Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Oct 12;74(Pt 11):1569–1573. doi: 10.1107/S2056989018013658

Crystal structure and Hirshfeld surface analysis of (Z)-4-chloro-N′-(4-oxo­thia­zol­idin-2-yl­idene)benzene­sulfono­hydrazide monohydrate

Nikhila Pai a, Sabine Foro b, B Thimme Gowda a,c,*
PMCID: PMC6218911  PMID: 30443382

The asymmetric unit contains two independent mol­ecules and two water mol­ecules. The central parts of both the mol­ecules are twisted as both mol­ecules are bent at both the S and N atoms. The crystal structure features N—H⋯N, N—H⋯O, C—H⋯O and O—H⋯O inter­molecular inter­actions. Two-dimensional fingerprint plots show that the largest contributions to the crystal stability come from O⋯H/H⋯O and H⋯H inter­actions.

Keywords: crystal structure, thia­zole derivative, hydrogen bonds, Hirshfeld surface analysis

Abstract

The asymmetric unit of the title thia­zole derivative containing a sulfonyl­hydrazinic moiety, C9H8ClN3O3S2·H2O, consists of two independent mol­ecules and two water mol­ecules. The central parts of the mol­ecules are twisted as both the mol­ecules are bent at both the S and N atoms. In the crystal, N—H⋯N, N—H⋯O, C—H⋯O and O—H⋯O hydrogen-bonding inter­actions connect the mol­ecules, forming layers parallel to the ab plane. Two-dimensional fingerprint plots associated with the Hirshfeld surface show that the largest contributions to the crystal packing come from O⋯H/H⋯O (32.9%) and H⋯H (22.6%) inter­actions.

Chemical context  

Sulfonamides are of inter­est as this class of compounds exhib­its a wide array of biological activities such as anti­tumor, anti­bacterial, diuretic and hypoglycaemic activities (Kamal et al., 2007). It has been reported that incorporation of hydrazine moieties increases the carbonic anhydrase inhibition activity (Winum et al., 2005). Along with the sulfonamide group, the presence of the 2-hydrazino-thia­zole moiety enhances the pharmacological activities. The thiozoyl group is of inter­est because of its medicinal use in anti­tumor (Holla et al., 2003; Kappe et al., 2004), hyposensitive (Dash et al., 1980), anti-HIV (Patt et al., 1992), anti­microbial and anti­cancer agents (Frère et al., 2003). Sulfonyl­hydrazines and their derivatives can easily be prepared and are stable. We report herein the synthesis and structure of the title compound, which is a new thia­zole compound containing a sulfonyl­hydrazinic moiety.graphic file with name e-74-01569-scheme1.jpg

Structural commentary  

The asymmetric unit of the title compound contains two independent mol­ecules and two water mol­ecules (Fig. 1). The C8—O3 and C17—O6 bond lengths of 1.202 (5) Å, 1.218 (6) Å, respectively, are consistent with C=O double-bond character. Similarly, the values of the C7—N2 and C16—N5 bond lengths [1.285 (5) and 1.276 (5) Å, respectively] are close to that of a typical C=N double bond, while the longer C7—N3 and C16—N6 bond lengths of 1.370 (5) and 1.381 (5) Å, respect­ively, are consistent with the normal C—N single bonds, indicating that the compound exists in the Schiff base form. Further, the N1—N2 and N4—N5 bond lengths of 1.440 (5) and 1.442 (5) Å, respectively, and the S1—N1 and S3—N4 bond lengths of 1.644 (4) and 1.649 (4) Å, respectively, are in agreement with single-bond character.

Figure 1.

Figure 1

The mol­ecular structure of the title compound showing displacement ellipsoids at the 50% probability level.

The central parts of both mol­ecules are twisted as they are bent at the S (S1 and S3) and N (N2 and N5) atoms as indicated by the C1—S1—N1—N2 and S1—N1—N2—C7 torsion angles of 57.0 (3) and 111.8 (3)°, respectively, and by the C10—S3—N4—N5 and S3—N4—N5—C16 torsion angles of 57.6 (3) and 109.7 (3)°, respectively. The sulfonyl­hydrazide bond exists in the synclinal conformation preferred by aromatic sulfonamides (Purandara et al., 2017), with C—S—N—N torsion angles of 57.0 (3) and 57.6 (3)° in the two independent mol­ecules. The geometrical parameters for the thia­zole and benzene rings are within the expected ranges and comparable with those of other substituted thia­zoles or benzene­sulfonyl­hydrazide derivatives (Zaharia et al., 2010). The C7—S2—C9 and C16—S4—C18 angles in the two mol­ecules have the same value of 91.4 (2)°, and it is similar to the angles typically observed in thia­zole derivatives (Form et al., 1974). The thia­zole rings are approximately planar (r.m.s. deviations of 0.011 and 0.029 Å for S2/N3/C7–C9 and S4/N6/C16–C18, respectively), and form dihedral angles of 26.18 (15) and 37.19 (12)° with the aromatic ring of the p-chloro­phenyl­sulfonyl groups.

Supra­molecular features  

In the crystal, the two independent mol­ecules are linked into dimers by pairs of N—H⋯N hydrogen bonds, forming rings with an Inline graphic(8) graph-set motif. These dimers are connected by C—H⋯O hydrogen bonds involving the thia­zole C—H and a sulfonyl O atom into chains running parallel to the a axis (Table 1, Fig. 2). The water mol­ecules are involved both in the enforcement of the dimers through N—H⋯O and O—H⋯O hydrogen bonds, forming Inline graphic(9) rings, and in inter-chain O—H⋯O hydrogen-bonding inter­actions, forming layers parallel to the ab plane.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O7i 0.84 (2) 2.07 (2) 2.900 (6) 168 (4)
N3—H3N⋯N5ii 0.85 (2) 2.07 (2) 2.895 (5) 162 (4)
C9—H9B⋯O2ii 0.97 2.42 3.236 (6) 141
N4—H4N⋯O8 0.85 (2) 1.95 (2) 2.788 (6) 168 (4)
N6—H6N⋯N2iii 0.85 (2) 1.97 (2) 2.808 (5) 170 (4)
C15—H15⋯O1iv 0.93 2.55 3.355 (5) 145
O7—H71⋯O5 0.82 (2) 2.08 (3) 2.868 (5) 162 (6)
O7—H72⋯O6iv 0.82 (2) 1.99 (2) 2.810 (5) 174 (6)
O8—H81⋯O4ii 0.82 (2) 2.35 (6) 2.987 (6) 136 (7)
O8—H81⋯O7ii 0.82 (2) 2.50 (7) 3.034 (7) 124 (7)
O8—H82⋯O3iii 0.83 (2) 2.37 (3) 3.159 (7) 159 (8)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

The mol­ecular packing of the title compound, with hydrogen bonds (Table 1) shown as dashed lines.

Database survey  

Although a search in the Cambridge. Structural Database (CSD, Version 5.39, update of August 2018; Groom et al., 2016) revealed several reports of the crystal structure of sulfonamides and thia­zole (Gowda et al., 2008, 2009), there are only a few reports on the crystal structures of sulfonyl­hydrazides functionalized by thia­zole groups (Zaharia et al., 2010). Comparison of the structure of the title compound with that of N′-(5-acetyl-4-methyl-4,5-di­hydro­thia­zol-2-yl)benz­ene­sulfono­hydrazide (Zaharia et al., 2010) indicates that the electron-withdrawing chloro group does not impart sufficient inductive effect to reduce the electron density on the benzene ring, and that the ability of the aromatic C—H groups to participate in C—H⋯O inter­actions is very much reduced. Partial double-bond character is observed between the hydrazinyl N atom and the adjacent benzo­thia­zole moiety in 2-[2-(3-nitro­benzene­sulfon­yl)hydrazin­yl]-1,3-benzo­thia­zole (Morscher et al., 2018). The orientation of the thia­zole ring in the title compound is similar to that of (Z)-methyl 2-[(Z)-4-oxo-2-(2-tosyl­hydrazono)thia­zolidin-5-yl­idene]acetate and (Z)-methyl-2-[(Z)-2-(ethyl­imino)-4-oxo-3-(phenyl­amino)­thia­zolidin-5-yl­idene]acetate (Hassan et al., 2016). The mol­ecule of N′-{3-[3-(tri­fluoro­meth­yl)phen­yl]-1,3-thia­zol-2(3H)-yl­idene}benzene­sulfono­hydrazide (Chen et al., 2015) is observed to have a Schiff base conformation.

Hirshfeld Surface Analysis  

In order to explore the role of weak inter­molecular inter­actions in the crystal packing, Hirshfeld surfaces (d norm) and related fingerprint plots were generated using CrystalExplorer17.5 (McKinnon et al., 2007; Spackman et al., 2008; Spackman & Jayatilaka, 2009; Wolff et al., 2012). The three-dimensional mol­ecular Hirshfeld surfaces were generated using a high standard surface resolution over a colour scale of −0.6355 to 1.5137 a.u. for d norm. To identify the normalized contacts, the d norm function is used, which is expressed as; d norm = (d i − r i vdw)/r i vdw + (d e − r e vdw)/r e vdw (Shit et al., 2016), where d i and d e are the distances from inter­nal and external atoms to the Hirshfeld surface and r i vdw and r e vdw are the van der Waals radii of the atoms inside and outside the surface. On the Hirshfeld surfaces mapped over d norm (Fig. 3), strong N—H⋯N and S—O⋯H inter­actions are observed as red spots close to atoms N5, N6 and O6. Furthermore, the two-dimensional fingerprint plots indicate that the largest contributions are from O⋯H/H⋯O contacts, which contribute 32.9% to the Hirshfeld surface (Fig. 4 a) with d i + d e ∼ 1.9 Å. The presence of water mol­ecules in the unit cell provides the largest contribution to the stability of the crystal packing. The next largest contrib­utor is from H⋯H inter­actions, which contribute 22.6%. A single sharp spike can be seen in the middle region of the plot, at d i = d e = 0.9 Å (Fig. 4 b). The N⋯H contacts, which refer to N—H⋯N inter­actions, contribute 5.3% to the surface. Two sharp spikes having d i + d e = 1.8 Å (Fig. 4 c) are observed. The C⋯H contacts contribute 5.9% to the Hirshfeld surface, featuring a wide region with d i + d e = 3.1 Å (Fig. 4 d). The different inter­atomic contacts and percentage contributions to the Hirshfeld surface are Cl⋯H/H⋯Cl (8.3%), S⋯H/H⋯S (6.1%), Cl⋯O/O⋯Cl (3.0%), Cl⋯C/C⋯Cl (2.4%), S⋯O/O⋯S (1.7%), and C⋯O/O⋯C (1.6%) as depicted in the fingerprint plots (Fig. 5 af).

Figure 3.

Figure 3

View of the Hirshfeld surface mapped over d norm.

Figure 4.

Figure 4

The two dimensional fingerprint (FP) plot for the title compound, delineated into (a) O⋯H/H⋯O, (b) H⋯H, (c) N⋯H/H⋯N and (d) C⋯H/H⋯C inter­actions. d norm surfaces for each plot indicating the relevant surface patches associated with the specific contacts are shown on the left.

Figure 5.

Figure 5

Fingerprint plots of inter­actions, listing their percentage contributions: (a) Cl⋯H/H⋯Cl, (b) S⋯H/H⋯S, (c) Cl⋯O/O⋯Cl, (d) Cl⋯C/C⋯Cl, (e) S⋯O/O⋯S and (f) C⋯O/O⋯C.

Synthesis and crystallization  

4-Chloro-N′-(4-oxo-4,5-di­hydro-1,3-thia­zol-2-yl)benzene-1-sulfono­hydrazide was prepared by adding 4-chloro benzene­sulfonyl chloride (0.02 mol) under stirring to a solution of thio­semicarbazide (0.02 mol) in 5% aqueous NaOH solution (20 ml). The reaction mixture was stirred at room temperature for 1 h, then diluted twofold with water and neutralized with glacial acetic acid. The solid 2-(4-chloro­benzene-1-sulfon­yl)hydrazine-1-carbo­thio­amide (A) obtained was crystallized from acetic acid. Mono­chloro­acetic acid (0.01 mol) and anhydrous sodium acetate (0.04 mol) were added to A (0.01 mol) in glacial acetic acid. The reaction mixture was refluxed for 8–10 h and the completion of the reaction was checked by TLC. The reaction mixture was then poured into cold water. The resulted precipitate of the title compound was separated by vacuum filtration. Prismatic colourless single crystals of the title compound were grown from a mixture of aceto­nitrile-DMF (5:1 v/v) by slow evaporation of the solvent. The purity of the compound was checked by TLC and characterized by IR spectroscopy. The characteristic IR absorptions observed at 3095.9, 1639.5, 1458.7, 1343.2, 1139.4, and 1215.7 cm−1 correspond to N—H, C=O, C=N, S=O asymmetric and symmetric, and C—S absorptions, respectively. The 1H and 13C spectra of the title compound are as follows: 1H (400MHz, DMSO-d 6); δ 3.45 (d, 2H, –CH2), 7.68–7.86 (m, 4H, Ar—H), 10.01 (s, 1H), 11.96 (s, 1H). 13C NMR (400 MHz, DMSO-d 6); δ 36.8, 128.4, 129.1, 131.1,132.5, 133.9, 137.2, 165.4, 185.5.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms bonded to C were positioned with idealized geometry using a riding model with C—H = 0.93 Å (aromatic) or 0.97 Å (methyl­ene). The H atoms of the NH groups and the H atoms of the water mol­ecules were located in a difference-Fourier map and later refined with the N—H and O—H bond lengths constrained to be 0.86 (2) and 0.82 (2) Å, respectively. All H atoms were refined with isotropic displacement parameters set at 1.2U eq of the parent atom.

Table 2. Experimental details.

Crystal data
Chemical formula C9H8ClN3O3S2·H2O
M r 323.77
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 7.6276 (6), 11.090 (1), 17.116 (2)
α, β, γ (°) 96.95 (1), 99.49 (1), 106.08 (1)
V3) 1350.8 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.60
Crystal size (mm) 0.42 × 0.20 × 0.06
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Single Crystal X-ray diffractometer with a Sapphire CCD detector
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009)
T min, T max 0.785, 0.965
No. of measured, independent and observed [I > 2σ(I)] reflections 8631, 4935, 3375
R int 0.026
(sin θ/λ)max−1) 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.058, 0.161, 1.05
No. of reflections 4935
No. of parameters 367
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.52, −0.25

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXS2013 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018013658/rz5243sup1.cif

e-74-01569-sup1.cif (342.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018013658/rz5243Isup2.hkl

e-74-01569-Isup2.hkl (392.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018013658/rz5243Isup3.cml

CCDC reference: 1869597

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the SAIF, Panjab University, for use of the NMR facility.

supplementary crystallographic information

Crystal data

C9H8ClN3O3S2·H2O Z = 4
Mr = 323.77 F(000) = 664
Triclinic, P1 Dx = 1.592 Mg m3
a = 7.6276 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.090 (1) Å Cell parameters from 2682 reflections
c = 17.116 (2) Å θ = 2.8–27.8°
α = 96.95 (1)° µ = 0.60 mm1
β = 99.49 (1)° T = 293 K
γ = 106.08 (1)° Prism, colourless
V = 1350.8 (2) Å3 0.42 × 0.20 × 0.06 mm

Data collection

Oxford Diffraction Xcalibur Single Crystal X-ray diffractometer with a Sapphire CCD detector 3375 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.026
Rotation method data acquisition using ω scans θmax = 25.4°, θmin = 2.8°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −9→5
Tmin = 0.785, Tmax = 0.965 k = −13→13
8631 measured reflections l = −20→20
4935 independent reflections

Refinement

Refinement on F2 8 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0767P)2 + 1.1929P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
4935 reflections Δρmax = 0.52 e Å3
367 parameters Δρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.33684 (17) 0.77231 (13) 0.00096 (7) 0.0689 (4)
S1 0.23228 (14) 1.01774 (10) 0.33163 (6) 0.0479 (3)
S2 −0.21540 (16) 0.96967 (12) 0.42899 (7) 0.0594 (3)
O1 0.3605 (4) 1.1427 (3) 0.35513 (19) 0.0659 (9)
O2 0.2255 (4) 0.9268 (3) 0.38508 (18) 0.0626 (8)
O3 −0.6004 (5) 0.6450 (3) 0.3600 (2) 0.0732 (10)
N1 0.0248 (5) 1.0382 (3) 0.3165 (2) 0.0484 (8)
H1N 0.024 (6) 1.086 (4) 0.282 (2) 0.058*
N2 −0.1246 (4) 0.9225 (3) 0.2827 (2) 0.0471 (8)
N3 −0.3702 (4) 0.7765 (3) 0.3134 (2) 0.0460 (8)
H3N −0.380 (6) 0.721 (3) 0.2726 (19) 0.055*
C1 0.2676 (5) 0.9482 (4) 0.2392 (2) 0.0421 (9)
C2 0.2102 (6) 0.8168 (4) 0.2167 (3) 0.0515 (10)
H2 0.1557 0.7651 0.2505 0.062*
C3 0.2345 (6) 0.7627 (4) 0.1432 (3) 0.0523 (11)
H3 0.1967 0.6747 0.1273 0.063*
C4 0.3146 (5) 0.8409 (4) 0.0946 (2) 0.0475 (10)
C5 0.3755 (7) 0.9718 (5) 0.1168 (3) 0.0617 (12)
H5 0.4315 1.0231 0.0831 0.074*
C6 0.3514 (7) 1.0250 (4) 0.1899 (3) 0.0577 (12)
H6 0.3920 1.1131 0.2060 0.069*
C7 −0.2275 (5) 0.8889 (4) 0.3335 (2) 0.0419 (9)
C8 −0.4741 (6) 0.7422 (5) 0.3700 (3) 0.0522 (11)
C9 −0.4074 (6) 0.8429 (5) 0.4445 (3) 0.0600 (12)
H9A −0.3669 0.8068 0.4905 0.072*
H9B −0.5080 0.8761 0.4549 0.072*
Cl2 0.8418 (2) 0.63805 (14) 0.57661 (8) 0.0805 (4)
S3 0.78365 (15) 0.43436 (10) 0.21411 (7) 0.0511 (3)
S4 0.74715 (17) 0.59857 (12) 0.02143 (7) 0.0603 (3)
O4 0.9602 (4) 0.4892 (3) 0.1948 (2) 0.0670 (9)
O5 0.7003 (5) 0.2980 (3) 0.1978 (2) 0.0691 (9)
O6 0.8569 (5) 0.9655 (4) 0.0519 (2) 0.0762 (10)
N4 0.6297 (5) 0.4853 (3) 0.1590 (2) 0.0501 (9)
H4N 0.541 (5) 0.458 (4) 0.183 (3) 0.060*
N5 0.6762 (5) 0.6224 (3) 0.1738 (2) 0.0468 (8)
N6 0.7780 (5) 0.8026 (3) 0.12079 (19) 0.0473 (8)
H6N 0.804 (6) 0.847 (4) 0.1678 (15) 0.057*
C10 0.8011 (5) 0.4900 (4) 0.3167 (3) 0.0461 (10)
C11 0.9365 (6) 0.6028 (4) 0.3554 (3) 0.0593 (12)
H11 1.0191 0.6482 0.3273 0.071*
C12 0.9484 (6) 0.6473 (4) 0.4349 (3) 0.0605 (12)
H12 1.0383 0.7233 0.4607 0.073*
C13 0.8276 (6) 0.5797 (4) 0.4762 (3) 0.0540 (11)
C14 0.6935 (6) 0.4666 (5) 0.4392 (3) 0.0611 (12)
H14 0.6137 0.4207 0.4682 0.073*
C15 0.6792 (6) 0.4226 (4) 0.3595 (3) 0.0566 (11)
H15 0.5875 0.3474 0.3339 0.068*
C16 0.7281 (5) 0.6717 (4) 0.1146 (2) 0.0438 (9)
C17 0.8171 (6) 0.8523 (5) 0.0550 (3) 0.0575 (12)
C18 0.8040 (7) 0.7499 (5) −0.0134 (3) 0.0652 (13)
H18A 0.9219 0.7657 −0.0308 0.078*
H18B 0.7080 0.7488 −0.0586 0.078*
O7 0.9751 (5) 0.1699 (4) 0.1821 (3) 0.0766 (10)
H71 0.880 (5) 0.191 (6) 0.182 (4) 0.092*
H72 0.933 (8) 0.112 (4) 0.143 (3) 0.092*
O8 0.3062 (6) 0.4099 (6) 0.2195 (4) 0.1111 (16)
H81 0.195 (4) 0.390 (7) 0.199 (4) 0.133*
H82 0.303 (12) 0.472 (5) 0.250 (4) 0.133*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0697 (8) 0.0852 (9) 0.0517 (7) 0.0274 (7) 0.0175 (6) −0.0042 (6)
S1 0.0486 (6) 0.0477 (6) 0.0378 (6) 0.0020 (5) 0.0078 (4) 0.0023 (5)
S2 0.0572 (7) 0.0670 (8) 0.0452 (6) 0.0120 (6) 0.0114 (5) −0.0085 (5)
O1 0.0601 (19) 0.057 (2) 0.059 (2) −0.0078 (15) 0.0119 (15) −0.0071 (15)
O2 0.070 (2) 0.072 (2) 0.0449 (18) 0.0156 (17) 0.0139 (15) 0.0183 (16)
O3 0.059 (2) 0.068 (2) 0.088 (3) 0.0044 (18) 0.0237 (18) 0.0185 (19)
N1 0.049 (2) 0.039 (2) 0.049 (2) 0.0029 (16) 0.0122 (17) −0.0008 (15)
N2 0.0460 (19) 0.046 (2) 0.0420 (19) 0.0047 (16) 0.0111 (16) −0.0001 (15)
N3 0.0411 (18) 0.049 (2) 0.042 (2) 0.0083 (16) 0.0061 (15) 0.0010 (16)
C1 0.039 (2) 0.041 (2) 0.044 (2) 0.0106 (17) 0.0078 (17) 0.0082 (18)
C2 0.057 (3) 0.042 (2) 0.053 (3) 0.007 (2) 0.015 (2) 0.014 (2)
C3 0.058 (3) 0.041 (2) 0.055 (3) 0.011 (2) 0.018 (2) 0.002 (2)
C4 0.046 (2) 0.056 (3) 0.043 (2) 0.019 (2) 0.0111 (18) 0.002 (2)
C5 0.079 (3) 0.058 (3) 0.052 (3) 0.013 (2) 0.030 (2) 0.017 (2)
C6 0.077 (3) 0.037 (2) 0.056 (3) 0.006 (2) 0.025 (2) 0.010 (2)
C7 0.038 (2) 0.046 (2) 0.039 (2) 0.0147 (18) 0.0014 (17) 0.0022 (18)
C8 0.044 (2) 0.060 (3) 0.057 (3) 0.020 (2) 0.011 (2) 0.014 (2)
C9 0.056 (3) 0.080 (3) 0.052 (3) 0.027 (2) 0.021 (2) 0.013 (2)
Cl2 0.0968 (10) 0.0802 (10) 0.0634 (8) 0.0332 (8) 0.0091 (7) 0.0040 (7)
S3 0.0483 (6) 0.0431 (6) 0.0643 (7) 0.0136 (5) 0.0182 (5) 0.0104 (5)
S4 0.0632 (7) 0.0641 (8) 0.0448 (6) 0.0112 (6) 0.0121 (5) −0.0066 (5)
O4 0.0518 (18) 0.073 (2) 0.084 (2) 0.0203 (16) 0.0285 (17) 0.0204 (19)
O5 0.084 (2) 0.0379 (17) 0.087 (3) 0.0158 (16) 0.0302 (19) 0.0047 (16)
O6 0.097 (3) 0.066 (2) 0.071 (2) 0.021 (2) 0.028 (2) 0.0261 (19)
N4 0.052 (2) 0.041 (2) 0.050 (2) 0.0078 (17) 0.0055 (16) −0.0003 (16)
N5 0.052 (2) 0.044 (2) 0.042 (2) 0.0137 (16) 0.0069 (16) 0.0037 (16)
N6 0.057 (2) 0.051 (2) 0.0315 (18) 0.0168 (17) 0.0033 (16) 0.0056 (16)
C10 0.038 (2) 0.039 (2) 0.058 (3) 0.0082 (18) 0.0031 (18) 0.0137 (19)
C11 0.056 (3) 0.050 (3) 0.061 (3) −0.003 (2) 0.008 (2) 0.020 (2)
C12 0.059 (3) 0.039 (3) 0.068 (3) −0.001 (2) −0.006 (2) 0.013 (2)
C13 0.057 (3) 0.047 (3) 0.058 (3) 0.021 (2) 0.001 (2) 0.014 (2)
C14 0.057 (3) 0.059 (3) 0.063 (3) 0.007 (2) 0.017 (2) 0.015 (2)
C15 0.043 (2) 0.047 (3) 0.072 (3) 0.0000 (19) 0.016 (2) 0.006 (2)
C16 0.038 (2) 0.050 (3) 0.040 (2) 0.0146 (18) 0.0011 (17) 0.0015 (19)
C17 0.052 (3) 0.072 (3) 0.047 (3) 0.016 (2) 0.010 (2) 0.011 (2)
C18 0.072 (3) 0.073 (3) 0.049 (3) 0.016 (3) 0.018 (2) 0.011 (2)
O7 0.077 (3) 0.065 (2) 0.093 (3) 0.030 (2) 0.013 (2) 0.0167 (19)
O8 0.056 (2) 0.146 (5) 0.131 (4) 0.030 (3) 0.029 (3) 0.013 (3)

Geometric parameters (Å, º)

Cl1—C4 1.744 (4) S3—O5 1.441 (3)
S1—O1 1.422 (3) S3—N4 1.649 (4)
S1—O2 1.438 (3) S3—C10 1.759 (5)
S1—N1 1.644 (4) S4—C16 1.746 (4)
S1—C1 1.770 (4) S4—C18 1.812 (5)
S2—C7 1.741 (4) O6—C17 1.218 (6)
S2—C9 1.808 (5) N4—N5 1.442 (5)
O3—C8 1.202 (5) N4—H4N 0.850 (19)
N1—N2 1.440 (5) N5—C16 1.276 (5)
N1—H1N 0.842 (19) N6—C17 1.353 (6)
N2—C7 1.285 (5) N6—C16 1.381 (5)
N3—C7 1.370 (5) N6—H6N 0.851 (19)
N3—C8 1.374 (5) C10—C11 1.389 (6)
N3—H3N 0.851 (19) C10—C15 1.390 (6)
C1—C6 1.377 (6) C11—C12 1.369 (7)
C1—C2 1.385 (6) C11—H11 0.9300
C2—C3 1.389 (6) C12—C13 1.368 (6)
C2—H2 0.9300 C12—H12 0.9300
C3—C4 1.366 (6) C13—C14 1.380 (6)
C3—H3 0.9300 C14—C15 1.368 (6)
C4—C5 1.379 (6) C14—H14 0.9300
C5—C6 1.381 (6) C15—H15 0.9300
C5—H5 0.9300 C17—C18 1.498 (7)
C6—H6 0.9300 C18—H18A 0.9700
C8—C9 1.503 (6) C18—H18B 0.9700
C9—H9A 0.9700 O7—H71 0.82 (2)
C9—H9B 0.9700 O7—H72 0.82 (2)
Cl2—C13 1.737 (5) O8—H81 0.82 (2)
S3—O4 1.426 (3) O8—H82 0.83 (2)
O1—S1—O2 120.4 (2) O4—S3—N4 107.3 (2)
O1—S1—N1 105.18 (19) O5—S3—N4 103.2 (2)
O2—S1—N1 105.77 (19) O4—S3—C10 107.8 (2)
O1—S1—C1 108.45 (19) O5—S3—C10 108.6 (2)
O2—S1—C1 107.88 (19) N4—S3—C10 109.61 (18)
N1—S1—C1 108.64 (18) C16—S4—C18 91.4 (2)
C7—S2—C9 91.4 (2) N5—N4—S3 112.3 (3)
N2—N1—S1 113.6 (3) N5—N4—H4N 106 (3)
N2—N1—H1N 106 (3) S3—N4—H4N 97 (3)
S1—N1—H1N 107 (3) C16—N5—N4 112.6 (3)
C7—N2—N1 111.2 (3) C17—N6—C16 117.8 (4)
C7—N3—C8 117.6 (4) C17—N6—H6N 124 (3)
C7—N3—H3N 122 (3) C16—N6—H6N 117 (3)
C8—N3—H3N 119 (3) C11—C10—C15 119.4 (4)
C6—C1—C2 120.4 (4) C11—C10—S3 120.0 (3)
C6—C1—S1 119.8 (3) C15—C10—S3 120.6 (3)
C2—C1—S1 119.8 (3) C12—C11—C10 120.1 (4)
C1—C2—C3 119.6 (4) C12—C11—H11 119.9
C1—C2—H2 120.2 C10—C11—H11 119.9
C3—C2—H2 120.2 C13—C12—C11 119.7 (4)
C4—C3—C2 119.0 (4) C13—C12—H12 120.1
C4—C3—H3 120.5 C11—C12—H12 120.1
C2—C3—H3 120.5 C12—C13—C14 121.2 (5)
C3—C4—C5 122.1 (4) C12—C13—Cl2 119.4 (4)
C3—C4—Cl1 118.6 (3) C14—C13—Cl2 119.4 (4)
C5—C4—Cl1 119.2 (3) C15—C14—C13 119.4 (4)
C4—C5—C6 118.7 (4) C15—C14—H14 120.3
C4—C5—H5 120.7 C13—C14—H14 120.3
C6—C5—H5 120.7 C14—C15—C10 120.3 (4)
C1—C6—C5 120.2 (4) C14—C15—H15 119.9
C1—C6—H6 119.9 C10—C15—H15 119.9
C5—C6—H6 119.9 N5—C16—N6 118.7 (4)
N2—C7—N3 119.3 (4) N5—C16—S4 129.9 (3)
N2—C7—S2 128.6 (3) N6—C16—S4 111.3 (3)
N3—C7—S2 112.1 (3) O6—C17—N6 124.2 (4)
O3—C8—N3 123.9 (4) O6—C17—C18 124.6 (4)
O3—C8—C9 125.7 (4) N6—C17—C18 111.2 (4)
N3—C8—C9 110.4 (4) C17—C18—S4 108.0 (3)
C8—C9—S2 108.4 (3) C17—C18—H18A 110.1
C8—C9—H9A 110.0 S4—C18—H18A 110.1
S2—C9—H9A 110.0 C17—C18—H18B 110.1
C8—C9—H9B 110.0 S4—C18—H18B 110.1
S2—C9—H9B 110.0 H18A—C18—H18B 108.4
H9A—C9—H9B 108.4 H71—O7—H72 98 (6)
O4—S3—O5 119.9 (2) H81—O8—H82 94 (7)
O1—S1—N1—N2 172.9 (3) O4—S3—N4—N5 −59.2 (3)
O2—S1—N1—N2 −58.6 (3) O5—S3—N4—N5 173.2 (3)
C1—S1—N1—N2 57.0 (3) C10—S3—N4—N5 57.6 (3)
S1—N1—N2—C7 111.8 (3) S3—N4—N5—C16 109.7 (3)
O1—S1—C1—C6 −22.2 (4) O4—S3—C10—C11 23.0 (4)
O2—S1—C1—C6 −154.2 (4) O5—S3—C10—C11 154.4 (3)
N1—S1—C1—C6 91.6 (4) N4—S3—C10—C11 −93.5 (4)
O1—S1—C1—C2 158.0 (3) O4—S3—C10—C15 −157.6 (3)
O2—S1—C1—C2 26.0 (4) O5—S3—C10—C15 −26.3 (4)
N1—S1—C1—C2 −88.2 (4) N4—S3—C10—C15 85.8 (4)
C6—C1—C2—C3 −1.2 (6) C15—C10—C11—C12 −0.4 (7)
S1—C1—C2—C3 178.6 (3) S3—C10—C11—C12 179.0 (4)
C1—C2—C3—C4 −0.1 (6) C10—C11—C12—C13 0.6 (7)
C2—C3—C4—C5 1.2 (7) C11—C12—C13—C14 0.2 (7)
C2—C3—C4—Cl1 −177.7 (3) C11—C12—C13—Cl2 −179.1 (3)
C3—C4—C5—C6 −1.1 (7) C12—C13—C14—C15 −1.2 (7)
Cl1—C4—C5—C6 177.9 (4) Cl2—C13—C14—C15 178.1 (4)
C2—C1—C6—C5 1.4 (7) C13—C14—C15—C10 1.3 (7)
S1—C1—C6—C5 −178.4 (4) C11—C10—C15—C14 −0.6 (7)
C4—C5—C6—C1 −0.3 (7) S3—C10—C15—C14 −179.9 (4)
N1—N2—C7—N3 −176.1 (3) N4—N5—C16—N6 −179.6 (3)
N1—N2—C7—S2 5.0 (5) N4—N5—C16—S4 0.8 (5)
C8—N3—C7—N2 178.3 (4) C17—N6—C16—N5 −174.4 (4)
C8—N3—C7—S2 −2.6 (5) C17—N6—C16—S4 5.3 (5)
C9—S2—C7—N2 −179.0 (4) C18—S4—C16—N5 174.5 (4)
C9—S2—C7—N3 2.0 (3) C18—S4—C16—N6 −5.1 (3)
C7—N3—C8—O3 −178.6 (4) C16—N6—C17—O6 177.6 (4)
C7—N3—C8—C9 1.6 (5) C16—N6—C17—C18 −2.1 (5)
O3—C8—C9—S2 −179.7 (4) O6—C17—C18—S4 178.5 (4)
N3—C8—C9—S2 0.0 (5) N6—C17—C18—S4 −1.8 (5)
C7—S2—C9—C8 −1.1 (3) C16—S4—C18—C17 3.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O7i 0.84 (2) 2.07 (2) 2.900 (6) 168 (4)
N3—H3N···N5ii 0.85 (2) 2.07 (2) 2.895 (5) 162 (4)
C9—H9B···O2ii 0.97 2.42 3.236 (6) 141
N4—H4N···O8 0.85 (2) 1.95 (2) 2.788 (6) 168 (4)
N6—H6N···N2iii 0.85 (2) 1.97 (2) 2.808 (5) 170 (4)
C15—H15···O1iv 0.93 2.55 3.355 (5) 145
O7—H71···O5 0.82 (2) 2.08 (3) 2.868 (5) 162 (6)
O7—H72···O6iv 0.82 (2) 1.99 (2) 2.810 (5) 174 (6)
O8—H81···O4ii 0.82 (2) 2.35 (6) 2.987 (6) 136 (7)
O8—H81···O7ii 0.82 (2) 2.50 (7) 3.034 (7) 124 (7)
O8—H82···O3iii 0.83 (2) 2.37 (3) 3.159 (7) 159 (8)

Symmetry codes: (i) x−1, y+1, z; (ii) x−1, y, z; (iii) x+1, y, z; (iv) x, y−1, z.

Funding Statement

This work was funded by Department of Science and Technology, Ministry of Science and Technology grant . University Grants Commission grant UGC--BSR one-time grant to faculty to B. Thimme Gowda.

References

  1. Chen, W., Wang, H.-A., Wei, W., Li, Y.-X., Hua, X.-W., Song, H.-B., Yu, S.-J. & Li, Z.-M. (2015). Chin. J. Struct. Chem. 34, 503–509.
  2. Dash, B., Patra, M. & Praharaj, S. (1980). Indian J. Chem. 19B, 894–897.
  3. Form, G. R., Raper, E. S. & Downie, T. C. (1974). Acta Cryst. B30, 342–348.
  4. Frère, S., Thiéry, V., Bailly, C. & Besson, T. (2003). Tetrahedron, 59, 773–779.
  5. Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o2190. [DOI] [PMC free article] [PubMed]
  6. Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o2763. [DOI] [PMC free article] [PubMed]
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Hassan, A. A., Mohamed, N. K., El-Shaieb, K. M. A., Tawfeek, H. N., Bräse, S. & Nieger, M. (2016). J. Heterocycl. Chem. 53, 46–50.
  9. Holla, B. S., Malini, V. K., Rao, B. S., Sarojini, K. B. & Kumari, N. S. (2003). Eur. J. Med. Chem. 38, 313–318. [DOI] [PubMed]
  10. Kamal, A., Khan, M. N. A., Srinivasa Reddy, K. & Rohini, K. (2007). Bioorg. Med. Chem. 15, 1004–1013. [DOI] [PubMed]
  11. Kappe, O. C. (2004). Angew. Chem. Int. Ed. 43, 6250–6284.
  12. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  13. Morscher, A., de Souza, M. V. N., Wardell, J. L. & Harrison, W. T. A. (2018). Acta Cryst. E74, 673–677. [DOI] [PMC free article] [PubMed]
  14. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.
  15. Patt, W. C., Hamilton, H. W., Taylor, M. D., Ryan, M. J., Taylor, D. G. Jr, Connolly, C. J. C., Doherty, A. M., Klutchko, S. R., Sircar, I., Steinbaugh, B. A., Batley, B. L., Painchaud, C. A., Rapundalo, S. T., Michniewicz, B. M. & Oslon, S. C. (1992). J. Med. Chem. 35, 2562–2572. [DOI] [PubMed]
  16. Purandara, H., Foro, S. & Thimme Gowda, B. (2017). Acta Cryst. E73, 1683–1686. [DOI] [PMC free article] [PubMed]
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  19. Shit, S., Marschner, C. & Mitra, S. (2016). Acta Chim. Slovenica, 63, 129–137. [DOI] [PubMed]
  20. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  21. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  22. Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]
  23. Winum, J. Y., Dogné, J. M., Casini, A., de Leval, X., Montero, J. L., Scozzafava, A., Vullo, D., Innocenti, A. & Supuran, C. T. (2005). J. Med. Chem. 48, 2121–2125. [DOI] [PubMed]
  24. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer3.1. University of Western Australia.
  25. Zaharia, V., Curticapenan, M., Palibroda, N., Vlasa, M. & Silvestru, A. (2010). Rev. Roum. Chim. 55, 831–841.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018013658/rz5243sup1.cif

e-74-01569-sup1.cif (342.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018013658/rz5243Isup2.hkl

e-74-01569-Isup2.hkl (392.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018013658/rz5243Isup3.cml

CCDC reference: 1869597

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES