Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Oct 5;74(Pt 11):1540–1542. doi: 10.1107/S2056989018013713

Crystal structure of (E)-2,6-dimeth­oxy-4-{[(4-meth­oxy­phen­yl)imino]­meth­yl}phenol

Md Serajul Haque Faizi a, Mohamad Nadeem Lone b, Necmi Dege c, Sergey Malinkin d,*, Tatiana Yu Sliva d
PMCID: PMC6218903  PMID: 30443376

The title mol­ecule is comprised of two non-coplanar benzene rings connected by an imino group in a trans-configuration. In the crystal, the mol­ecules are linked via O—H⋯N and C—H⋯O hydrogen bonds, forming chains along [101].

Keywords: crystal structure; syringaldehyde; 4-meth­oxy­aniline; 4-hy­droxy-3,5-di­meth­oxy­benzaldehyde

Abstract

In the title compound, C16H17NO4, the dihedral angle between benzene rings is 72.7 (2)°. The meth­oxy groups are rotated by 2.4 (2) and −4.9 (2) (benzil­idene moiety) and by 5.6 (3)° (aniline moiety) relative to the adjacent benzene ring. In the crystal, the mol­ecules are linked into chains along [101] through C—H⋯O and O—H⋯N hydrogen bonds.

Chemical context  

Syringaldehyde is a product of the catalytic decomposition of lignin (Crestini et al., 2010). Syringaldehyde is widely used as a mol­ecular marker to monitor pollution sources and detect the extent of combustion (Robinson et al., 2006). It is also known to be an anti­oxidant (Ibrahim et al., 2012), anti­cancer, anti-inflammatory (Duke, 2003) and anti­fungal agent (Gurpilhares et al., 2006). In addition, its Schiff bases are known to exhibit a wide range of biological activities (Shi & Zhou, 2011; da Silva et al., 2011).graphic file with name e-74-01540-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title molecule is shown on Fig. 1. The compound has a trans-configuration of the C9=N1 double bond. The mol­ecule has a non-planar conformation with the two benzene rings forming a dihedral angle of 72.7 (2)°. The meth­oxy groups are almost co-planar with the planes of the adjacent aromatic rings [the C1—O1—C4—C3, C2—O3—C6—C7 and C16—O4—C13—C12 torsion angles are −4.9 (2), 2.4 (2) and 5.6 (3)°, respectively].

Figure 1.

Figure 1

A view of the mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

Supra­molecular features  

In the crystal, the mol­ecules are connected via C7—H7⋯O2ii and O2—H2⋯N1i hydrogen bonding (Table 1), forming chains along the [101] direction (Fig. 2).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1i 0.82 2.21 2.9415 (18) 149
C7—H7⋯O2ii 0.93 2.29 3.2043 (18) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

A view along the a axis of the crystal packing. Dashed lines indicate hydrogen bonds (see Table 1).

Database survey  

A search of the Cambridge Structural Database (CSD version 5.39, update of May 2018; Groom et al., 2016) revealed the structures of five similar Schiff bases based on p-meth­oxy­aniline and p-hy­droxy­benzaldehyde: 4-[(4-meth­oxy­phenyl­imino)­meth­yl]phenol, (I) (VUKDEK; Yeap et al., 1992), (E)-5-meth­oxy-2-[(4-meth­oxy­phenyl­imino)­meth­yl]phenol, (II) (NURNAQ; Sahin et al., 2010), 2-meth­oxy-4-{[(4-meth­oxy­phen­yl)imino]­meth­yl}phenol, (III) (MOTLIR; Singh et al., 2008), 2,6-di-tert-butyl-4-[(4-meth­oxy­phenyl­imino)­meth­yl]phenol, (IV) (WEFTEH; Xin et al., 2006) and 5-bromo-2-meth­oxy-4-{[(4-meth­oxy­phen­yl)imino]­meth­yl}phenol monohydrate, (V) (GAPFEK; Mao et al., 2012). The dihedral angle between the benzene rings in the title compound [72.7 (2)°] is larger than those in compounds (I), (III) and (IV) (49.75–53.63°). Compounds (II) and (V) are almost planar. In all of the compounds, the meth­oxy groups deviate from the plane of aromatic system. There are no C—H⋯π or π–π inter­actions in the crystal structure of the title compound, in contrast to what is observed for compounds (I), (IV) and (V).

Synthesis  

4-Hy­droxy-3,5-di­meth­oxy­benzaldehyde (syringaldehyde) (0.05 mol) was added to a mixture of 50 ml of methanol and p-meth­oxy­aniline (PMA) (5 ml, 0.05 mol) and 50 ml of distilled water. The reaction mixture was taken in a clean 250 ml round-bottom flask and stirred well with a magnetic stirrer. It was then refluxed for 7 h. The dark-yellow product that formed was separated by filtration, dried under vacuum and recrystallized from methanol solution upon slow evaporation for two days (yield 65%, m.p. 353–357 K).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geom­etrically and refined using a riding model: O—H = 0.82–0.96 Å and C—H = 0.93–0.96 Å with U iso(H) = 1.2U eq(C) or 1.5U eq(O, Cmethyl).

Table 2. Experimental details.

Crystal data
Chemical formula C16H17NO4
M r 287.30
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 10.4996 (15), 12.4896 (18), 11.8128 (17)
β (°) 107.936 (5)
V3) 1473.8 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.45 × 0.33 × 0.21
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 19289, 2887, 2306
R int 0.035
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.116, 1.05
No. of reflections 2887
No. of parameters 194
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.21

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXS97 (Sheldrick 2008), SHELXL2017 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018013713/ld2146sup1.cif

e-74-01540-sup1.cif (699KB, cif)

Supporting information file. DOI: 10.1107/S2056989018013713/ld2146Isup3.cml

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018013713/ld2146Isup3.hkl

e-74-01540-Isup3.hkl (230.9KB, hkl)

CCDC reference: 1843910

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Department of Chemistry, Langat Singh College, Babasaheb Bhimrao Ambedkar Bihar University, Muzaffarpur, Bihar, India for the research lab and National Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kyiv, Ukraine, for financial support.

supplementary crystallographic information

Crystal data

C16H17NO4 F(000) = 608
Mr = 287.30 Dx = 1.295 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.4996 (15) Å Cell parameters from 6353 reflections
b = 12.4896 (18) Å θ = 2.3–28.3°
c = 11.8128 (17) Å µ = 0.09 mm1
β = 107.936 (5)° T = 296 K
V = 1473.8 (4) Å3 Prism, colorless
Z = 4 0.45 × 0.33 × 0.21 mm

Data collection

Bruker APEXII CCD diffractometer Rint = 0.035
φ and ω scans θmax = 26.0°, θmin = 2.3°
19289 measured reflections h = −12→12
2887 independent reflections k = −15→15
2306 reflections with I > 2σ(I) l = −14→14

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.4295P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2887 reflections Δρmax = 0.17 e Å3
194 parameters Δρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O2 0.34000 (12) 0.73324 (9) 0.04196 (10) 0.0465 (3)
H2 0.347012 0.797633 0.056037 0.070*
O3 0.52685 (12) 0.84064 (9) 0.20703 (10) 0.0473 (3)
O1 0.32775 (12) 0.52385 (9) 0.03728 (11) 0.0530 (4)
O4 1.04377 (13) 0.24711 (10) 0.85736 (10) 0.0524 (3)
N1 0.76944 (13) 0.53851 (10) 0.50837 (11) 0.0388 (3)
C10 0.83876 (15) 0.46251 (12) 0.59633 (13) 0.0350 (4)
C15 0.93325 (16) 0.39274 (12) 0.57930 (14) 0.0369 (4)
H15 0.951974 0.392859 0.507304 0.044*
C8 0.61237 (15) 0.56465 (13) 0.31098 (13) 0.0355 (4)
C4 0.42672 (15) 0.56804 (13) 0.12973 (13) 0.0371 (4)
C6 0.53028 (15) 0.73189 (12) 0.21930 (13) 0.0344 (4)
C14 1.00014 (16) 0.32282 (12) 0.66827 (14) 0.0384 (4)
H14 1.064957 0.277361 0.656291 0.046*
C7 0.61974 (15) 0.67549 (13) 0.30970 (13) 0.0361 (4)
H7 0.684472 0.711472 0.369303 0.043*
C9 0.69704 (15) 0.50052 (13) 0.40957 (14) 0.0377 (4)
H9 0.697878 0.426753 0.399120 0.045*
C5 0.43155 (15) 0.67913 (13) 0.13033 (13) 0.0345 (4)
C3 0.51728 (16) 0.51059 (13) 0.21959 (14) 0.0386 (4)
H3 0.514739 0.436151 0.219040 0.046*
C13 0.97179 (16) 0.31969 (13) 0.77481 (14) 0.0380 (4)
C11 0.81296 (18) 0.46051 (15) 0.70406 (15) 0.0486 (5)
H11 0.751385 0.508458 0.717490 0.058*
C12 0.87678 (18) 0.38867 (16) 0.79243 (16) 0.0505 (5)
H12 0.855831 0.386815 0.863378 0.061*
C2 0.6266 (2) 0.90036 (14) 0.29204 (16) 0.0546 (5)
H2B 0.615906 0.975079 0.272312 0.082*
H2C 0.713615 0.877111 0.291596 0.082*
H2D 0.617836 0.889302 0.369713 0.082*
C1 0.3232 (2) 0.41090 (15) 0.02729 (18) 0.0603 (5)
H1A 0.255752 0.390654 −0.044946 0.090*
H1B 0.302110 0.380713 0.094094 0.090*
H1C 0.408703 0.384713 0.025963 0.090*
C16 1.0104 (2) 0.2356 (2) 0.96441 (19) 0.0743 (7)
H16A 0.918409 0.214220 0.945995 0.111*
H16B 1.023357 0.302705 1.006081 0.111*
H16C 1.066751 0.182152 1.013549 0.111*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O2 0.0477 (7) 0.0351 (6) 0.0389 (6) 0.0019 (5) −0.0128 (5) 0.0021 (5)
O3 0.0525 (7) 0.0317 (6) 0.0402 (6) −0.0019 (5) −0.0114 (5) 0.0026 (5)
O1 0.0521 (7) 0.0372 (7) 0.0488 (7) −0.0005 (5) −0.0152 (6) −0.0056 (5)
O4 0.0602 (8) 0.0525 (8) 0.0453 (7) 0.0195 (6) 0.0174 (6) 0.0221 (6)
N1 0.0403 (7) 0.0353 (7) 0.0342 (7) 0.0050 (6) 0.0017 (6) 0.0049 (6)
C10 0.0353 (8) 0.0315 (8) 0.0324 (8) −0.0008 (6) 0.0019 (6) 0.0039 (6)
C15 0.0442 (9) 0.0333 (8) 0.0314 (8) 0.0013 (7) 0.0091 (7) 0.0009 (6)
C8 0.0328 (8) 0.0371 (8) 0.0322 (8) 0.0034 (6) 0.0036 (6) 0.0025 (6)
C4 0.0341 (8) 0.0375 (9) 0.0337 (8) −0.0001 (7) 0.0016 (6) −0.0034 (6)
C6 0.0354 (8) 0.0323 (8) 0.0308 (8) −0.0002 (6) 0.0034 (6) 0.0008 (6)
C14 0.0418 (9) 0.0317 (8) 0.0413 (9) 0.0055 (7) 0.0121 (7) 0.0022 (7)
C7 0.0339 (8) 0.0380 (9) 0.0291 (8) −0.0018 (7) −0.0011 (6) −0.0006 (6)
C9 0.0368 (8) 0.0333 (8) 0.0389 (9) 0.0028 (7) 0.0056 (7) 0.0049 (7)
C5 0.0319 (8) 0.0373 (9) 0.0285 (8) 0.0033 (6) 0.0007 (6) 0.0030 (6)
C3 0.0402 (9) 0.0314 (8) 0.0394 (9) 0.0030 (7) 0.0052 (7) 0.0017 (7)
C13 0.0378 (9) 0.0348 (9) 0.0380 (9) 0.0031 (7) 0.0066 (7) 0.0080 (7)
C11 0.0460 (10) 0.0548 (11) 0.0458 (10) 0.0201 (8) 0.0156 (8) 0.0111 (8)
C12 0.0529 (11) 0.0624 (12) 0.0400 (9) 0.0154 (9) 0.0198 (8) 0.0145 (8)
C2 0.0591 (12) 0.0363 (10) 0.0509 (11) −0.0115 (8) −0.0089 (9) 0.0027 (8)
C1 0.0658 (13) 0.0427 (11) 0.0568 (11) −0.0089 (9) −0.0042 (10) −0.0113 (9)
C16 0.0816 (16) 0.0896 (17) 0.0569 (13) 0.0299 (13) 0.0291 (11) 0.0395 (12)

Geometric parameters (Å, º)

O1—C2i 3.159 (2) C6—C7 1.379 (2)
O2—C5 1.3610 (17) C6—C5 1.394 (2)
O2—H2 0.8200 C14—C13 1.380 (2)
O3—C6 1.3652 (19) C14—H14 0.9300
O3—C2 1.4193 (19) C7—H7 0.9300
O1—C4 1.3704 (18) C9—H9 0.9300
O1—C1 1.415 (2) C3—H3 0.9300
O4—C13 1.3748 (18) C13—C12 1.382 (2)
O4—C16 1.420 (2) C11—C12 1.383 (2)
N1—C9 1.2722 (19) C11—H11 0.9300
N1—C10 1.4299 (19) C12—H12 0.9300
C10—C11 1.380 (2) C2—H2B 0.9600
C10—C15 1.381 (2) C2—H2C 0.9600
C15—C14 1.381 (2) C2—H2D 0.9600
C15—H15 0.9300 C1—H1A 0.9600
C8—C7 1.387 (2) C1—H1B 0.9600
C8—C3 1.398 (2) C1—H1C 0.9600
C8—C9 1.466 (2) C16—H16A 0.9600
C4—C3 1.387 (2) C16—H16B 0.9600
C4—C5 1.388 (2) C16—H16C 0.9600
C5—O2—H2 109.5 C4—C5—C6 119.60 (13)
C6—O3—C2 117.27 (12) C4—C3—C8 119.96 (15)
C4—O1—C1 117.75 (13) C4—C3—H3 120.0
C13—O4—C16 117.76 (14) C8—C3—H3 120.0
C9—N1—C10 116.47 (13) O4—C13—C14 116.08 (14)
C11—C10—C15 118.47 (14) O4—C13—C12 124.69 (15)
C11—C10—N1 118.78 (14) C14—C13—C12 119.22 (14)
C15—C10—N1 122.73 (14) C10—C11—C12 121.36 (16)
C14—C15—C10 120.54 (15) C10—C11—H11 119.3
C14—C15—H15 119.7 C12—C11—H11 119.3
C10—C15—H15 119.7 C13—C12—C11 119.69 (16)
C7—C8—C3 120.18 (14) C13—C12—H12 120.2
C7—C8—C9 122.12 (14) C11—C12—H12 120.2
C3—C8—C9 117.62 (14) O3—C2—H2B 109.5
O1—C4—C3 125.06 (15) O3—C2—H2C 109.5
O1—C4—C5 115.09 (13) H2B—C2—H2C 109.5
C3—C4—C5 119.85 (14) O3—C2—H2D 109.5
O3—C6—C7 125.44 (13) H2B—C2—H2D 109.5
O3—C6—C5 113.65 (13) H2C—C2—H2D 109.5
C7—C6—C5 120.91 (14) O1—C1—H1A 109.5
C13—C14—C15 120.67 (15) O1—C1—H1B 109.5
C13—C14—H14 119.7 H1A—C1—H1B 109.5
C15—C14—H14 119.7 O1—C1—H1C 109.5
C6—C7—C8 119.44 (14) H1A—C1—H1C 109.5
C6—C7—H7 120.3 H1B—C1—H1C 109.5
C8—C7—H7 120.3 O4—C16—H16A 109.5
N1—C9—C8 124.73 (15) O4—C16—H16B 109.5
N1—C9—H9 117.6 H16A—C16—H16B 109.5
C8—C9—H9 117.6 O4—C16—H16C 109.5
O2—C5—C4 118.44 (13) H16A—C16—H16C 109.5
O2—C5—C6 121.96 (14) H16B—C16—H16C 109.5
C9—N1—C10—C11 −120.05 (18) C3—C4—C5—C6 2.1 (2)
C9—N1—C10—C15 61.7 (2) O3—C6—C5—O2 −1.2 (2)
C11—C10—C15—C14 0.0 (2) C7—C6—C5—O2 178.26 (15)
N1—C10—C15—C14 178.20 (15) O3—C6—C5—C4 177.70 (14)
C1—O1—C4—C3 −4.9 (3) C7—C6—C5—C4 −2.8 (2)
C1—O1—C4—C5 175.89 (16) O1—C4—C3—C8 −178.61 (15)
C2—O3—C6—C7 2.4 (2) C5—C4—C3—C8 0.5 (2)
C2—O3—C6—C5 −178.17 (15) C7—C8—C3—C4 −2.4 (2)
C10—C15—C14—C13 1.4 (2) C9—C8—C3—C4 174.26 (15)
O3—C6—C7—C8 −179.66 (15) C16—O4—C13—C14 −175.25 (18)
C5—C6—C7—C8 0.9 (2) C16—O4—C13—C12 5.6 (3)
C3—C8—C7—C6 1.7 (2) C15—C14—C13—O4 179.86 (15)
C9—C8—C7—C6 −174.84 (15) C15—C14—C13—C12 −1.0 (3)
C10—N1—C9—C8 176.30 (14) C15—C10—C11—C12 −1.8 (3)
C7—C8—C9—N1 10.4 (3) N1—C10—C11—C12 179.89 (16)
C3—C8—C9—N1 −166.23 (16) O4—C13—C12—C11 178.25 (17)
O1—C4—C5—O2 0.2 (2) C14—C13—C12—C11 −0.8 (3)
C3—C4—C5—O2 −178.98 (14) C10—C11—C12—C13 2.2 (3)
O1—C4—C5—C6 −178.72 (14)

Symmetry code: (i) x−1/2, −y+3/2, z−1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···N1i 0.82 2.21 2.9415 (18) 149
C7—H7···O2ii 0.93 2.29 3.2043 (18) 167

Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) x+1/2, −y+3/2, z+1/2.

References

  1. Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Crestini, C., Crucianelli, M., Orlandi, M. & Saladino, R. (2010). Catal. Today, 156, 8–22.
  3. Duke, J. A. (2003). CRC book of medicinal spices. Boca Raton, Florida: CRC Press LLC.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Gurpilhares, D. B., Pessoa, A. Jr & Roberto, I. C. (2006). Process Biochem. 41, 631–637.
  7. Ibrahim, M. N., Sriprasanthi, R. B., Shamsudeen, S., Adam, F. & Bhawani, S. A. (2012). BioResources J. 7, 4377–4399.
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Mao, C.-G., Wang, S.-S., Su, D.-C. & Qian, S.-S. (2012). Acta Cryst. E68, o249. [DOI] [PMC free article] [PubMed]
  10. Robinson, A. L., Subramanian, R., Donahue, N. M., Bernardo-Bricker, A. & Rogge, W. F. (2006). Environ. Sci. Technol. 40, 7811–7819. [DOI] [PubMed]
  11. Sahin, O., Buyukgungor, O., Albayrak, C. & Odabasoglu, M. (2010). Chin. J. Struct. Chem.(Jiegou Huaxue), 29, 359–361.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
  14. Shi, Y. & Zhou, C. H. (2011). Bioorg. Med. Chem. Lett. 21, 956–960.
  15. Silva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B., de Fátima, A. & Ângelo, (2011). J. Adv. Res. 2, 1–8.
  16. Singh, N. B., Das, S. S., Gupta, P., Gupta, A. & Fröhlich, R. (2008). Mol. Cryst. Liq. Cryst. 490, 106–123.
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Xin, C.-W., Zeng, T. & Li, J.-S. (2006). Acta Cryst. E62, o1560–o1561.
  19. Yeap, G.-Y., Fun, H.-K., Teoh, S.-G., Teo, S.-B., Chinnakali, K. & Yip, B.-C. (1992). Acta Cryst. C48, 2257–2258.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018013713/ld2146sup1.cif

e-74-01540-sup1.cif (699KB, cif)

Supporting information file. DOI: 10.1107/S2056989018013713/ld2146Isup3.cml

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018013713/ld2146Isup3.hkl

e-74-01540-Isup3.hkl (230.9KB, hkl)

CCDC reference: 1843910

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES