Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Oct 23;74(Pt 11):1637–1642. doi: 10.1107/S2056989018014731

Investigation of nitro–nitrito photoisomerization: crystal structures of trans-bis­(acetyl­acetonato-O,O′)(pyridine/4-methyl­pyridine/3-hy­droxy­pridine)nitro­cobalt(III)

Shigeru Ohba a,*, Masanobu Tsuchimoto b, Hiroki Miyazaki c,
PMCID: PMC6218901  PMID: 30443397

Study of the crystal structures of the title compounds reveals that the solid-state photochemical nitro–nitrito linkage isomerization is restricted by inter­molecular C—H⋯O,O contacts in the 3-hy­droxy­pyridine phase.

Keywords: crystal structure, nitro-nitrito photo linkage-isomerization, reaction cavity

Abstract

The reaction cavities of the nitro groups in the title compounds, trans-bis­(acetyl­acetonato-κ2 O,O′)(nitro)(pyridine-κN)cobalt(III), [Co(C5H7O2)2(NO2)(C5H5N)], (I), trans-bis­(acetyl­acetonato-κ2 O,O′)(4-methyl­pyridine-κN)(nitro)cobalt(III), [Co(C5H7O2)2(NO2)(C6H7N)], (II), and trans-bis­(acetyl­acetonato-κ2 O,O′)(3-hy­droxy­pyridine-κN)(nitro)cobalt(III) monohydrate, [Co(C5H7O2)2(NO2)(C5H5NO)]·H2O, (III), have been investigated to reveal that bifurcated inter­molecular C(py)—H⋯O,O contacts in (III) are unfeasible for the nitro–nitrito photochemical linkage isomerization process. In each structure, the pyridine ring and the Co atom lie on a crystallographic mirror plane; in (I) and (II) the nitro group lies in the same plane, whereas in (III), which crystallizes as a monohydrate, the nitro group is disordered over three orientations in a 0.672 (16):0.164 (8):0.164 (8) ratio; the water mol­ecule of crystallization is statistically disordered over two sites adjacent to the mirror plane. In the crystals of (I) and (II), the mol­ecules are linked into [100] chains by C—H⋯O hydrogen bonds, whereas the extended structure of (III) features (010) layers linked by O—H⋯O and C—H⋯O hydrogen bonds. Compounds (I) and (II) were refined as inversion twins.

Chemical context  

Solid-state reactions are restricted by the cage effect, which is helpful for stereo-selectivity, but it sometimes inter­rupts the reaction. The photochemical nitro–nitrito linkage isomerization in crystals was investigated for the salts of [Co(NH3)5(NO2)]+, and indicated that insufficient free space around the nitro ligand prevents the isomerization from occurring (Boldyreva, 2001). For the salts of trans-[Co(en)2(NO2)(NCS)]+, a certain geometry of the inter­molecular N—H⋯O hydrogen bonds restricts the photoisomerization (Ohba et al., 2018). In the present study, we investigated another type of nitro­cobalt complex, trans-[Co(acac)2(NO2)(X-py)], where acac stands for acetyl­acetonate ion, and X-py = pyridine (I) or pyridine derivative; 4-Me-py (II), 3-OH-py (III), and 3-Me-py (IV). The photoactivity of (I) in the solid state had been reported based on the infrared spectra while irradiated with a high-pressure mercury arc, a remarkable increase in absorption in the region 1000–1050 cm−1 being detected (Johnson & Martin, 1969). This is due to the symmetric N—O stretching mode of the nitrito form, and it corresponds to 1055 cm−1 for [Co(NH3)5ONO]Cl2 (Heyns & de Waal, 1989).graphic file with name e-74-01637-scheme1.jpg

When the IR spectra were measured after irradiation for 30 min to the KBr disks containing each complex by a 150 W Xe lamp without filtering, those of py (I) and 4-Me-py (II) showed an apparent increase of an absorption peak at 1051 and 1025 cm−1, respectively (see the figure in the supporting information), and the spectra reverted to those before irradiation on standing at room temperature for ca 16 h. The changing color of the KBr disks by photoirradiation was ambiguous, which might be due to the dark-red color of the crystals. On the other hand, the 3-OH-py (III) and 3-Me-py (IV) complexes were photo-stable and did not show the change in IR spectra by irradiation. In the present study, the crystal structures of (I)–(III) have been determined to reveal the differences in the circumstances of the nitro ligand. The structure of (IV) was reported previously (Miyazaki et al., 1998).

Structural commentary  

The mol­ecular structures of (I)–(III) are shown in Figs. 1–3 , respectively. In these crystals, the complex has crystallographic mirror symmetry, and the py/4-Me-py/3-OH-py ligands and the cobalt atom lie on a mirror plane. The nitro group also lies on the mirror plane in (I) and (II). However, in (III) the nitro group shows positional disorder, and the major component [O4—N8—O4i, 67.2 (16)%] is oriented perpendicular to the mirror plane. The minor component [O5A—N8—O5B, 16.4 (8)%] and the water mol­ecule (O7) are disordered near the mirror. The Co—N(nitro) bond distances are 1.923 (9) Å in (I), 1.949 (10) Å in (II) and 1.915 (3) Å in (III). In each case, a distorted trans-CoN2O4 octa­hedral coordination polyhedron arises.

Figure 1.

Figure 1

The mol­ecular structure of (I), showing displacement ellipsoids at the 30% probability level. Symmetry code: (i) x, −y + 1, z.

Figure 2.

Figure 2

The mol­ecular structure of (II), showing displacement ellipsoids at the 30% probability level. Symmetry code: (i) x, −y + 1, z. One of the two set of H-atom positions of the C18 methyl group is omitted for clarity.

Figure 3.

Figure 3

The mol­ecular structure of (III), showing displacement ellipsoids at the 30% probability level. Symmetry code: (i) x, −y + Inline graphic, z. The minor occupancy O5A/O5B atoms of the nitro group and one of two possible positions of the water mol­ecule O7 are omitted for clarity.

Supra­molecular features  

The crystal structures of (I)–(III) are shown in Figs. 4–6 , respectively. In (I) and (II), the mol­ecules are connected by C—H⋯O hydrogen bonds (Tables 1–3 ), forming chains propagating along the a-axis direction. In (III), the complex mol­ecules are connected via O—H⋯O hydrogen bonds involving the water mol­ecules, forming layers lying parallel to (010).

Figure 4.

Figure 4

The crystal structure of (I), projected along c. The C—H⋯O hydrogen bonds are shown as blue dashed lines.

Figure 5.

Figure 5

The crystal structure of (II), projected along c. The C—H⋯O hydrogen bonds are shown as blue dashed lines.

Figure 6.

Figure 6

The crystal structure of (III), projected along c. The O—H⋯O hydrogen bonds are shown as blue dashed lines. The minor occupancy O5A/O5B atoms of the nitro group and one of two possible positions of the water mol­ecule O7 are omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O4ii 0.93 2.47 3.150 (11) 130

Symmetry code: (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O4ii 0.93 2.39 3.104 (10) 133

Symmetry code: (ii) Inline graphic.

Table 3. Hydrogen-bond geometry (Å, °) for (III) .

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O7 0.84 (2) 1.77 (2) 2.593 (4) 166 (3)
O6—H6⋯O7i 0.84 (2) 1.77 (2) 2.593 (4) 166 (3)
O7—H7A⋯O2ii 0.83 (2) 2.15 (3) 2.962 (4) 165 (8)
O7—H7B⋯O3iii 0.83 (2) 2.23 (3) 3.030 (5) 164 (8)
C10—H10C⋯O4iv 0.96 2.53 3.446 (5) 161
C19—H19⋯O5A iv 0.93 2.49 3.413 (11) 171
C19—H19⋯O5A v 0.93 2.49 3.413 (11) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Slices of the reaction cavities around the nitro group near its plane in (I)–(IV) are compared in Fig. 7, where the radii of the neighboring atoms are assumed to be 1.0 Å greater than the corresponding van der Waals radii (Bondi, 1964) except for Co, its radius being set to 1.90 Å. The inter­molecular contacts that define the shape of cavity of NO2 in its place in (I)–(IV) are shown in Figs. 8–11 , respectively, where the C—H⋯O hydrogen bonds are shown as blue dashed lines (the O⋯H distances being in the range from 2.39 to 2.53 Å), and other O⋯H contacts of less than 2.8 Å are shown as green dashed lines. The cavities in the photo-stable crystals of (III) and (IV) are thinner than those in the photo-active ones (I) and (II), where it seems that there are no close contacts that prevents the linkage isomerization (Figs. 8 and 9). The narrow cavities in (III) and (IV) are due to the bifurcated inter­molecular C—H(py)⋯O,O(nitro) contacts as seen in Figs. 10 and 11. On the extension of the Co–N(nitro) bond axis, there is a neighboring pyridine ring perpendicular to the nitro plane, suggesting that this ring will block the rotation of NO2 to become a nitrito form.

Figure 7.

Figure 7

Comparison of the slices of the cavity around the nitro group within 0.1 Å from the plane in (I)–(IV). Symmetry code for (III) (i) x, −y + Inline graphic, z; for (IV): (i) x, −y + Inline graphic, z.

Figure 8.

Figure 8

The steric circumstance of the nitro group in (I). Only parts of the complex are shown for clarity. The C—H⋯O hydrogen bonds are shown as blue dashed lines. The green dashed lines indicate other O⋯H contacts shorter than 2.8 Å, O5⋯H15iv=2.73 Å. Symmetry codes: (i) x, −y + 1, z; (ii) x + 1, y, z; (iii) x − 1, y, z; (iv) x − 1, y, z − 1; (v) x − 1, −y + 1, z.

Figure 9.

Figure 9

The steric circumstance of the nitro group in (II). Only parts of the complex are shown for clarity. The C—H⋯O hydrogen bonds are shown as blue dashed lines. The green dashed lines indicate other O⋯H contacts shorter than 2.8 Å. Symmetry codes: (i) x, −y + 1, z; (ii) x + 1, y, z; (iii) x − 1, y, z; (iv) x, y, z + 1; (v) x − 1, y, z + 1; (vi) x − 1, −y + 1, z.

Figure 10.

Figure 10

The steric circumstance of the nitro group in (III). Only parts of the complex are shown for clarity. The C—H⋯O hydrogen bonds are shown as blue dashed lines, O4⋯H10C vii = 2.53 Å. The green dashed lines indicate the other O⋯H contacts, O4⋯H19vi = 2.71 Å. Symmetry codes: (i) x, −y + Inline graphic, z; (ii) x, −y + Inline graphic, z + 1; (iii) x + Inline graphic, −y + Inline graphic, −z + Inline graphic; (iv) x + Inline graphic, y, −z + Inline graphic; (v) x + Inline graphic, −y + Inline graphic, −z + Inline graphic; (vi) x − Inline graphic, −y + Inline graphic, −z + Inline graphic; (vii) x − Inline graphic, y, Inline graphic − z.

Figure 11.

Figure 11

The steric circumstance of the nitro group in (IV). Only parts of the complexes are shown for clarity. The C—H⋯O hydrogen bonds are shown as blue dashed lines, O4⋯H11A iv = 2.41 Å. The green dashed lines indicate the other O⋯H contacts, O4⋯H16iii = 2.69 Å. Symmetry codes: (i) x, −y + Inline graphic, z; (ii) −x + Inline graphic, −y, z + Inline graphic; (iii) x + Inline graphic, y, −z + Inline graphic; (iv) −x + Inline graphic, y − Inline graphic, z + Inline graphic.

Database survey  

There are two entries of trans-[Co(acac)2(NO2)(X-py)] in the Cambridge Structural Database (CSD Version 5.39; Groom et al., 2016), the pyridine derivative being 3-methyl­pyridine (Miyazaki et al., 1998), and 4,4,5,5-tetra­methyl-2-(3-pyrid­yl)imidazolin-1-oxyl radical (Ogita et al., 2002). Entries for the other related compounds include trans-[Co(acac)2(NO2)(2-amino­pyrimidine)] (Kistenmacher et al., 1978), trans-[Co(acac)2(NO2)(H2O)] (Englert & Strähle, 1987), and trans-[Co(acac)2(4-methylpyridine)2]PF6 (Tayyari et al., 2015), for which theoretical assignments of the IR bands were presented.

Synthesis and crystallization  

The title compounds were prepared according to the method of Boucher & Bailar (1965) from Na[Co(acac)2(NO2)2] and the appropriate pyridine derivative. Dark-red plates of (I), dark-red prisms of (II) and dark-red needles of (III) were grown from aceto­nitrile, nitro­methane and methanol solutions, respectively.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. The H atoms bound to C were positioned geometrically, the methyl H atoms being introduced by an HFIX 137 command. They were refined as riding, with C—H = 0.93–0.96 Å, and U iso(H) = 1.2U eq(C) or 1.5U eq(Cmeth­yl). (I): two reflections showing poor agreement with I obs much smaller than I calc were omitted from the final refinement. (II): one reflection showing poor agreement was omitted. The DELU instruction was applied to C15 and C18 to avoid the 10 s.u. of the Hirshfeld test difference. (III): six reflections showing poor agreement were omitted. The minor occupancy nitro atoms O5A and O5B were refined anisotropically with an ISOR instruction. The H atoms bound to O were positioned from difference density maps, and their positional parameters were refined with the geometry restrained and with U iso(H) = 1.5U eq(O). Compounds (I) and (II) were refined as inversion twins.

Table 4. Experimental details.

  (I) (II) (III)
Crystal data
Chemical formula [Co(C5H7O2)2(NO2)(C5H5N)] [Co(C5H7O2)2(NO2)(C6H7N)] [Co(C5H7O2)2(NO2)(C5H5NO)]·H2O
M r 382.25 396.28 416.27
Crystal system, space group Monoclinic, C m Monoclinic, C m Orthorhombic, P n m a
Temperature (K) 301 301 301
a, b, c (Å) 8.1971 (14), 13.942 (2), 7.4148 (11) 8.2459 (9), 13.9603 (14), 7.9222 (8) 12.3811 (4), 14.0483 (5), 10.6443 (3)
α, β, γ (°) 90, 91.588 (6), 90 90, 96.997 (4), 90 90, 90, 90
V3) 847.1 (2) 905.17 (16) 1851.40 (10)
Z 2 2 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.05 0.98 0.97
Crystal size (mm) 0.31 × 0.27 × 0.13 0.35 × 0.15 × 0.15 0.35 × 0.11 × 0.08
 
Data collection
Diffractometer Bruker D8 VENTURE Bruker D8 VENTURE Bruker D8 VENTURE
Absorption correction Integration (SADABS; Bruker, 2016) Integration (SADABS; Bruker, 2016) Integration (SADABS; Bruker, 2016)
T min, T max 0.731, 0.886 0.749, 0.895 0.780, 0.938
No. of measured, independent and observed [I > 2σ(I)] reflections 3958, 1529, 1449 4495, 1810, 1754 19560, 2292, 1887
R int 0.024 0.021 0.032
(sin θ/λ)max−1) 0.659 0.660 0.660
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.083, 1.12 0.031, 0.074, 1.13 0.032, 0.087, 1.10
No. of reflections 1529 1810 2292
No. of parameters 128 134 165
No. of restraints 2 3 16
H-atom treatment H-atom parameters constrained H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.34 0.35, −0.37 0.46, −0.46
Absolute structure Refined as an inversion twin Refined as an inversion twin
Absolute structure parameter 0.41 (3) 0.37 (3)

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), Mercury (Macrae et al., 2008), CAVITY (Ohashi et al., 1981), SHELXL2014 (Sheldrick, 2015b ) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II, III, general. DOI: 10.1107/S2056989018014731/hb7778sup1.cif

e-74-01637-sup1.cif (889.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018014731/hb7778Isup2.hkl

e-74-01637-Isup2.hkl (123.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018014731/hb7778Isup5.cdx

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018014731/hb7778IIsup3.hkl

e-74-01637-IIsup3.hkl (145.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018014731/hb7778IIsup6.cdx

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989018014731/hb7778IIIsup4.hkl

e-74-01637-IIIsup4.hkl (184.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018014731/hb7778IIIsup8.cdx

The IR spectra of py (I) and 4-Me-py (II) compounds before and after photoirradiation for 30 min by a 150 W Xe lamp to the KBr disks.. DOI: 10.1107/S2056989018014731/hb7778sup9.tif

CCDC references: 1873929, 1873928, 1873927

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Takashi Nemoto, Kyoto University, for making the program CAVITY available to the public.

supplementary crystallographic information

trans-Bis(acetylacetonato-κ2O,O')(nitro)(pyridine-κN)cobalt(III) (I) . Crystal data

[Co(C5H7O2)2(NO2)(C5H5N)] F(000) = 396
Mr = 382.25 Dx = 1.499 Mg m3
Monoclinic, Cm Mo Kα radiation, λ = 0.71073 Å
a = 8.1971 (14) Å Cell parameters from 2813 reflections
b = 13.942 (2) Å θ = 2.8–27.4°
c = 7.4148 (11) Å µ = 1.05 mm1
β = 91.588 (6)° T = 301 K
V = 847.1 (2) Å3 Plate, dark red
Z = 2 0.31 × 0.27 × 0.13 mm

trans-Bis(acetylacetonato-κ2O,O')(nitro)(pyridine-κN)cobalt(III) (I) . Data collection

Bruker D8 VENTURE diffractometer 1449 reflections with I > 2σ(I)
φ and ω scans Rint = 0.024
Absorption correction: integration (SADABS; Bruker, 2016) θmax = 27.9°, θmin = 2.8°
Tmin = 0.731, Tmax = 0.886 h = −8→10
3958 measured reflections k = −17→18
1529 independent reflections l = −8→9

trans-Bis(acetylacetonato-κ2O,O')(nitro)(pyridine-κN)cobalt(III) (I) . Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0237P)2 + 1.1288P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.040 (Δ/σ)max = 0.013
wR(F2) = 0.083 Δρmax = 0.32 e Å3
S = 1.12 Δρmin = −0.34 e Å3
1529 reflections Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
128 parameters Extinction coefficient: 0.0076 (16)
2 restraints Absolute structure: Refined as an inversion twin
Hydrogen site location: inferred from neighbouring sites Absolute structure parameter: 0.41 (3)

trans-Bis(acetylacetonato-κ2O,O')(nitro)(pyridine-κN)cobalt(III) (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

trans-Bis(acetylacetonato-κ2O,O')(nitro)(pyridine-κN)cobalt(III) (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.42186 (18) 0.5000 0.42933 (17) 0.0438 (3)
O2 0.3213 (6) 0.5899 (5) 0.5783 (6) 0.0519 (15)
O3 0.5237 (6) 0.5919 (5) 0.2843 (6) 0.0510 (15)
O4 0.1030 (10) 0.5000 0.3107 (12) 0.109 (4)
O5 0.2595 (11) 0.5000 0.1013 (12) 0.124 (4)
N6 0.2370 (11) 0.5000 0.2638 (11) 0.052 (2)
N7 0.6127 (10) 0.5000 0.6056 (11) 0.046 (2)
C8 0.2472 (10) 0.7342 (6) 0.7050 (8) 0.068 (2)
H8A 0.1347 0.7153 0.7085 0.103*
H8B 0.2537 0.8018 0.6813 0.103*
H8C 0.3003 0.7203 0.8191 0.103*
C9 0.3290 (9) 0.6804 (7) 0.5596 (9) 0.050 (2)
C10 0.4051 (12) 0.7261 (3) 0.4179 (11) 0.0578 (14)
H10 0.3946 0.7924 0.4090 0.069*
C11 0.4946 (9) 0.6800 (7) 0.2902 (9) 0.0476 (19)
C12 0.5655 (11) 0.7380 (7) 0.1361 (9) 0.072 (2)
H12A 0.6120 0.6952 0.0502 0.107*
H12B 0.6485 0.7803 0.1834 0.107*
H12C 0.4803 0.7750 0.0780 0.107*
C13 0.7701 (12) 0.5000 0.5474 (12) 0.0441 (18)
H13 0.7884 0.5000 0.4242 0.053*
C14 0.8993 (9) 0.5000 0.6648 (10) 0.0560 (17)
H14 1.0050 0.5000 0.6224 0.067*
C15 0.8733 (10) 0.5000 0.8481 (10) 0.0607 (18)
H15 0.9607 0.5000 0.9308 0.073*
C16 0.7142 (10) 0.5000 0.9055 (9) 0.0577 (18)
H16 0.6931 0.5000 1.0281 0.069*
C17 0.5893 (11) 0.5000 0.7818 (11) 0.049 (2)
H17 0.4829 0.5000 0.8222 0.059*

trans-Bis(acetylacetonato-κ2O,O')(nitro)(pyridine-κN)cobalt(III) (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0433 (4) 0.0486 (4) 0.0404 (4) 0.000 0.0172 (3) 0.000
O2 0.054 (4) 0.058 (4) 0.044 (3) 0.006 (3) 0.017 (3) −0.001 (3)
O3 0.056 (4) 0.052 (4) 0.046 (3) −0.004 (3) 0.021 (3) 0.008 (3)
O4 0.040 (4) 0.212 (10) 0.076 (5) 0.000 0.012 (4) 0.000
O5 0.075 (6) 0.242 (12) 0.056 (5) 0.000 −0.006 (4) 0.000
N6 0.055 (6) 0.066 (6) 0.035 (4) 0.000 0.017 (4) 0.000
N7 0.043 (5) 0.051 (5) 0.045 (4) 0.000 0.010 (3) 0.000
C8 0.083 (5) 0.072 (5) 0.050 (4) 0.021 (4) −0.008 (3) −0.020 (4)
C9 0.040 (4) 0.062 (5) 0.047 (4) 0.009 (3) −0.006 (3) −0.004 (3)
C10 0.071 (4) 0.048 (2) 0.054 (3) −0.002 (4) −0.002 (3) 0.005 (4)
C11 0.051 (4) 0.051 (4) 0.040 (3) −0.013 (3) −0.005 (3) 0.013 (3)
C12 0.070 (5) 0.083 (6) 0.062 (4) −0.020 (4) 0.007 (4) 0.019 (4)
C13 0.048 (5) 0.044 (4) 0.041 (4) 0.000 0.021 (3) 0.000
C14 0.044 (4) 0.064 (4) 0.061 (4) 0.000 0.012 (3) 0.000
C15 0.065 (5) 0.061 (4) 0.055 (4) 0.000 −0.004 (4) 0.000
C16 0.070 (5) 0.068 (5) 0.035 (3) 0.000 0.009 (3) 0.000
C17 0.055 (5) 0.056 (4) 0.039 (4) 0.000 0.029 (4) 0.000

trans-Bis(acetylacetonato-κ2O,O')(nitro)(pyridine-κN)cobalt(III) (I) . Geometric parameters (Å, º)

Co1—O2i 1.877 (5) C9—C10 1.392 (11)
Co1—O2 1.877 (5) C10—C11 1.374 (12)
Co1—O3 1.883 (6) C10—H10 0.9300
Co1—O3i 1.883 (6) C11—C12 1.527 (9)
Co1—N6 1.923 (9) C12—H12A 0.9600
Co1—N7 2.010 (8) C12—H12B 0.9600
O2—C9 1.270 (10) C12—H12C 0.9600
O3—C11 1.252 (10) C13—C14 1.352 (12)
O4—N6 1.162 (11) C13—H13 0.9300
O5—N6 1.224 (12) C14—C15 1.381 (10)
N7—C17 1.325 (11) C14—H14 0.9300
N7—C13 1.372 (12) C15—C16 1.383 (10)
C8—C9 1.489 (10) C15—H15 0.9300
C8—H8A 0.9600 C16—C17 1.356 (12)
C8—H8B 0.9600 C16—H16 0.9300
C8—H8C 0.9600 C17—H17 0.9300
O2i—Co1—O2 83.8 (4) O2—C9—C8 113.4 (8)
O2i—Co1—O3 178.7 (3) C10—C9—C8 122.4 (9)
O2—Co1—O3 95.18 (10) C11—C10—C9 124.4 (4)
O2i—Co1—O3i 95.18 (10) C11—C10—H10 117.8
O2—Co1—O3i 178.7 (3) C9—C10—H10 117.8
O3—Co1—O3i 85.8 (4) O3—C11—C10 126.1 (7)
O2i—Co1—N6 91.4 (3) O3—C11—C12 114.6 (8)
O2—Co1—N6 91.4 (3) C10—C11—C12 119.3 (8)
O3—Co1—N6 89.4 (2) C11—C12—H12A 109.5
O3i—Co1—N6 89.4 (2) C11—C12—H12B 109.5
O2i—Co1—N7 87.9 (2) H12A—C12—H12B 109.5
O2—Co1—N7 87.9 (2) C11—C12—H12C 109.5
O3—Co1—N7 91.3 (3) H12A—C12—H12C 109.5
O3i—Co1—N7 91.3 (3) H12B—C12—H12C 109.5
N6—Co1—N7 179.1 (5) C14—C13—N7 121.6 (8)
C9—O2—Co1 125.1 (6) C14—C13—H13 119.2
C11—O3—Co1 124.1 (6) N7—C13—H13 119.2
O4—N6—O5 117.7 (10) C13—C14—C15 119.6 (7)
O4—N6—Co1 122.9 (8) C13—C14—H14 120.2
O5—N6—Co1 119.4 (8) C15—C14—H14 120.2
C17—N7—C13 118.2 (8) C16—C15—C14 118.4 (7)
C17—N7—Co1 120.7 (7) C16—C15—H15 120.8
C13—N7—Co1 121.1 (7) C14—C15—H15 120.8
C9—C8—H8A 109.5 C17—C16—C15 119.5 (6)
C9—C8—H8B 109.5 C17—C16—H16 120.2
H8A—C8—H8B 109.5 C15—C16—H16 120.2
C9—C8—H8C 109.5 N7—C17—C16 122.7 (8)
H8A—C8—H8C 109.5 N7—C17—H17 118.7
H8B—C8—H8C 109.5 C16—C17—H17 118.7
O2—C9—C10 124.2 (8)
O2i—Co1—O2—C9 −178.3 (4) Co1—O3—C11—C10 10.4 (11)
O3—Co1—O2—C9 2.5 (6) Co1—O3—C11—C12 −168.5 (5)
N6—Co1—O2—C9 −87.0 (6) C9—C10—C11—O3 −1.6 (15)
N7—Co1—O2—C9 93.6 (6) C9—C10—C11—C12 177.2 (7)
O2—Co1—O3—C11 −9.7 (6) C17—N7—C13—C14 0.000 (2)
O3i—Co1—O3—C11 171.1 (4) Co1—N7—C13—C14 180.000 (1)
N6—Co1—O3—C11 81.7 (6) N7—C13—C14—C15 0.000 (2)
N7—Co1—O3—C11 −97.7 (6) C13—C14—C15—C16 0.000 (2)
Co1—O2—C9—C10 4.4 (10) C14—C15—C16—C17 0.000 (2)
Co1—O2—C9—C8 −175.9 (4) C13—N7—C17—C16 0.000 (2)
O2—C9—C10—C11 −6.6 (14) Co1—N7—C17—C16 180.000 (2)
C8—C9—C10—C11 173.8 (7) C15—C16—C17—N7 0.000 (3)

Symmetry code: (i) x, −y+1, z.

trans-Bis(acetylacetonato-κ2O,O')(nitro)(pyridine-κN)cobalt(III) (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14···O4ii 0.93 2.47 3.150 (11) 130

Symmetry code: (ii) x+1, y, z.

trans-Bis(acetylacetonato-κ2O,O')(4-methylpyridine-κN)(nitro)cobalt(III) (II) . Crystal data

[Co(C5H7O2)2(NO2)(C6H7N)] F(000) = 412
Mr = 396.28 Dx = 1.454 Mg m3
Monoclinic, Cm Mo Kα radiation, λ = 0.71073 Å
a = 8.2459 (9) Å Cell parameters from 4544 reflections
b = 13.9603 (14) Å θ = 2.5–27.8°
c = 7.9222 (8) Å µ = 0.98 mm1
β = 96.997 (4)° T = 301 K
V = 905.17 (16) Å3 Prism, dark red
Z = 2 0.35 × 0.15 × 0.15 mm

trans-Bis(acetylacetonato-κ2O,O')(4-methylpyridine-κN)(nitro)cobalt(III) (II) . Data collection

Bruker D8 VENTURE diffractometer 1754 reflections with I > 2σ(I)
φ and ω scans Rint = 0.021
Absorption correction: integration (SADABS; Bruker, 2016) θmax = 28.0°, θmin = 2.9°
Tmin = 0.749, Tmax = 0.895 h = −10→8
4495 measured reflections k = −17→18
1810 independent reflections l = −9→10

trans-Bis(acetylacetonato-κ2O,O')(4-methylpyridine-κN)(nitro)cobalt(III) (II) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0113P)2 + 1.2247P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074 (Δ/σ)max = 0.001
S = 1.13 Δρmax = 0.35 e Å3
1810 reflections Δρmin = −0.37 e Å3
134 parameters Absolute structure: Refined as an inversion twin
3 restraints Absolute structure parameter: 0.37 (3)

trans-Bis(acetylacetonato-κ2O,O')(4-methylpyridine-κN)(nitro)cobalt(III) (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

trans-Bis(acetylacetonato-κ2O,O')(4-methylpyridine-κN)(nitro)cobalt(III) (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Co1 0.42176 (19) 0.5000 0.52127 (18) 0.03463 (18)
O2 0.3036 (5) 0.5901 (4) 0.3806 (5) 0.0400 (12)
O3 0.5407 (5) 0.5913 (4) 0.6616 (5) 0.0439 (13)
O4 0.1207 (11) 0.5000 0.6291 (11) 0.125 (4)
O5 0.2965 (10) 0.5000 0.8253 (10) 0.125 (4)
N6 0.2587 (12) 0.5000 0.6799 (11) 0.048 (2)
N7 0.5891 (9) 0.5000 0.3642 (10) 0.0330 (18)
C8 0.2352 (11) 0.7359 (5) 0.2501 (9) 0.065 (3)
H8A 0.3087 0.7499 0.1683 0.097*
H8B 0.1957 0.7946 0.2930 0.097*
H8C 0.1447 0.6991 0.1968 0.097*
C9 0.3220 (9) 0.6804 (6) 0.3917 (9) 0.043 (2)
C10 0.4208 (15) 0.7268 (2) 0.5206 (12) 0.0577 (10)
H10 0.4215 0.7934 0.5206 0.069*
C11 0.5191 (9) 0.6796 (6) 0.6500 (9) 0.046 (2)
C12 0.6150 (13) 0.7373 (6) 0.7949 (8) 0.072 (3)
H12A 0.5936 0.7117 0.9024 0.108*
H12B 0.5813 0.8032 0.7868 0.108*
H12C 0.7298 0.7331 0.7857 0.108*
C13 0.7505 (10) 0.5000 0.4153 (10) 0.0363 (16)
H13 0.7851 0.5000 0.5315 0.044*
C14 0.8686 (8) 0.5000 0.3045 (8) 0.0468 (14)
H14 0.9787 0.5000 0.3475 0.056*
C15 0.8232 (8) 0.5000 0.1291 (8) 0.0463 (14)
C16 0.6569 (8) 0.5000 0.0745 (7) 0.0450 (14)
H16 0.6209 0.5000 −0.0414 0.054*
C17 0.5439 (10) 0.5000 0.1900 (10) 0.0393 (17)
H17 0.4333 0.5000 0.1491 0.047*
C18 0.9477 (16) 0.5000 0.0121 (19) 0.078 (3)
H18A 0.9079 0.5349 −0.0889 0.117* 0.5
H18B 0.9714 0.4352 −0.0174 0.117* 0.5
H18C 1.0454 0.5299 0.0660 0.117* 0.5

trans-Bis(acetylacetonato-κ2O,O')(4-methylpyridine-κN)(nitro)cobalt(III) (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0384 (4) 0.0391 (3) 0.0248 (3) 0.000 −0.0026 (2) 0.000
O2 0.045 (3) 0.041 (3) 0.033 (3) 0.005 (2) −0.001 (2) 0.001 (3)
O3 0.047 (3) 0.049 (3) 0.032 (3) −0.002 (3) −0.010 (2) −0.007 (3)
O4 0.059 (5) 0.261 (12) 0.056 (5) 0.000 0.015 (4) 0.000
O5 0.066 (6) 0.271 (12) 0.039 (4) 0.000 0.009 (4) 0.000
N6 0.056 (6) 0.057 (6) 0.029 (5) 0.000 −0.002 (4) 0.000
N7 0.021 (4) 0.044 (4) 0.033 (5) 0.000 −0.001 (3) 0.000
C8 0.072 (6) 0.053 (5) 0.065 (5) 0.009 (4) −0.015 (5) 0.013 (5)
C9 0.052 (5) 0.044 (5) 0.034 (4) 0.009 (3) 0.005 (4) 0.001 (3)
C10 0.080 (3) 0.0389 (17) 0.051 (2) −0.007 (6) −0.0049 (18) 0.005 (6)
C11 0.053 (5) 0.049 (5) 0.037 (4) −0.008 (3) 0.008 (4) −0.013 (3)
C12 0.104 (7) 0.068 (5) 0.042 (5) −0.021 (6) 0.002 (5) −0.023 (5)
C13 0.026 (3) 0.047 (3) 0.031 (4) 0.000 −0.014 (3) 0.000
C14 0.043 (4) 0.050 (3) 0.047 (4) 0.000 0.002 (3) 0.000
C15 0.055 (4) 0.043 (3) 0.041 (4) 0.000 0.007 (3) 0.000
C16 0.055 (4) 0.055 (3) 0.026 (3) 0.000 0.004 (3) 0.000
C17 0.040 (4) 0.052 (4) 0.024 (3) 0.000 −0.007 (3) 0.000
C18 0.073 (8) 0.098 (5) 0.064 (5) 0.000 0.012 (4) 0.000

trans-Bis(acetylacetonato-κ2O,O')(4-methylpyridine-κN)(nitro)cobalt(III) (II) . Geometric parameters (Å, º)

Co1—O2 1.874 (5) C10—H10 0.9300
Co1—O2i 1.874 (5) C11—C12 1.539 (9)
Co1—O3 1.886 (5) C12—H12A 0.9600
Co1—O3i 1.886 (5) C12—H12B 0.9600
Co1—N6 1.949 (10) C12—H12C 0.9600
Co1—N7 1.968 (8) C13—C14 1.388 (11)
O2—C9 1.271 (8) C13—H13 0.9300
O3—C11 1.248 (9) C14—C15 1.394 (9)
O4—N6 1.160 (12) C14—H14 0.9300
O5—N6 1.156 (11) C15—C16 1.387 (9)
N7—C13 1.343 (10) C15—C18 1.464 (14)
N7—C17 1.385 (10) C16—C17 1.383 (11)
C8—C9 1.475 (10) C16—H16 0.9300
C8—H8A 0.9600 C17—H17 0.9300
C8—H8B 0.9600 C18—H18A 0.9600
C8—H8C 0.9600 C18—H18B 0.9600
C9—C10 1.387 (11) C18—H18C 0.9600
C10—C11 1.392 (11)
O2—Co1—O2i 84.4 (3) C9—C10—H10 118.0
O2—Co1—O3 95.28 (9) C11—C10—H10 118.0
O2i—Co1—O3 179.6 (3) O3—C11—C10 125.9 (7)
O2—Co1—O3i 179.6 (3) O3—C11—C12 114.0 (7)
O2i—Co1—O3i 95.29 (9) C10—C11—C12 120.1 (8)
O3—Co1—O3i 85.0 (3) C11—C12—H12A 109.5
O2—Co1—N6 91.9 (3) C11—C12—H12B 109.5
O2i—Co1—N6 91.9 (3) H12A—C12—H12B 109.5
O3—Co1—N6 88.3 (2) C11—C12—H12C 109.5
O3i—Co1—N6 88.3 (2) H12A—C12—H12C 109.5
O2—Co1—N7 88.7 (2) H12B—C12—H12C 109.5
O2i—Co1—N7 88.7 (2) N7—C13—C14 123.7 (7)
O3—Co1—N7 91.1 (2) N7—C13—H13 118.1
O3i—Co1—N7 91.1 (2) C14—C13—H13 118.1
N6—Co1—N7 179.1 (5) C13—C14—C15 120.4 (6)
C9—O2—Co1 125.1 (5) C13—C14—H14 119.8
C11—O3—Co1 124.4 (5) C15—C14—H14 119.8
O5—N6—O4 118.7 (11) C16—C15—C14 116.5 (6)
O5—N6—Co1 121.2 (9) C16—C15—C18 123.1 (8)
O4—N6—Co1 120.1 (8) C14—C15—C18 120.5 (8)
C13—N7—C17 115.9 (8) C17—C16—C15 120.9 (6)
C13—N7—Co1 123.7 (7) C17—C16—H16 119.5
C17—N7—Co1 120.4 (6) C15—C16—H16 119.5
C9—C8—H8A 109.5 C16—C17—N7 122.5 (7)
C9—C8—H8B 109.5 C16—C17—H17 118.7
H8A—C8—H8B 109.5 N7—C17—H17 118.7
C9—C8—H8C 109.5 C15—C18—H18A 109.5
H8A—C8—H8C 109.5 C15—C18—H18B 109.5
H8B—C8—H8C 109.5 H18A—C18—H18B 109.5
O2—C9—C10 124.7 (7) C15—C18—H18C 109.5
O2—C9—C8 115.1 (7) H18A—C18—H18C 109.5
C10—C9—C8 120.2 (7) H18B—C18—H18C 109.5
C9—C10—C11 123.9 (3)
O2i—Co1—O2—C9 −176.7 (5) Co1—O3—C11—C12 172.0 (5)
O3—Co1—O2—C9 3.1 (7) C9—C10—C11—O3 5.3 (18)
N6—Co1—O2—C9 91.5 (6) C9—C10—C11—C12 −175.5 (9)
N7—Co1—O2—C9 −87.9 (6) C17—N7—C13—C14 0.000 (1)
O2—Co1—O3—C11 4.5 (7) Co1—N7—C13—C14 180.000 (1)
O3i—Co1—O3—C11 −175.7 (5) N7—C13—C14—C15 0.000 (1)
N6—Co1—O3—C11 −87.3 (6) C13—C14—C15—C16 0.000 (1)
N7—Co1—O3—C11 93.3 (6) C13—C14—C15—C18 180.000 (1)
Co1—O2—C9—C10 −6.9 (12) C14—C15—C16—C17 0.000 (1)
Co1—O2—C9—C8 170.3 (5) C18—C15—C16—C17 180.000 (1)
O2—C9—C10—C11 3.4 (18) C15—C16—C17—N7 0.000 (1)
C8—C9—C10—C11 −173.6 (8) C13—N7—C17—C16 0.000 (1)
Co1—O3—C11—C10 −8.8 (12) Co1—N7—C17—C16 180.000 (1)

Symmetry code: (i) x, −y+1, z.

trans-Bis(acetylacetonato-κ2O,O')(4-methylpyridine-κN)(nitro)cobalt(III) (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14···O4ii 0.93 2.39 3.104 (10) 133

Symmetry code: (ii) x+1, y, z.

trans-Bis(acetylacetonato-κ2O,O')(3-hydroxypyridine-κN)(nitro)cobalt(III) monohydrate (III) . Crystal data

[Co(C5H7O2)2(NO2)(C5H5NO)]·H2O Dx = 1.493 Mg m3
Mr = 416.27 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pnma Cell parameters from 9558 reflections
a = 12.3811 (4) Å θ = 2.4–27.9°
b = 14.0483 (5) Å µ = 0.97 mm1
c = 10.6443 (3) Å T = 301 K
V = 1851.40 (10) Å3 Needle, dark red
Z = 4 0.35 × 0.11 × 0.08 mm
F(000) = 864

trans-Bis(acetylacetonato-κ2O,O')(3-hydroxypyridine-κN)(nitro)cobalt(III) monohydrate (III) . Data collection

Bruker D8 VENTURE diffractometer 1887 reflections with I > 2σ(I)
φ and ω scans Rint = 0.032
Absorption correction: integration (SADABS; Bruker, 2016) θmax = 28.0°, θmin = 2.5°
Tmin = 0.780, Tmax = 0.938 h = −16→15
19560 measured reflections k = −18→17
2292 independent reflections l = −14→14

trans-Bis(acetylacetonato-κ2O,O')(3-hydroxypyridine-κN)(nitro)cobalt(III) monohydrate (III) . Refinement

Refinement on F2 16 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0204P)2 + 2.0145P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
2292 reflections Δρmax = 0.46 e Å3
165 parameters Δρmin = −0.46 e Å3

trans-Bis(acetylacetonato-κ2O,O')(3-hydroxypyridine-κN)(nitro)cobalt(III) monohydrate (III) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

trans-Bis(acetylacetonato-κ2O,O')(3-hydroxypyridine-κN)(nitro)cobalt(III) monohydrate (III) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Co1 0.35185 (3) 0.7500 0.39108 (4) 0.03386 (13)
O2 0.44528 (12) 0.66083 (11) 0.31791 (14) 0.0410 (3)
O3 0.25897 (12) 0.66025 (12) 0.46516 (14) 0.0439 (4)
O4 0.2376 (4) 0.6750 (2) 0.1940 (3) 0.076 (3) 0.672 (16)
O5A 0.1771 (13) 0.7215 (16) 0.2462 (12) 0.078 (12) 0.164 (8)
O5B 0.3040 (13) 0.7736 (15) 0.1426 (10) 0.076 (13) 0.164 (8)
O6 0.4018 (2) 0.7500 0.8767 (2) 0.0756 (10)
H6 0.446 (3) 0.7500 0.936 (4) 0.113*
O7 0.5265 (3) 0.7776 (6) 1.0691 (3) 0.088 (4) 0.5
H7A 0.502 (5) 0.784 (6) 1.141 (3) 0.132* 0.5
H7B 0.5927 (18) 0.785 (6) 1.068 (6) 0.132* 0.5
N8 0.2659 (2) 0.7500 0.2415 (3) 0.0440 (6)
N9 0.44358 (19) 0.7500 0.5455 (2) 0.0359 (5)
C10 0.5278 (2) 0.5157 (2) 0.2729 (3) 0.0669 (8)
H10A 0.5146 0.5128 0.1841 0.100*
H10B 0.5295 0.4523 0.3067 0.100*
H10C 0.5960 0.5462 0.2880 0.100*
C11 0.43951 (19) 0.57141 (17) 0.3353 (2) 0.0454 (5)
C12 0.3602 (2) 0.52607 (18) 0.4046 (3) 0.0581 (7)
H12 0.3649 0.4603 0.4123 0.070*
C13 0.2749 (2) 0.57064 (18) 0.4630 (2) 0.0493 (6)
C14 0.1918 (3) 0.5134 (2) 0.5334 (3) 0.0771 (9)
H14A 0.2089 0.5138 0.6214 0.116*
H14B 0.1920 0.4491 0.5030 0.116*
H14C 0.1217 0.5409 0.5208 0.116*
C15 0.3987 (2) 0.7500 0.6592 (3) 0.0416 (7)
H15 0.3237 0.7500 0.6647 0.050*
C16 0.4571 (3) 0.7500 0.7686 (3) 0.0440 (7)
C17 0.5695 (3) 0.7500 0.7601 (3) 0.0449 (7)
H17 0.6122 0.7500 0.8320 0.054*
C18 0.6153 (3) 0.7500 0.6424 (3) 0.0449 (7)
H18 0.6901 0.7500 0.6343 0.054*
C19 0.5519 (2) 0.7500 0.5370 (3) 0.0404 (7)
H19 0.5843 0.7500 0.4581 0.048*

trans-Bis(acetylacetonato-κ2O,O')(3-hydroxypyridine-κN)(nitro)cobalt(III) monohydrate (III) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0317 (2) 0.0381 (2) 0.0318 (2) 0.000 0.00176 (15) 0.000
O2 0.0397 (8) 0.0418 (8) 0.0415 (8) 0.0026 (7) 0.0031 (6) −0.0036 (7)
O3 0.0383 (8) 0.0528 (9) 0.0407 (8) −0.0074 (7) 0.0028 (7) 0.0044 (7)
O4 0.106 (6) 0.0559 (19) 0.066 (4) −0.003 (2) −0.039 (4) −0.0118 (16)
O5A 0.053 (7) 0.15 (3) 0.036 (5) −0.045 (13) −0.016 (5) 0.009 (9)
O5B 0.069 (8) 0.12 (4) 0.035 (5) −0.040 (15) 0.009 (5) 0.023 (9)
O6 0.0423 (14) 0.152 (3) 0.0329 (13) 0.000 −0.0008 (11) 0.000
O7 0.0508 (19) 0.175 (12) 0.0375 (16) −0.014 (3) −0.0008 (14) −0.015 (3)
N8 0.0380 (14) 0.0506 (16) 0.0434 (15) 0.000 −0.0011 (12) 0.000
N9 0.0311 (12) 0.0414 (13) 0.0352 (13) 0.000 −0.0007 (10) 0.000
C10 0.0668 (18) 0.0595 (16) 0.0743 (19) 0.0186 (14) −0.0060 (15) −0.0180 (15)
C11 0.0503 (13) 0.0424 (12) 0.0435 (12) 0.0061 (10) −0.0125 (10) −0.0060 (10)
C12 0.0725 (18) 0.0372 (12) 0.0645 (16) −0.0016 (12) −0.0020 (14) 0.0066 (12)
C13 0.0523 (14) 0.0518 (14) 0.0437 (12) −0.0124 (11) −0.0083 (11) 0.0127 (11)
C14 0.078 (2) 0.079 (2) 0.075 (2) −0.0267 (17) 0.0003 (17) 0.0309 (17)
C15 0.0322 (14) 0.0586 (19) 0.0339 (15) 0.000 0.0036 (12) 0.000
C16 0.0418 (17) 0.060 (2) 0.0299 (15) 0.000 0.0006 (13) 0.000
C17 0.0380 (16) 0.0575 (19) 0.0391 (16) 0.000 −0.0096 (13) 0.000
C18 0.0296 (14) 0.0544 (19) 0.0507 (19) 0.000 −0.0025 (13) 0.000
C19 0.0332 (15) 0.0466 (17) 0.0414 (16) 0.000 0.0032 (13) 0.000

trans-Bis(acetylacetonato-κ2O,O')(3-hydroxypyridine-κN)(nitro)cobalt(III) monohydrate (III) . Geometric parameters (Å, º)

Co1—O2i 1.8745 (15) C10—H10A 0.9600
Co1—O2 1.8745 (15) C10—H10B 0.9600
Co1—O3 1.8799 (15) C10—H10C 0.9600
Co1—O3i 1.8800 (15) C11—C12 1.384 (4)
Co1—N8 1.915 (3) C12—C13 1.376 (4)
Co1—N9 1.998 (2) C12—H12 0.9300
O2—C11 1.272 (3) C13—C14 1.505 (3)
O3—C13 1.274 (3) C14—H14A 0.9600
O4—N8 1.220 (3) C14—H14B 0.9600
O5A—N8 1.172 (13) C14—H14C 0.9600
O5B—N8 1.200 (13) C15—C16 1.371 (4)
O6—C16 1.340 (4) C15—H15 0.9300
O6—H6 0.84 (2) C16—C17 1.394 (4)
O7—H7A 0.83 (2) C17—C18 1.376 (5)
O7—H7B 0.83 (2) C17—H17 0.9300
N8—O4i 1.220 (3) C18—C19 1.370 (4)
N9—C15 1.332 (4) C18—H18 0.9300
N9—C19 1.344 (4) C19—H19 0.9300
C10—C11 1.500 (3)
O2i—Co1—O2 83.87 (9) H10A—C10—H10C 109.5
O2i—Co1—O3 179.59 (7) H10B—C10—H10C 109.5
O2—Co1—O3 95.94 (7) O2—C11—C12 124.9 (2)
O2i—Co1—O3i 95.94 (7) O2—C11—C10 114.2 (2)
O2—Co1—O3i 179.59 (7) C12—C11—C10 120.9 (2)
O3—Co1—O3i 84.24 (10) C13—C12—C11 125.2 (2)
O2i—Co1—N8 89.85 (8) C13—C12—H12 117.4
O2—Co1—N8 89.85 (8) C11—C12—H12 117.4
O3—Co1—N8 90.51 (8) O3—C13—C12 125.2 (2)
O3i—Co1—N8 90.51 (8) O3—C13—C14 114.4 (3)
O2i—Co1—N9 89.49 (7) C12—C13—C14 120.4 (3)
O2—Co1—N9 89.49 (7) C13—C14—H14A 109.5
O3—Co1—N9 90.14 (7) C13—C14—H14B 109.5
O3i—Co1—N9 90.14 (7) H14A—C14—H14B 109.5
N8—Co1—N9 179.12 (11) C13—C14—H14C 109.5
C11—O2—Co1 124.40 (16) H14A—C14—H14C 109.5
C13—O3—Co1 124.08 (16) H14B—C14—H14C 109.5
C16—O6—H6 108 (4) N9—C15—C16 123.4 (3)
H7A—O7—H7B 111 (5) N9—C15—H15 118.3
O5A—N8—O5B 120.1 (9) C16—C15—H15 118.3
O4—N8—O4i 119.5 (4) O6—C16—C15 117.4 (3)
O5A—N8—Co1 119.1 (6) O6—C16—C17 124.4 (3)
O5B—N8—Co1 120.7 (7) C15—C16—C17 118.2 (3)
O4—N8—Co1 120.26 (19) C18—C17—C16 118.1 (3)
O4i—N8—Co1 120.26 (19) C18—C17—H17 121.0
C15—N9—C19 118.6 (3) C16—C17—H17 121.0
C15—N9—Co1 120.7 (2) C19—C18—C17 120.6 (3)
C19—N9—Co1 120.7 (2) C19—C18—H18 119.7
C11—C10—H10A 109.5 C17—C18—H18 119.7
C11—C10—H10B 109.5 N9—C19—C18 121.1 (3)
H10A—C10—H10B 109.5 N9—C19—H19 119.5
C11—C10—H10C 109.5 C18—C19—H19 119.5
O2i—Co1—O2—C11 173.79 (14) Co1—O3—C13—C14 177.53 (16)
O3—Co1—O2—C11 −5.84 (18) C11—C12—C13—O3 −2.6 (4)
N8—Co1—O2—C11 −96.34 (18) C11—C12—C13—C14 178.5 (2)
N9—Co1—O2—C11 84.25 (18) C19—N9—C15—C16 0.000 (1)
O2—Co1—O3—C13 4.64 (19) Co1—N9—C15—C16 180.000 (1)
O3i—Co1—O3—C13 −174.99 (15) N9—C15—C16—O6 180.000 (1)
N8—Co1—O3—C13 94.55 (19) N9—C15—C16—C17 0.000 (1)
N9—Co1—O3—C13 −84.86 (18) O6—C16—C17—C18 180.000 (1)
Co1—O2—C11—C12 3.9 (3) C15—C16—C17—C18 0.000 (1)
Co1—O2—C11—C10 −176.26 (16) C16—C17—C18—C19 0.000 (1)
O2—C11—C12—C13 1.3 (4) C15—N9—C19—C18 0.000 (1)
C10—C11—C12—C13 −178.6 (2) Co1—N9—C19—C18 180.000 (1)
Co1—O3—C13—C12 −1.4 (3) C17—C18—C19—N9 0.000 (1)

Symmetry code: (i) x, −y+3/2, z.

trans-Bis(acetylacetonato-κ2O,O')(3-hydroxypyridine-κN)(nitro)cobalt(III) monohydrate (III) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O6—H6···O7 0.84 (2) 1.77 (2) 2.593 (4) 166 (3)
O6—H6···O7i 0.84 (2) 1.77 (2) 2.593 (4) 166 (3)
O7—H7A···O2ii 0.83 (2) 2.15 (3) 2.962 (4) 165 (8)
O7—H7B···O3iii 0.83 (2) 2.23 (3) 3.030 (5) 164 (8)
C10—H10C···O4iv 0.96 2.53 3.446 (5) 161
C19—H19···O5Aiv 0.93 2.49 3.413 (11) 171
C19—H19···O5Av 0.93 2.49 3.413 (11) 171

Symmetry codes: (i) x, −y+3/2, z; (ii) x, −y+3/2, z+1; (iii) x+1/2, −y+3/2, −z+3/2; (iv) x+1/2, y, −z+1/2; (v) x+1/2, −y+3/2, −z+1/2.

References

  1. Boldyreva, E. V. (2001). Russ. J. Coord. Chem. 27, 297–323.
  2. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  3. Boucher, L. J. & Bailar, J. C. Jr (1965). J. Inorg. Nucl. Chem. 27, 1093–1099.
  4. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Englert, U. & Strähle, J. (1987). Z. Naturforsch. Teil B, 42, 959–966.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Heyns, A. M. & de Waal, D. (1989). Spectrochim. Acta A, 45, 905–909.
  8. Johnson, D. A. & Martin, J. E. (1969). Inorg. Chem. 8, 2509–2510.
  9. Kistenmacher, T. J., Sorrell, T., Rossi, M., Chiang, C. C. & Marzilli, L. G. (1978). Inorg. Chem. 17, 479–481.
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Miyazaki, H., Tsuchimoto, M. & Ohba, S. (1998). Acta Cryst. C54, 46–47.
  12. Ogita, M., Yamamoto, Y., Suzuki, T. & Kaizaki, S. (2002). Eur. J. Inorg. Chem. pp. 886–894.
  13. Ohashi, Y., Yanagi, K., Kurihara, T., Sasada, Y. & Ohgo, Y. (1981). J. Am. Chem. Soc. 103, 5805–5812.
  14. Ohba, S., Tsuchimoto, M. & Kurachi, S. (2018). Acta Cryst. E74, 1526–1531. [DOI] [PMC free article] [PubMed]
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Tayyari, S. F., Habibi, M. H., Shojaee, E., Jamialahmadi, M., Sammelson, R. E., Wada, K. & Suzuki, T. (2015). Spectrochim. Acta A,139, 94–101. [DOI] [PubMed]
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, III, general. DOI: 10.1107/S2056989018014731/hb7778sup1.cif

e-74-01637-sup1.cif (889.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018014731/hb7778Isup2.hkl

e-74-01637-Isup2.hkl (123.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018014731/hb7778Isup5.cdx

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018014731/hb7778IIsup3.hkl

e-74-01637-IIsup3.hkl (145.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018014731/hb7778IIsup6.cdx

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989018014731/hb7778IIIsup4.hkl

e-74-01637-IIIsup4.hkl (184.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018014731/hb7778IIIsup8.cdx

The IR spectra of py (I) and 4-Me-py (II) compounds before and after photoirradiation for 30 min by a 150 W Xe lamp to the KBr disks.. DOI: 10.1107/S2056989018014731/hb7778sup9.tif

CCDC references: 1873929, 1873928, 1873927

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES