cl1···Cg1ii 1.74 (1) 3.47 (1) 5.175 (3) 168 (1)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y+1, z.

Funding Statement

This work was funded by University Grants Commission grant UGC--BSR one-time grant to faculty to B. Thimme Gowda. Department of Science and Technology, Government of India grant DST--PURSE.

References

  1. Balaji, J., John Francis Xavier, J., Prabu, S. & Srinivasan, P. (2014). Acta Cryst. E70, o1250–o1251. [DOI] [PMC free article] [PubMed]
  2. Cunha, M. R., Tavares, M. T., Carvalho, C. F., Silva, N. A. T., Souza, A. D. F., Pereira, G. J. V., Ferreira, F. F. & Parise-Filho, R. (2016). ACS Sustainable Chem. Eng 4, 1899–1905.
  3. Ghorbanloo, M. & Notash, B. (2012). Acta Cryst. E68, o2760. [DOI] [PMC free article] [PubMed]
  4. Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2018). Acta Cryst. E74, 376–379. [DOI] [PMC free article] [PubMed]
  5. Kia, R., Fun, H.-K. & Kargar, H. (2008a). Acta Cryst. E64, o2341. [DOI] [PMC free article] [PubMed]
  6. Kia, R., Fun, H.-K. & Kargar, H. (2008b). Acta Cryst. E64, o2424. [DOI] [PMC free article] [PubMed]
  7. Mahfouz, R. M., Demircioğlu, Z., Abbady, M. S. & Büyükgüngör, O. (2015). Acta Cryst. E71, 94–96. [DOI] [PMC free article] [PubMed]
  8. McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. [DOI] [PubMed]
  9. Mehrabi, H. & Kia, R. (2009). Acta Cryst. E65, o1056. [DOI] [PMC free article] [PubMed]
  10. Mehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, o1845. [DOI] [PMC free article] [PubMed]
  11. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Tabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099–o2100.
  17. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer3.1. University of Western Australia.
  18. Zarei, S. A., Piltan, M., Hassanzadeh, K., Akhtari, K. & Cinčić, D. (2015). J. Mol. Struct. 1083, 82–87.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, III, global. DOI: 10.1107/S2056989018014500/su5455sup1.cif

e-74-01613-sup1.cif (804.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018014500/su5455Isup2.hkl

e-74-01613-Isup2.hkl (204KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018014500/su5455IIsup3.hkl

e-74-01613-IIsup3.hkl (211KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989018014500/su5455IIIsup4.hkl

e-74-01613-IIIsup4.hkl (212.3KB, hkl)

CCDC references: 1578698, 1578700, 1578702

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES