Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Oct 23;74(Pt 11):1648–1652. doi: 10.1107/S2056989018014561

Crystal structure and Hirshfeld surface analysis of ethyl 2-{4-[(3-methyl-2-oxo-1,2-di­hydro­quinoxalin-1-yl)meth­yl]-1H-1,2,3-triazol-1-yl}acetate

Nadeem Abad a,*, Youssef Ramli b, Tuncer Hökelek c, Nada Kheira Sebbar d, Joel T Mague e, El Mokhtar Essassi a
PMCID: PMC6218907  PMID: 30443399

The di­hydro­qinoxalinone portion of the mol­ecule is planar to within 0.0512 (12) Å. In the crystal, a combination of C—H⋯O and C—H⋯N hydrogen bonds together with slipped π-stacking and C—H⋯π(ring) inter­actions lead to the formation of chains extending along the c-axis direction. The chains are linked into layers parallel to the bc plane by sets of four C—H⋯O hydrogen bonds and the layers are tied together by complementary π-stacking inter­actions.

Keywords: crystal structure, di­hydro­quinoxaline, hydrogen bond, π-stacking, Hirshfeld surface

Abstract

The mol­ecule of the title compound, C16H17N5O3, is build up from two fused six-membered rings linked to a 1,2,3-triazole ring, which is attached to an ethyl azido-acetate group. The di­hydro­qinoxalinone portion is planar to within 0.0512 (12) Å and is oriented at a dihedral angle of 87.83 (5)° with respect to the pendant triazole ring. In the crystal, a combination of inter­molecular C—H⋯O and C—H⋯N hydrogen bonds together with slipped π-stacking [centroid–centroid distance = 3.7772 (12) Å] and C—H⋯π (ring) inter­actions lead to the formation of chains extending along the c-axis direction. Additional C—H⋯O hydrogen bonds link these chains into layers parallel to the bc plane and the layers are tied together by complementary π-stacking [centroid–centroid distance = 3.5444 (12) Å] inter­actions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (44.5%), H⋯O/O⋯H (18.8%), H⋯N/N⋯H (17.0%) and H⋯C/C⋯H (10.4%) inter­actions.

Chemical context  

Quinoxaline derivatives, especially quinoxalinone, are of great importance in medicinal chemistry (Ramli & Essassi, 2015; Ramli et al., 2017) and can be used for the synthesis of numerous heterocyclic compounds with various biological activities such as anti­bacterial (Griffith et al., 1992), HIV (Loriga et al., 1997), anti­microbial (Badran et al., 2003), anti-inflammatory (Wagle et al., 2008), anti­protozoal (Hui et al., 2006), and anti­cancer (Carta et al., 2006). In a continuation of our research work devoted to the study of cyclo­addition reactions involving quinoxaline derivatives (Ramli et al., 2011, 2013; Abad et al., 2018; Sebbar et al., 2016), we report in this work the synthesis, using 3-methyl-1-(prop-2-yn­yl)-3,4-di­hydro­quinoxalin-2(1H)-one as dipolarophile and ethyl azido acetate as 1,3-dipole, and crystal structure of ethyl 2-{4-[(3-methyl-2-oxo-1,2-di­hydro­quinoxalin-1-yl)meth­yl]-1H-1,2,3-triazol-1-yl}acetate, C16H17N5O3 (Fig. 1).

Figure 1.

Figure 1

The title mol­ecule with the labelling scheme and 50% probability ellipsoids.

Structural commentary  

The mol­ecule of the title compound is build up from two fused six-membered rings linked to a 1,2,3-triazole ring which is attached to ethyl azido­acetate group (Fig. 1) (Sebbar et al., 2014; Ellouz et al., 2015).graphic file with name e-74-01648-scheme1.jpg

Atoms C8 and N2 are displaced from the mean plane through the di­hydro­quinoxalinone unit by 0.0367 (13) and −0.0512 (12) Å, respectively, with the remaining atoms within 0.0222 (15) Å of the plane (r.m.s deviation of the fitted atoms is 0.0234 Å). The pendant triazole ring is inclined to this plane by 87.83 (5)°.

Supra­molecular features  

Hydrogen bonding and van der Waals contacts are the dominant inter­actions in the crystal packing. In the crystal, C—HDhyqnx⋯OEthazac, C—HEthazac⋯ODhyqnx, C5—HDhyqnx⋯NEthazac and C—HTrz⋯NDhyqnx (Dhyqnx = di­hydro­quinoxalin, Ethazac = ethyl azido­acetate and Trz = triazol) hydrogen bonds (Table 1) form chains extending along the c-axis direction (Figs. 2 and 3). These are reinforced by slipped π-stacking inter­actions between inversion-related A (N1/N2/C1/C6–C8) rings [centroid–centroid distance = 3.7772 (12) Å] and by complementary C—HDhyqnxCg3 inter­actions [Cg3 is the centroid of the benzene ring B (C1–C6)] (Table 1 and Fig. 2). The chains are linked into layers parallel to the bc plane by sets of four C—HDhyqnx⋯OEthazac hydrogen bonds (Table 1 and Fig. 3) with the layers linked along the a-axis direction by inversion-related slipped π-stacking inter­actions between the A and B rings [centroid–centroid distance = 3.5444 (12) Å] (Fig. 2).

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the benzene (C1–C6) ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N4xi 0.974 (19) 2.48 (2) 3.401 (3) 157.9 (15)
C9—H9B⋯O2iv 0.97 (2) 2.59 (2) 3.508 (3) 156.9 (18)
C12—H12⋯N1iv 0.935 (18) 2.431 (19) 3.365 (2) 177.6 (16)
C13—H13A⋯O1i 0.99 (2) 2.36 (2) 3.318 (2) 162.5 (16)
C13—H13B⋯N3i 1.027 (18) 2.672 (19) 3.481 (2) 135.6 (13)
C9—H9CCg3iv 1.00 (2) 2.67 (2) 3.430 (2) 132.0 (15)

Symmetry codes: (i) Inline graphic; (iv) Inline graphic; (xi) Inline graphic.

Figure 2.

Figure 2

Detail of the inter­molecular inter­actions viewed along the b-axis direction. C—H⋯O and N—H⋯O hydrogen bonds are shown, respectively, by black and purple dashed lines. Slipped π-stacking and C—H⋯π (ring) inter­actions are shown, respectively, by orange and green dashed lines.

Figure 3.

Figure 3

Plane view of one layer along the a-axis direction with inter­molecular inter­actions depicted as in Fig. 2.

Hirshfeld surface analysis  

Visualization and exploration of inter­molecular close contacts in the crystal structure of the title compound is invaluable. Thus, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using CrystalExplorer17.5 (Turner et al., 2017) to investigate the locations of atom–atom short contacts with the potential to form hydrogen bonds and the qu­anti­tative ratios of these inter­actions as well as those of the π-stacking inter­actions. In the HS plotted over d norm (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, while the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near O1, O2, N1, N3 and hydrogen atoms H5, H4, H9B and H12 indicate their roles as the respective donors and acceptors in the dominant C—H⋯O and C—H⋯N hydrogen bonds; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) shown in Fig. 5. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors).

Figure 4.

Figure 4

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.2685 to 1.3470 a.u.

Figure 5.

Figure 5

View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.

The shape-index of the HS is a tool to visualize π–π stacking inter­actions by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π inter­actions. Fig. 6 clearly suggest that there are π–π inter­actions present in the title compound.

Figure 6.

Figure 6

Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot is shown in Fig. 7 a and those delineated into H⋯H, H⋯O/O⋯H, H⋯N/N⋯H, H⋯C/C⋯ H, C⋯C, N⋯C/C⋯N, O⋯C/C⋯O and N⋯N contacts (McKinnon et al., 2007) are illustrated in Fig. 7 bi, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H contributing 44.5% to the overall crystal packing, which is reflected in Fig. 7 b as widely scattered points of high density due to the large hydrogen content of the mol­ecule. The wide peak in the centre at d e = d i = 1.18 Å in Fig. 7 b is due to the short inter­atomic H⋯H contacts (Table 2). In the fingerprint plot delineated into H⋯O/O⋯H contacts Fig. 7 c, the 18.8% contribution to the HS arises from the inter­molecular C—H⋯O hydrogen bonding (Table 1) besides the H⋯O/O⋯H contacts (Table 2) and is viewed as pair of spikes with the tips at d e + d i ∼ 2.27 Å. The H⋯N/N⋯H contacts in the structure with 17.0% contribution to the HS have a symmetrical distribution of points, Fig. 7 d, with the tips at d e + d i ∼ 2.30 Å arising from the short inter­atomic C—H⋯N hydrogen bonding (Table 1) as well as from the H⋯N/N⋯H contacts (Table 3). The presence of a weak C—H⋯π inter­action (Table 1) results in two pairs of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts with a 10.4% contribution to the HS, Fig. 7 e, while the two pairs of thin and thick edges at d e + d i ∼ 2.77 and 2.67 Å, respectively, result from the inter­atomic H⋯C/C⋯H contacts (Table 2). The inter­atomic C⋯C contacts (Table 2) with a 3.6% contribution to the HS appear as an arrow-shaped distribution of points in Fig. 7 f, with the vertex at d e = d i = 1.71 Å. Finally, the C⋯N/N⋯C (Fig. 7 g) contacts (Table 3) in the structure, with a 3.2% contribution to the HS, have a symmetrical distribution of points, with a pair of wings appearing at d e = d i = 1.67 Å. The Hirshfeld surfaces mapped over d norm plotted are shown for the H⋯H, H⋯O/O⋯H, H⋯N/N⋯H, H⋯C/C⋯H, C⋯C and C⋯N/N⋯C inter­actions in Fig. 8 af, respectively.

Figure 7.

Figure 7

The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯N/N⋯H, (e) H⋯C/C⋯H, (f) C⋯C, (g) C⋯N/N⋯C, (h) O⋯C/C⋯O and (i) N⋯N inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

Table 2. Selected interatomic distances (Å).

O1⋯C11 3.394 (3) N3⋯H13B i 2.672 (19)
O1⋯C13i 3.318 (3) N4⋯C5ix 3.401 (3)
O1⋯C15ii 3.116 (3) N4⋯H5ix 2.48 (2)
O1⋯C16ii 3.360 (3) C1⋯C6vii 3.521 (3)
O1⋯H9A 2.74 (3) C1⋯C12 3.519 (3)
O1⋯H10A 2.35 (2) C2⋯C7vii 3.459 (3)
O1⋯H13A i 2.36 (2) C2⋯C11 3.397 (3)
O1⋯H15A ii 2.61 (2) C2⋯H10B 2.63 (2)
O1⋯H16A ii 2.71 (2) C3⋯C9vii 3.574 (3)
O2⋯N5 2.772 (2) C3⋯H9A vii 2.81 (2)
O2⋯C4iii 3.409 (3) C4⋯C8vii 3.569 (3)
O2⋯C12 3.186 (2) C5⋯C8vii 3.545 (3)
O2⋯H4iii 2.55 (2) C5⋯C10vii 3.548 (3)
O2⋯H9B iv 2.59 (2) C6⋯C7iv 3.420 (3)
O2⋯H15A 2.72 (2) C8⋯C12 3.533 (3)
O2⋯H15B 2.56 (2) C10⋯H2 2.61 (2)
O2⋯H16B v 2.76 (2) C11⋯C13i 3.421 (3)
O3⋯H15A vi 2.84 (3) C11⋯H2 2.92 (2)
N1⋯N2 2.806 (3) C11⋯H13B i 2.88 (2)
N1⋯C12iv 3.365 (3) C14⋯H16C vi 2.95 (2)
N1⋯H12iv 2.431 (19) H2⋯H10B 2.17 (2)
N2⋯C6vii 3.389 (3) H3⋯H9A x 2.51 (2)
N2⋯H12 2.85 (2) H10B⋯H13B v 2.45 (3)
N3⋯H10A viii 2.73 (2)    

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic; (x) Inline graphic.

Table 3. Experimental details.

Crystal data
Chemical formula C16H17N5O3
M r 327.34
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 7.2061 (15), 10.237 (2), 10.694 (2)
α, β, γ (°) 95.356 (3), 92.867 (3), 100.291 (3)
V3) 771.0 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.25 × 0.24 × 0.13
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009)
T min, T max 0.97, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 14566, 14566, 7794
R int 0.026
(sin θ/λ)max−1) 0.686
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.047, 0.151, 1.01
No. of reflections 14566
No. of parameters 286
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.90, −0.53

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2018/1 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

Figure 8.

Figure 8

Hirshfeld surface representations with the function d norm plotted onto the surface for (a) H⋯H, (b) H⋯O/O⋯H, (c) H⋯N/N⋯H, (d) H⋯C/C⋯H, (e) C⋯C and (f) C⋯N/N⋯C inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯O/O⋯H, H⋯ N/N⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Synthesis and crystallization  

To a solution of 3-methyl-1-(prop-2-yn­yl)-3,4-di­hydro­quinox­alin-2(1H)-one (0.65 mmol) in ethanol (20 mL) was added ethyl azido­acetate (1.04 mmol). The mixture was stirred under reflux for 24 h. After completion of the reaction (monitored by TLC), the solution was concentrated and the residue was purified by column chromatography on silica gel by using as eluent a hexa­ne/ethyl acetate (9/1) mixture. Crystals were obtained when the solvent was allowed to evaporate. The solid product isolated was recrystallized from ethanol to afford yellow crystals in 75% yield.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were located in a difference-Fourier map and were refined freely. Eleven reflections appearing near the top of the frames on which they were recorded were omitted from the final refinement as they appeared to have been partially obscured by the nozzle of the low-temperature attachment.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989018014561/xu5945sup1.cif

e-74-01648-sup1.cif (28.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018014561/xu5945Isup2.hkl

e-74-01648-Isup2.hkl (697.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018014561/xu5945Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989018014561/xu5945Isup4.cml

CCDC reference: 1873385

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

supplementary crystallographic information

Crystal data

C16H17N5O3 Z = 2
Mr = 327.34 F(000) = 344
Triclinic, P1 Dx = 1.410 Mg m3
a = 7.2061 (15) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.237 (2) Å Cell parameters from 4358 reflections
c = 10.694 (2) Å θ = 2.7–29.1°
α = 95.356 (3)° µ = 0.10 mm1
β = 92.867 (3)° T = 100 K
γ = 100.291 (3)° Block, gold
V = 771.0 (3) Å3 0.25 × 0.24 × 0.13 mm

Data collection

Bruker SMART APEX CCD diffractometer 14566 independent reflections
Radiation source: fine-focus sealed tube 7794 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
Detector resolution: 8.3333 pixels mm-1 θmax = 29.2°, θmin = 1.9°
ω scans h = −9→9
Absorption correction: multi-scan (TWINABS; Sheldrick, 2009) k = −14→13
Tmin = 0.97, Tmax = 0.99 l = −14→14
14566 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: difference Fourier map
wR(F2) = 0.151 All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0726P)2] where P = (Fo2 + 2Fc2)/3
14566 reflections (Δ/σ)max < 0.001
286 parameters Δρmax = 0.90 e Å3
0 restraints Δρmin = −0.53 e Å3

Special details

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 40 sec/frame was used. Analysis of 226 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the triclinic system and to be twinned by a 176° rotation about the real axis 1,-0.8,-0.11. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.21097 (18) 0.29218 (12) 0.26556 (12) 0.0221 (3)
O2 0.72802 (18) 0.89513 (13) 0.19527 (13) 0.0253 (3)
O3 0.99442 (17) 0.86498 (12) 0.10490 (12) 0.0236 (3)
N1 0.2861 (2) 0.44465 (14) 0.58072 (14) 0.0167 (3)
N2 0.1816 (2) 0.50319 (14) 0.33885 (14) 0.0149 (3)
N3 0.2293 (2) 0.62469 (15) 0.02167 (14) 0.0190 (4)
N4 0.3912 (2) 0.67146 (15) −0.02467 (14) 0.0195 (4)
N5 0.5294 (2) 0.66253 (14) 0.06255 (13) 0.0163 (3)
C1 0.2076 (2) 0.60425 (17) 0.43915 (16) 0.0149 (4)
C2 0.1859 (3) 0.73515 (18) 0.42255 (19) 0.0197 (4)
H2 0.156 (3) 0.760 (2) 0.3418 (19) 0.026 (6)*
C3 0.2093 (3) 0.82977 (19) 0.5254 (2) 0.0232 (4)
H3 0.198 (3) 0.919 (2) 0.5132 (18) 0.027 (5)*
C4 0.2543 (3) 0.79803 (19) 0.64554 (19) 0.0221 (4)
H4 0.266 (3) 0.864 (2) 0.7164 (19) 0.025 (5)*
C5 0.2805 (3) 0.67017 (19) 0.66222 (18) 0.0193 (4)
H5 0.317 (3) 0.6456 (19) 0.7445 (18) 0.021 (5)*
C6 0.2587 (2) 0.57244 (17) 0.55919 (17) 0.0156 (4)
C7 0.2689 (2) 0.35448 (17) 0.48562 (17) 0.0154 (4)
C8 0.2200 (2) 0.37824 (17) 0.35441 (17) 0.0156 (4)
C9 0.2950 (3) 0.21591 (19) 0.5043 (2) 0.0219 (4)
H9A 0.175 (3) 0.153 (2) 0.472 (2) 0.041 (6)*
H9B 0.320 (3) 0.207 (2) 0.593 (2) 0.038 (6)*
H9C 0.401 (3) 0.190 (2) 0.455 (2) 0.039 (6)*
C10 0.1103 (3) 0.52580 (19) 0.21316 (17) 0.0177 (4)
H10A 0.045 (3) 0.439 (2) 0.1700 (18) 0.024 (5)*
H10B 0.014 (3) 0.5837 (18) 0.2229 (17) 0.018 (5)*
C11 0.2664 (2) 0.58684 (16) 0.13786 (16) 0.0158 (4)
C12 0.4569 (3) 0.61031 (17) 0.16447 (17) 0.0176 (4)
H12 0.531 (3) 0.5937 (18) 0.2336 (18) 0.019 (5)*
C13 0.7253 (3) 0.70767 (18) 0.03953 (18) 0.0179 (4)
H13A 0.733 (3) 0.7257 (19) −0.0493 (19) 0.023 (5)*
H13B 0.803 (2) 0.6349 (19) 0.0549 (17) 0.017 (5)*
C14 0.8116 (3) 0.83408 (17) 0.12354 (17) 0.0167 (4)
C15 1.0986 (3) 0.98897 (18) 0.1738 (2) 0.0227 (4)
H15A 1.045 (3) 1.065 (2) 0.1445 (18) 0.023 (5)*
H15B 1.075 (3) 0.9888 (19) 0.2649 (19) 0.021 (5)*
C16 1.3022 (3) 0.9965 (2) 0.1468 (2) 0.0294 (5)
H16A 1.372 (3) 1.081 (3) 0.191 (2) 0.050 (7)*
H16B 1.354 (3) 0.922 (2) 0.1786 (19) 0.035 (6)*
H16C 1.322 (3) 0.992 (2) 0.053 (2) 0.041 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0273 (8) 0.0180 (7) 0.0193 (7) 0.0028 (5) 0.0020 (6) −0.0040 (5)
O2 0.0247 (7) 0.0203 (7) 0.0289 (8) 0.0022 (6) 0.0064 (6) −0.0064 (6)
O3 0.0190 (7) 0.0187 (7) 0.0296 (8) −0.0013 (5) 0.0034 (6) −0.0070 (6)
N1 0.0147 (8) 0.0181 (8) 0.0175 (8) 0.0030 (6) 0.0013 (6) 0.0029 (6)
N2 0.0155 (8) 0.0154 (7) 0.0133 (8) 0.0015 (6) −0.0005 (6) 0.0017 (6)
N3 0.0214 (9) 0.0182 (8) 0.0162 (8) 0.0012 (6) −0.0011 (6) 0.0017 (6)
N4 0.0222 (9) 0.0193 (8) 0.0157 (8) 0.0009 (6) −0.0021 (6) 0.0020 (6)
N5 0.0188 (8) 0.0148 (7) 0.0137 (8) 0.0002 (6) −0.0009 (6) −0.0002 (6)
C1 0.0116 (9) 0.0159 (9) 0.0161 (9) 0.0008 (7) 0.0009 (7) −0.0006 (7)
C2 0.0179 (10) 0.0178 (9) 0.0235 (11) 0.0032 (7) −0.0003 (8) 0.0044 (8)
C3 0.0181 (10) 0.0146 (9) 0.0366 (12) 0.0036 (7) 0.0019 (8) −0.0006 (8)
C4 0.0173 (10) 0.0194 (10) 0.0267 (11) 0.0008 (7) 0.0031 (8) −0.0085 (8)
C5 0.0145 (9) 0.0233 (10) 0.0182 (10) 0.0000 (7) 0.0023 (8) −0.0016 (8)
C6 0.0121 (9) 0.0161 (9) 0.0179 (9) 0.0013 (7) 0.0015 (7) 0.0005 (7)
C7 0.0119 (9) 0.0153 (9) 0.0190 (10) 0.0017 (7) 0.0028 (7) 0.0029 (7)
C8 0.0134 (9) 0.0148 (9) 0.0179 (10) 0.0004 (7) 0.0022 (7) 0.0013 (7)
C9 0.0231 (11) 0.0178 (10) 0.0255 (12) 0.0045 (8) 0.0026 (9) 0.0045 (8)
C10 0.0168 (10) 0.0203 (9) 0.0151 (9) 0.0020 (7) −0.0035 (7) 0.0016 (7)
C11 0.0213 (10) 0.0124 (8) 0.0127 (9) 0.0027 (7) −0.0017 (7) −0.0009 (7)
C12 0.0221 (10) 0.0158 (9) 0.0142 (9) 0.0026 (7) −0.0013 (8) 0.0014 (7)
C13 0.0192 (10) 0.0170 (9) 0.0163 (10) 0.0011 (7) 0.0017 (8) −0.0004 (7)
C14 0.0201 (10) 0.0137 (8) 0.0164 (9) 0.0028 (7) 0.0007 (7) 0.0025 (7)
C15 0.0231 (11) 0.0156 (9) 0.0262 (12) −0.0012 (8) −0.0010 (9) −0.0046 (8)
C16 0.0220 (11) 0.0218 (11) 0.0419 (14) 0.0008 (8) −0.0017 (10) −0.0017 (10)

Geometric parameters (Å, º)

O1—C8 1.225 (2) C5—C6 1.400 (2)
O2—C14 1.197 (2) C5—H5 0.974 (19)
O3—C14 1.328 (2) C7—C8 1.482 (2)
O3—C15 1.466 (2) C7—C9 1.494 (2)
N1—C7 1.293 (2) C9—H9A 1.00 (2)
N1—C6 1.396 (2) C9—H9B 0.97 (2)
N2—C8 1.379 (2) C9—H9C 1.00 (2)
N2—C1 1.400 (2) C10—C11 1.496 (2)
N2—C10 1.468 (2) C10—H10A 0.99 (2)
N3—N4 1.318 (2) C10—H10B 0.992 (18)
N3—C11 1.363 (2) C11—C12 1.362 (3)
N4—N5 1.3511 (19) C12—H12 0.935 (18)
N5—C12 1.346 (2) C13—C14 1.519 (2)
N5—C13 1.446 (2) C13—H13A 0.99 (2)
C1—C6 1.401 (3) C13—H13B 1.027 (18)
C1—C2 1.403 (2) C15—C16 1.500 (3)
C2—C3 1.378 (3) C15—H15A 0.997 (19)
C2—H2 0.95 (2) C15—H15B 0.996 (19)
C3—C4 1.391 (3) C16—H16A 0.99 (3)
C3—H3 0.95 (2) C16—H16B 0.99 (2)
C4—C5 1.382 (3) C16—H16C 1.02 (2)
C4—H4 0.96 (2)
O1···C11 3.394 (3) N3···H13Bi 2.672 (19)
O1···C13i 3.318 (3) N4···C5ix 3.401 (3)
O1···C15ii 3.116 (3) N4···H5ix 2.48 (2)
O1···C16ii 3.360 (3) C1···C6vii 3.521 (3)
O1···H9A 2.74 (3) C1···C12 3.519 (3)
O1···H10A 2.35 (2) C2···C7vii 3.459 (3)
O1···H13Ai 2.36 (2) C2···C11 3.397 (3)
O1···H15Aii 2.61 (2) C2···H10B 2.63 (2)
O1···H16Aii 2.71 (2) C3···C9vii 3.574 (3)
O2···N5 2.772 (2) C3···H9Avii 2.81 (2)
O2···C4iii 3.409 (3) C4···C8vii 3.569 (3)
O2···C12 3.186 (2) C5···C8vii 3.545 (3)
O2···H4iii 2.55 (2) C5···C10vii 3.548 (3)
O2···H9Biv 2.59 (2) C6···C7iv 3.420 (3)
O2···H15A 2.72 (2) C8···C12 3.533 (3)
O2···H15B 2.56 (2) C10···H2 2.61 (2)
O2···H16Bv 2.76 (2) C11···C13i 3.421 (3)
O3···H15Avi 2.84 (3) C11···H2 2.92 (2)
N1···N2 2.806 (3) C11···H13Bi 2.88 (2)
N1···C12iv 3.365 (3) C14···H16Cvi 2.95 (2)
N1···H12iv 2.431 (19) H2···H10B 2.17 (2)
N2···C6vii 3.389 (3) H3···H9Ax 2.51 (2)
N2···H12 2.85 (2) H10B···H13Bv 2.45 (3)
N3···H10Aviii 2.73 (2)
C14—O3—C15 116.32 (14) C7—C9—H9B 111.1 (13)
C7—N1—C6 118.44 (15) H9C—C9—H9B 109.7 (17)
C8—N2—C1 121.42 (15) H9A—C9—H9B 108.8 (17)
C8—N2—C10 117.40 (15) N2—C10—C11 111.65 (14)
C1—N2—C10 121.18 (14) N2—C10—H10A 107.9 (11)
N4—N3—C11 108.51 (14) C11—C10—H10A 110.2 (11)
N3—N4—N5 106.77 (14) N2—C10—H10B 108.6 (10)
C12—N5—N4 111.21 (15) C11—C10—H10B 110.9 (10)
C12—N5—C13 128.71 (16) H10A—C10—H10B 107.5 (15)
N4—N5—C13 120.08 (14) C12—C11—N3 109.00 (16)
N2—C1—C6 118.25 (15) C12—C11—C10 129.83 (16)
N2—C1—C2 122.11 (16) N3—C11—C10 121.13 (16)
C6—C1—C2 119.63 (16) N5—C12—C11 104.50 (16)
C3—C2—C1 119.48 (18) N5—C12—H12 123.8 (11)
C3—C2—H2 119.1 (12) C11—C12—H12 131.7 (11)
C1—C2—H2 121.4 (12) N5—C13—C14 111.72 (15)
C2—C3—C4 121.25 (18) N5—C13—H13A 108.9 (11)
C2—C3—H3 119.0 (12) C14—C13—H13A 108.9 (11)
C4—C3—H3 119.7 (12) N5—C13—H13B 110.3 (10)
C5—C4—C3 119.61 (18) C14—C13—H13B 108.8 (10)
C5—C4—H4 120.3 (12) H13A—C13—H13B 108.1 (15)
C3—C4—H4 120.1 (12) O2—C14—O3 125.75 (16)
C4—C5—C6 120.24 (18) O2—C14—C13 125.31 (17)
C4—C5—H5 121.7 (11) O3—C14—C13 108.93 (15)
C6—C5—H5 118.0 (11) O3—C15—C16 106.61 (16)
N1—C6—C5 118.17 (16) O3—C15—H15A 108.2 (11)
N1—C6—C1 122.09 (16) C16—C15—H15A 112.8 (11)
C5—C6—C1 119.73 (17) O3—C15—H15B 109.3 (11)
N1—C7—C8 123.89 (16) C16—C15—H15B 113.9 (11)
N1—C7—C9 120.33 (16) H15A—C15—H15B 106.0 (15)
C8—C7—C9 115.77 (16) C15—C16—H16A 106.9 (14)
O1—C8—N2 121.94 (16) C15—C16—H16B 111.6 (12)
O1—C8—C7 122.44 (16) H16A—C16—H16B 108.6 (19)
N2—C8—C7 115.60 (15) C15—C16—H16C 112.4 (13)
C7—C9—H9C 111.2 (13) H16A—C16—H16C 110.6 (19)
C7—C9—H9A 108.0 (13) H16B—C16—H16C 106.7 (18)
H9C—C9—H9A 107.9 (18)
C11—N3—N4—N5 0.12 (18) C1—N2—C8—C7 6.6 (2)
N3—N4—N5—C12 0.01 (19) C10—N2—C8—C7 −172.74 (14)
N3—N4—N5—C13 −179.45 (14) N1—C7—C8—O1 177.45 (16)
C8—N2—C1—C6 −5.3 (2) C9—C7—C8—O1 −3.6 (2)
C10—N2—C1—C6 174.01 (15) N1—C7—C8—N2 −3.7 (3)
C8—N2—C1—C2 174.05 (16) C9—C7—C8—N2 175.18 (15)
C10—N2—C1—C2 −6.7 (2) C8—N2—C10—C11 −95.05 (18)
N2—C1—C2—C3 178.61 (16) C1—N2—C10—C11 85.64 (19)
C6—C1—C2—C3 −2.1 (3) N4—N3—C11—C12 −0.20 (19)
C1—C2—C3—C4 0.1 (3) N4—N3—C11—C10 −178.25 (15)
C2—C3—C4—C5 1.5 (3) N2—C10—C11—C12 7.1 (3)
C3—C4—C5—C6 −1.1 (3) N2—C10—C11—N3 −175.33 (15)
C7—N1—C6—C5 −179.00 (16) N4—N5—C12—C11 −0.13 (19)
C7—N1—C6—C1 2.1 (2) C13—N5—C12—C11 179.27 (16)
C4—C5—C6—N1 −179.82 (16) N3—C11—C12—N5 0.20 (19)
C4—C5—C6—C1 −0.9 (3) C10—C11—C12—N5 178.02 (17)
N2—C1—C6—N1 0.7 (3) C12—N5—C13—C14 −69.5 (2)
C2—C1—C6—N1 −178.63 (15) N4—N5—C13—C14 109.82 (17)
N2—C1—C6—C5 −178.19 (15) C15—O3—C14—O2 −3.5 (3)
C2—C1—C6—C5 2.5 (3) C15—O3—C14—C13 176.85 (15)
C6—N1—C7—C8 −0.5 (3) N5—C13—C14—O2 −4.2 (3)
C6—N1—C7—C9 −179.40 (15) N5—C13—C14—O3 175.41 (14)
C1—N2—C8—O1 −174.62 (15) C14—O3—C15—C16 175.25 (16)
C10—N2—C8—O1 6.1 (2)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x−1, y−1, z; (iii) −x+1, −y+2, −z+1; (iv) −x+1, −y+1, −z+1; (v) x−1, y, z; (vi) −x+2, −y+2, −z; (vii) −x, −y+1, −z+1; (viii) −x, −y+1, −z; (ix) x, y, z−1; (x) x, y+1, z.

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the benzene (C1–C6) ring.

D—H···A D—H H···A D···A D—H···A
C5—H5···N4xi 0.974 (19) 2.48 (2) 3.401 (3) 157.9 (15)
C9—H9B···O2iv 0.97 (2) 2.59 (2) 3.508 (3) 156.9 (18)
C12—H12···N1iv 0.935 (18) 2.431 (19) 3.365 (2) 177.6 (16)
C13—H13A···O1i 0.99 (2) 2.36 (2) 3.318 (2) 162.5 (16)
C13—H13B···N3i 1.027 (18) 2.672 (19) 3.481 (2) 135.6 (13)
C9—H9C···Cg3iv 1.00 (2) 2.67 (2) 3.430 (2) 132.0 (15)

Symmetry codes: (i) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1; (xi) x, y, z+1.

Funding Statement

This work was funded by Hacettepe University Scientific Research Project Unit grant 013 D04 602 004 to T. Hökelek.

References

  1. Abad, N., Ramli, Y., Sebbar, N. K., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2018). IUCrData, 3, x180482.
  2. Badran, M. M., Abouzid, K. A. M. & Hussein, M. H. M. (2003). Arch. Pharm. Res. 26, 107–113. [DOI] [PubMed]
  3. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2016). APEX3, , SAINT and SADABS. Bruker AXS. Inc., Madison, Wisconsin, USA.
  5. Carta, A., Loriga, M., Piras, S., Paglietti, G., La Colla, P., Busonera, B., Collu, G. & Loddo, R. (2006). Med. Chem. 2, 113–122. [DOI] [PubMed]
  6. Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023. [DOI] [PMC free article] [PubMed]
  7. Griffith, R. K., Chittur, S. V. & Chen, Y. C. (1992). Med. Chem. Res. 2, 467–473.
  8. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  9. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  10. Hui, X., Desrivot, J., Bories, C., Loiseau, P. M., Franck, X., Hocquemiller, R. & Figadère, B. (2006). Bioorg. Med. Chem. Lett. 16, 815–820. [DOI] [PubMed]
  11. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
  12. Loriga, M., Piras, S., Sanna, P. & Paglietti, G. (1997). Farmaco, 52, 157–166. [PubMed]
  13. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  14. Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109–160.
  15. Ramli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320–o1321. [DOI] [PMC free article] [PubMed]
  16. Ramli, Y., Missioui, M., El Fal, M., Ouhcine, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171424.
  17. Ramli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, o1374. [DOI] [PMC free article] [PubMed]
  18. Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Abdelfettah, Z., Ouzidan, Y., Kandri Rodi, Y., Talbaoui, A. & Bakri, Y. (2016). J. Mar. Chim. Heterocycl. 15, 1–11.
  19. Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o116. [DOI] [PMC free article] [PubMed]
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.
  22. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  23. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  24. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  25. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  26. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  27. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. [DOI] [PubMed]
  28. Wagle, S., Adhikari, A. V. & Kumari, N. S. (2008). Ind. J. Chem. 47, 439–448.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989018014561/xu5945sup1.cif

e-74-01648-sup1.cif (28.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018014561/xu5945Isup2.hkl

e-74-01648-Isup2.hkl (697.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018014561/xu5945Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989018014561/xu5945Isup4.cml

CCDC reference: 1873385

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES