Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Oct 19;74(Pt 11):1609–1612. doi: 10.1107/S2056989018014238

Crystal structure of (diethyl ether-κO)[5,10,15,20-tetra­kis­(2-iso­thio­cyanato­phen­yl)porphyrinato-κ4 N]zinc diethyl ether solvate

Lisa Leben a, Eike Schaub a, Christian Näther b, Rainer Herges a,*
PMCID: PMC6218912  PMID: 30443391

The synthesis and crystal structure of 5,10,15,20-tetra­kis α,α,α,α 2-iso­thio­cyanato­phenyl zinc(II) porphyrin are reported. The crystal structure consists of discrete porphyrin complexes that are located on a twofold rotation axis with the ZnII cation in a square-pyramidal coordination environment defined by the porphyrin N atoms at the basal sites and a diethyl ether mol­ecule at the apical site.

Keywords: crystal structure, picket fence porphyrin, zinc(II) porphyrin, atropisomer, iso­thio­cyanate

Abstract

The crystal structure of the title compound, [Zn(C48H24N8S4)(C4H10O)]·C4H10O, consists of discrete porphyrin complexes that are located on a twofold rotation axis. The ZnII cation is fivefold coordinated by four N atoms of the porphyrin moiety and one O atom of a diethyl ether mol­ecule in a slightly distorted square-pyramidal environment with the diethyl ether mol­ecule in the apical position. The porphyrin backbone is nearly planar with the metal cation slightly shifted out of the plane towards the coordinating diethyl ether mol­ecule. All four iso­thio­cyanato groups of the phenyl substituents at the meso-positions face the same side of the porphyrin, as is characteristic for picket fence porphyrins. In the crystal structure, the discrete porphyrin complexes are arranged in such a way that cavities are formed in which additional diethyl ether solvate mol­ecules are located around a twofold rotation axis. The O atom of the solvent mol­ecule is not positioned exactly on the twofold rotation axis, thus making the whole mol­ecule equally disordered over two symmetry-related positions.

Chemical context  

Iso­thio­cyanates serve as versatile starting materials for a variety of functional groups (Batey & Powell, 2000; Ding et al., 2011; Serra et al., 2014; Guo et al., 2010; Shin et al., 2000; Kosurkar et al., 2014; Alizadeh et al., 2016; Rao et al., 2015). Included in porphyrin scaffolds, iso­thio­cyanates may serve as precursors for the synthesis of tetra­topic ligands with fourfold symmetry. In the case where all four ortho-substituents of the meso-phenyl groups face the same side of the porphyrin plane, these porphyrins are denominated picket fence porphyrins. These compounds are widely used as model compounds for hemoproteins (Collman et al., 1975; Tabushi et al., 1985; Schappacher et al., 1989). With a bulky ortho-substituent and ZnII as the central metal cation, the rotational barriers are sufficiently high to isolate the different atropisomers (Freitag & Whitten, 1983). A variety of picket fence porphyrins has been reported (Collman et al., 1975; Mansour et al., 2017; Cormode et al., 2006; Le Maux et al., 1993; Wuenschell et al., 1992). In most cases, amides are used as functional groups in the ortho-positions of the meso-phenyl groups, which hampers further functionalization. The title compound now opens new avenues for the synthesis of functionalized picket fence porphyrins and is a promising starting material for the design of anion binding ligands. The title compound can be obtained in one step using a method reported by Jha et al. (Fig. 1), starting from the all-α isomer of the amino derivative we have published previously (Jha et al., 2007; Leben et al., 2018). It is important to note that the reaction has to be carried out at 273 K, because at room temperature a mixture of the atrop­isomers is obtained. After dissolving the tetra­kis­(iso­thio­cyanato­phen­yl) porphyrin in acetone and precipitating with diethyl ether, single crystals were obtained, which were characterized by single crystal X-ray diffraction.graphic file with name e-74-01609-scheme1.jpg

Figure 1.

Figure 1

Reaction scheme for the synthesis of the title compound.

Structural commentary  

The asymmetric unit of the title compound, Zn(C48H24N8S4)(C4H10O)·C4H10O, comprises one ZnII cation, one half of the porphyrin mol­ecule and one half of a coordinating diethyl ether mol­ecule as well as one half of a diethyl ether solvate mol­ecule. The complex porphyrin mol­ecule and the coordinating diethyl ether mol­ecule are located on a twofold rotation axis whereas the solvent diethyl ether mol­ecule is in a general position and is equally disordered around a twofold rotation axis (Fig. 2). The four iso­thio­cyanate substituents of the phenyl groups at the meso-positions point to the same side of the porphyrin moiety, which proves that the tetra-α isomer has formed. The porphyrin plane is close to planar with a maximum deviation from the mean plane of 0.276 (3) Å. The phenyl rings are rotated out of the porphyrin plane by 63.16 (5) and 82.06 (6)°. The ZnII cation is fivefold coordinated by the four N atoms of the porphyrin mol­ecule in the basal positions and by one O atom of a diethyl ether mol­ecule in the apical position, leading to a distorted square-pyramidal coordination environment (Table 1, Fig. 3). The Zn—N distances of 2.0622 (13) and 2.0684 (14) Å and the Zn—O distance of 2.1352 (19) Å are in characteristic ranges. The angles around the ZnII cation range from 88.54 (6) to 99.69 (4)° for the basal N4 plane and from 160.61 (8) to 164.44 (8)° involving the apical O atom, demonstrating that the square pyramid is slightly distorted (Table 1). The ZnII cation is located 0.4052 (9) Å out of the mean porphyrin plane and is shifted towards the coordinating diethyl ether mol­ecule (Fig. 4).

Figure 2.

Figure 2

The mol­ecular entities of the title compound with the atom labelling and displacement ellipsoids drawn at the 50% probability level. Only one orientation of the disordered diethyl ether solvent is given. [Symmetry code: (i) −x + 2, y, −z + Inline graphic.]

Table 1. Selected geometric parameters (Å, °).

Zn1—N2 2.0622 (13) Zn1—N1 2.0685 (14)
Zn1—N2i 2.0622 (13) Zn1—O1 2.1352 (19)
Zn1—N1i 2.0684 (14)    
       
N2—Zn1—N2i 164.44 (8) N1i—Zn1—N1 160.61 (8)
N2—Zn1—N1i 88.85 (6) N2i—Zn1—O1 97.78 (4)
N2i—Zn1—N1i 88.54 (6) N1i—Zn1—O1 99.69 (4)
N2—Zn1—N1 88.54 (6) N1—Zn1—O1 99.69 (4)
N2i—Zn1—N1 88.85 (6)    

Symmetry code: (i) Inline graphic.

Figure 3.

Figure 3

Mol­ecular structure of the discrete complex in a view onto the porphyrin plane.

Figure 4.

Figure 4

Mol­ecular structure of the discrete complex in a view parallel to the porphyrin plane.

Supra­molecular features  

In the crystal structure of the title compound, each two discrete complexes form centrosymmetric pairs with the coordinating diethyl ether mol­ecules pointing in opposite directions (Fig. 5). The complexes are arranged into columns along [001]. This arrangement leads to the formation of cavities between two neighbouring coordinating diethyl ether mol­ecules, in which the disordered diethyl ether solvate mol­ecules are embedded (Fig. 5). There are no notable inter­molecular inter­actions between the mol­ecular moieties in the crystal structure.

Figure 5.

Figure 5

Crystal structure of the title compound viewed along [001].

Database survey  

The synthesis of the metal-free oxygen derivative 5,10,15,20-tetra­kis α,α,α,α 2-iso­cyanato­phenyl porphyrin has been known for several years (Collman et al., 1998). However, the crystal structure of this compound has not yet been reported. A CSD database search (Version 5.39; Groom et al., 2016) revealed the crystal structures of several metal porphyrins with iso­thio­cyanate entities as axial ligands (Dhifet et al., 2010; Scheidt et al., 1982; Ezzayani et al., 2014; Denden et al., 2015). In addition, the crystal structure of a para-iso­thio­cyanato­phenyl porphyrin has been reported (Sibrian-Vazquez et al., 2005).

Synthesis and crystallization  

The metal-free all-α isomer of 2-amino­phenyl porphyrin was synthesized according to reported procedures (Collman et al., 1975; Lindsey, 1980). Metallation followed standard metallation conditions as reported previously (Strohmeier et al., 1997; Leben et al., 2018). For the introduction of the iso­thio­cyanato groups, a modified synthesis was used (Jha et al., 2007). 5,10,15,20-Tetra­kis(α,α,α,α 2-amino­phen­yl)zinc(II) porphyrin (150 mg, 203 µmol) was dissolved in 30 ml of di­chloro­methane and cooled to 273 K. 1,1′-Thio­carbonyldi-2,2′-pyridone (TDP, 377 mg, 1.62 mmol) was added and the mixture stirred for 50 minutes at 273 K. Removing the solvent and filtration over silica gel (cyclo­hexa­ne/ethyl acetate, v:v = 1:1) gave the title compound in qu­anti­tative yield. For crystallization, a small amount was dissolved in acetone and crystallized by adding diethyl ether.

1H NMR (500 MHz, CDCl3, 300 K): δ = 8.80 (s, 8H, H-β), 8.21 (dd, 3 J = 7.5 Hz, 4 J = 1.2 Hz, 4H, H-6), 7.78 (dt, 3 J = 7.9 Hz, 4 J = 1.5 Hz, 4H, H-4), 7.68 (dt, 3 J = 7.6 Hz, 4 J = 1.3 Hz, 4H, H-5), 7.61 (dd, 3 J = 8.2 Hz, 4 J = 1.0 Hz, 4H, H-3) ppm. 13C NMR (125 MHz, CDCl3, 300 K): δ = 149.9 (C-α), 141.0 (C1), 134.8 (C6), 134.5 (C2), 131.6 (C-β), 129.3 (C4), 125.7 (C5), 124.4 (C3), 115.7 (C-meso) ppm. EI–MS (70 eV): m/z (%) = 904.1 (100) [M]+.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The C—H hydrogen atoms were positioned with idealized geometries (C—H = 0.95–0.99 Å; methyl H atoms of the coordinating diethyl ether mol­ecule were allowed to rotate but not to tip) and were refined with U iso(H) = 1.2U eq(C) (1.5 for methyl H atoms) using a riding model. The O atom of the diethyl ether solvate mol­ecule is not located exactly on the twofold rotation axis and thus the complete mol­ecule is equally disordered over two sets of sites because of symmetry. Therefore for each atom the occupancy was set to 0.5, and atoms were treated with SADI and SIMU commands (Sheldrick, 2015b ) to achieve similar displacement ellipsoids.

Table 2. Experimental details.

Crystal data
Chemical formula [Zn(C48H24N8S4)(C4H10O)]·C4H10O
M r 1054.60
Crystal system, space group Monoclinic, C2/c
Temperature (K) 200
a, b, c (Å) 19.8830 (4), 17.1781 (3), 14.8684 (3)
β (°) 91.667 (1)
V3) 5076.18 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.70
Crystal size (mm) 0.14 × 0.11 × 0.07
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-RED and X-SHAPE; Stoe, 2008)
T min, T max 0.807, 0.951
No. of measured, independent and observed [I > 2σ(I)] reflections 39705, 5530, 5042
R int 0.039
(sin θ/λ)max−1) 0.639
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.103, 1.05
No. of reflections 5530
No. of parameters 346
No. of restraints 26
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.35

Computer programs: X-AREA (Stoe, 2008), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), XP (Sheldrick, 2008), DIAMOND (Brandenburg, 2014) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018014238/wm5466sup1.cif

e-74-01609-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018014238/wm5466Isup2.hkl

e-74-01609-Isup2.hkl (440.3KB, hkl)

CCDC reference: 1872076

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Professor Dr Wolfgang Bensch for access to his experimental facility.

supplementary crystallographic information

Crystal data

[Zn(C48H24N8S4)(C4H10O)]·C4H10O F(000) = 2184
Mr = 1054.60 Dx = 1.380 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 19.8830 (4) Å Cell parameters from 39705 reflections
b = 17.1781 (3) Å θ = 1.6–27.0°
c = 14.8684 (3) Å µ = 0.70 mm1
β = 91.667 (1)° T = 200 K
V = 5076.18 (17) Å3 Block, red
Z = 4 0.14 × 0.11 × 0.07 mm

Data collection

Stoe IPDS-2 diffractometer 5042 reflections with I > 2σ(I)
ω scans Rint = 0.039
Absorption correction: numerical (X-Red and X-Shape; Stoe, 2008) θmax = 27.0°, θmin = 1.6°
Tmin = 0.807, Tmax = 0.951 h = −25→25
39705 measured reflections k = −21→21
5530 independent reflections l = −18→18

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0603P)2 + 2.7141P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103 (Δ/σ)max = 0.001
S = 1.05 Δρmax = 0.39 e Å3
5530 reflections Δρmin = −0.35 e Å3
346 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
26 restraints Extinction coefficient: 0.0011 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Zn1 0.5000 0.64166 (2) 0.7500 0.03835 (10)
N1 0.40708 (7) 0.62138 (9) 0.68826 (9) 0.0400 (3)
N2 0.54332 (7) 0.62541 (9) 0.62706 (9) 0.0392 (3)
C1 0.34674 (8) 0.61377 (10) 0.72962 (11) 0.0405 (3)
C2 0.29355 (9) 0.60302 (11) 0.66268 (12) 0.0460 (4)
H2 0.2471 0.5962 0.6736 0.055*
C3 0.32240 (9) 0.60449 (12) 0.58175 (12) 0.0464 (4)
H3 0.3001 0.5983 0.5248 0.056*
C4 0.39333 (8) 0.61718 (10) 0.59772 (11) 0.0407 (3)
C5 0.44062 (9) 0.62460 (10) 0.53022 (11) 0.0408 (3)
C6 0.51067 (9) 0.62744 (10) 0.54465 (11) 0.0405 (3)
C7 0.55953 (9) 0.62818 (12) 0.47508 (12) 0.0472 (4)
H7 0.5503 0.6310 0.4121 0.057*
C8 0.62118 (9) 0.62418 (12) 0.51605 (12) 0.0473 (4)
H8 0.6632 0.6226 0.4873 0.057*
C9 0.61077 (8) 0.62273 (10) 0.61146 (11) 0.0407 (3)
C10 0.66219 (8) 0.61682 (10) 0.67757 (11) 0.0406 (3)
C11 0.41493 (9) 0.62820 (11) 0.43487 (11) 0.0423 (4)
C12 0.37604 (9) 0.69080 (12) 0.40320 (12) 0.0479 (4)
C13 0.35525 (11) 0.69580 (14) 0.31334 (13) 0.0578 (5)
H13 0.3294 0.7392 0.2928 0.069*
C14 0.37198 (10) 0.63815 (14) 0.25443 (13) 0.0578 (5)
H14 0.3579 0.6417 0.1929 0.069*
C15 0.40929 (10) 0.57473 (13) 0.28425 (13) 0.0539 (5)
H15 0.4204 0.5345 0.2435 0.065*
C16 0.43038 (9) 0.57010 (12) 0.37372 (12) 0.0474 (4)
H16 0.4559 0.5263 0.3937 0.057*
N3 0.35733 (9) 0.75046 (11) 0.46079 (11) 0.0581 (4)
C17 0.33979 (10) 0.77941 (12) 0.52739 (14) 0.0531 (4)
S1 0.31534 (3) 0.82304 (4) 0.61376 (4) 0.07149 (18)
C18 0.73280 (8) 0.61190 (11) 0.64634 (11) 0.0422 (4)
C19 0.76769 (9) 0.67895 (11) 0.62281 (12) 0.0456 (4)
C20 0.83405 (10) 0.67559 (14) 0.59531 (14) 0.0564 (5)
H20 0.8569 0.7217 0.5787 0.068*
C21 0.86599 (10) 0.60474 (15) 0.59256 (15) 0.0617 (5)
H21 0.9114 0.6020 0.5748 0.074*
C22 0.83267 (11) 0.53773 (14) 0.61539 (16) 0.0629 (5)
H22 0.8551 0.4890 0.6131 0.075*
C23 0.76637 (10) 0.54120 (12) 0.64176 (14) 0.0529 (4)
H23 0.7436 0.4946 0.6569 0.063*
N4 0.73517 (9) 0.75053 (11) 0.62762 (13) 0.0587 (4)
C24 0.72587 (9) 0.81716 (12) 0.63222 (14) 0.0510 (4)
S2 0.71060 (3) 0.90666 (3) 0.63860 (5) 0.07015 (18)
O1 0.5000 0.76596 (11) 0.7500 0.0511 (4)
C31 0.54792 (10) 0.81107 (12) 0.70173 (15) 0.0555 (5)
H31A 0.5892 0.7798 0.6939 0.067*
H31B 0.5604 0.8578 0.7374 0.067*
C32 0.52032 (14) 0.83590 (17) 0.61075 (17) 0.0761 (7)
H32A 0.5068 0.7898 0.5759 0.114*
H32B 0.5550 0.8644 0.5788 0.114*
H32C 0.4812 0.8697 0.6184 0.114*
O2 0.9968 (9) 0.5749 (3) 0.7693 (6) 0.092 (3) 0.5
C41 1.0756 (8) 0.5710 (9) 0.6491 (11) 0.155 (6) 0.5
H41A 1.0997 0.6007 0.6059 0.233* 0.5
H41B 1.1070 0.5431 0.6873 0.233* 0.5
H41C 1.0464 0.5346 0.6182 0.233* 0.5
C42 1.0345 (7) 0.6237 (9) 0.7061 (9) 0.114 (4) 0.5
H42A 1.0636 0.6605 0.7364 0.136* 0.5
H42B 1.0035 0.6521 0.6679 0.136* 0.5
C43 0.9492 (8) 0.6115 (8) 0.8328 (10) 0.124 (5) 0.5
H43A 0.9091 0.6246 0.7988 0.148* 0.5
H43B 0.9660 0.6586 0.8600 0.148* 0.5
C44 0.9249 (6) 0.5580 (6) 0.8994 (8) 0.117 (3) 0.5
H44A 0.8920 0.5822 0.9363 0.176* 0.5
H44B 0.9064 0.5111 0.8736 0.176* 0.5
H44C 0.9642 0.5455 0.9356 0.176* 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.03477 (15) 0.04689 (17) 0.03351 (15) 0.000 0.00291 (10) 0.000
N1 0.0356 (7) 0.0494 (8) 0.0350 (7) −0.0013 (6) 0.0024 (5) 0.0005 (6)
N2 0.0361 (7) 0.0477 (8) 0.0339 (7) 0.0002 (6) 0.0028 (5) 0.0001 (5)
C1 0.0360 (8) 0.0453 (9) 0.0404 (8) −0.0008 (6) 0.0033 (6) 0.0012 (7)
C2 0.0384 (8) 0.0556 (10) 0.0440 (9) −0.0045 (7) 0.0012 (7) −0.0001 (8)
C3 0.0407 (9) 0.0590 (11) 0.0394 (8) −0.0046 (7) −0.0009 (7) −0.0013 (7)
C4 0.0387 (8) 0.0468 (9) 0.0364 (8) −0.0011 (7) −0.0008 (6) −0.0003 (7)
C5 0.0408 (8) 0.0458 (9) 0.0359 (8) −0.0009 (7) 0.0016 (6) −0.0009 (6)
C6 0.0419 (8) 0.0465 (9) 0.0332 (8) −0.0009 (7) 0.0032 (6) 0.0005 (6)
C7 0.0429 (9) 0.0639 (11) 0.0350 (8) −0.0039 (8) 0.0049 (7) 0.0007 (7)
C8 0.0408 (9) 0.0634 (11) 0.0382 (9) −0.0031 (8) 0.0074 (7) −0.0001 (8)
C9 0.0384 (8) 0.0464 (9) 0.0377 (8) −0.0012 (7) 0.0066 (6) −0.0003 (7)
C10 0.0380 (8) 0.0440 (8) 0.0401 (8) −0.0010 (6) 0.0052 (6) −0.0005 (7)
C11 0.0395 (8) 0.0507 (10) 0.0365 (8) −0.0032 (7) 0.0013 (6) −0.0006 (7)
C12 0.0472 (9) 0.0573 (11) 0.0393 (8) 0.0030 (8) 0.0031 (7) −0.0016 (7)
C13 0.0524 (11) 0.0778 (14) 0.0431 (10) 0.0109 (10) −0.0023 (8) 0.0054 (9)
C14 0.0482 (10) 0.0903 (16) 0.0346 (9) 0.0001 (10) −0.0016 (7) −0.0027 (9)
C15 0.0495 (10) 0.0705 (13) 0.0418 (9) −0.0087 (9) 0.0040 (7) −0.0132 (9)
C16 0.0465 (9) 0.0516 (10) 0.0443 (9) −0.0033 (7) 0.0032 (7) −0.0037 (7)
N3 0.0655 (10) 0.0604 (10) 0.0485 (9) 0.0124 (8) 0.0023 (7) −0.0006 (8)
C17 0.0506 (10) 0.0545 (11) 0.0540 (11) 0.0066 (8) −0.0021 (8) 0.0003 (9)
S1 0.0758 (4) 0.0729 (4) 0.0663 (4) 0.0059 (3) 0.0115 (3) −0.0197 (3)
C18 0.0377 (8) 0.0522 (9) 0.0368 (8) −0.0008 (7) 0.0036 (6) −0.0005 (7)
C19 0.0423 (9) 0.0526 (10) 0.0417 (8) −0.0045 (7) −0.0004 (7) −0.0002 (7)
C20 0.0430 (9) 0.0734 (13) 0.0529 (10) −0.0128 (9) 0.0049 (8) 0.0062 (9)
C21 0.0389 (9) 0.0876 (16) 0.0592 (12) 0.0013 (10) 0.0104 (8) 0.0032 (11)
C22 0.0483 (10) 0.0702 (14) 0.0707 (13) 0.0137 (10) 0.0129 (9) 0.0031 (11)
C23 0.0463 (10) 0.0548 (11) 0.0579 (11) 0.0035 (8) 0.0105 (8) 0.0038 (8)
N4 0.0569 (10) 0.0526 (10) 0.0665 (11) −0.0068 (8) 0.0004 (8) 0.0012 (8)
C24 0.0418 (9) 0.0569 (12) 0.0543 (10) −0.0058 (8) 0.0004 (7) 0.0018 (8)
S2 0.0700 (4) 0.0529 (3) 0.0870 (4) 0.0033 (2) −0.0071 (3) −0.0033 (3)
O1 0.0499 (10) 0.0455 (10) 0.0586 (11) 0.000 0.0160 (8) 0.000
C31 0.0510 (10) 0.0541 (11) 0.0620 (12) −0.0087 (8) 0.0112 (9) 0.0022 (9)
C32 0.0862 (18) 0.0802 (16) 0.0623 (14) −0.0162 (14) 0.0082 (12) 0.0123 (12)
O2 0.073 (3) 0.087 (2) 0.116 (8) 0.005 (3) −0.004 (7) −0.006 (3)
C41 0.152 (10) 0.135 (10) 0.179 (13) 0.050 (8) −0.008 (10) −0.063 (9)
C42 0.091 (7) 0.125 (8) 0.122 (9) −0.016 (5) −0.039 (6) 0.025 (7)
C43 0.125 (11) 0.099 (8) 0.145 (13) 0.046 (7) −0.036 (9) −0.035 (8)
C44 0.108 (6) 0.071 (5) 0.175 (11) −0.013 (4) 0.030 (7) −0.002 (6)

Geometric parameters (Å, º)

Zn1—N2 2.0622 (13) C20—C21 1.374 (3)
Zn1—N2i 2.0622 (13) C20—H20 0.9500
Zn1—N1i 2.0684 (14) C21—C22 1.376 (3)
Zn1—N1 2.0685 (14) C21—H21 0.9500
Zn1—O1 2.1352 (19) C22—C23 1.387 (3)
N1—C4 1.368 (2) C22—H22 0.9500
N1—C1 1.370 (2) C23—H23 0.9500
N2—C9 1.368 (2) N4—C24 1.162 (3)
N2—C6 1.370 (2) C24—S2 1.571 (2)
C1—C10i 1.397 (2) O1—C31 1.436 (2)
C1—C2 1.443 (2) O1—C31i 1.436 (2)
C2—C3 1.348 (2) C31—C32 1.507 (3)
C2—H2 0.9500 C31—H31A 0.9900
C3—C4 1.440 (2) C31—H31B 0.9900
C3—H3 0.9500 C32—H32A 0.9800
C4—C5 1.401 (2) C32—H32B 0.9800
C5—C6 1.404 (2) C32—H32C 0.9800
C5—C11 1.494 (2) O2—C42ii 1.11 (2)
C6—C7 1.440 (2) O2—C42 1.479 (12)
C7—C8 1.355 (3) O2—C43 1.495 (11)
C7—H7 0.9500 O2—C41ii 1.912 (18)
C8—C9 1.440 (2) C41—C44ii 0.755 (17)
C8—H8 0.9500 C41—C43ii 0.900 (18)
C9—C10 1.401 (2) C41—C42 1.499 (14)
C10—C1i 1.397 (2) C41—O2ii 1.912 (18)
C10—C18 1.494 (2) C41—H41A 0.9600
C11—C16 1.391 (3) C41—H41B 0.9599
C11—C12 1.398 (3) C41—H41C 0.9600
C12—C13 1.390 (3) C42—C43ii 0.703 (16)
C12—N3 1.393 (2) C42—O2ii 1.11 (2)
C13—C14 1.370 (3) C42—C42ii 1.92 (3)
C13—H13 0.9500 C42—H42A 0.9601
C14—C15 1.384 (3) C42—H42B 0.9599
C14—H14 0.9500 C43—C42ii 0.703 (16)
C15—C16 1.385 (3) C43—C41ii 0.900 (18)
C15—H15 0.9500 C43—C44 1.446 (14)
C16—H16 0.9500 C43—H43A 0.9599
N3—C17 1.170 (3) C43—H43B 0.9600
C17—S1 1.576 (2) C44—C41ii 0.755 (17)
C18—C23 1.389 (3) C44—H44A 0.9600
C18—C19 1.394 (3) C44—H44B 0.9600
C19—N4 1.392 (3) C44—H44C 0.9599
C19—C20 1.394 (3)
N2—Zn1—N2i 164.44 (8) C31—O1—Zn1 122.65 (11)
N2—Zn1—N1i 88.85 (6) C31i—O1—Zn1 122.65 (11)
N2i—Zn1—N1i 88.54 (6) O1—C31—C32 111.82 (17)
N2—Zn1—N1 88.54 (6) O1—C31—H31A 109.3
N2i—Zn1—N1 88.85 (6) C32—C31—H31A 109.3
N1i—Zn1—N1 160.61 (8) O1—C31—H31B 109.3
N2—Zn1—O1 97.78 (4) C32—C31—H31B 109.3
N2i—Zn1—O1 97.78 (4) H31A—C31—H31B 107.9
N1i—Zn1—O1 99.69 (4) C31—C32—H32A 109.5
N1—Zn1—O1 99.69 (4) C31—C32—H32B 109.5
C4—N1—C1 106.50 (14) H32A—C32—H32B 109.5
C4—N1—Zn1 126.59 (11) C31—C32—H32C 109.5
C1—N1—Zn1 126.82 (11) H32A—C32—H32C 109.5
C9—N2—C6 106.88 (13) H32B—C32—H32C 109.5
C9—N2—Zn1 126.26 (11) C42ii—O2—C42 94.7 (13)
C6—N2—Zn1 126.16 (11) C42ii—O2—C43 26.4 (9)
N1—C1—C10i 125.29 (15) C42—O2—C43 120.3 (9)
N1—C1—C2 109.66 (14) C42ii—O2—C41ii 51.6 (8)
C10i—C1—C2 125.05 (16) C42—O2—C41ii 146.0 (10)
C3—C2—C1 106.91 (15) C43—O2—C41ii 27.3 (8)
C3—C2—H2 126.5 C44ii—C41—C43ii 122 (3)
C1—C2—H2 126.5 C44ii—C41—C42 137 (3)
C2—C3—C4 107.20 (15) C43ii—C41—C42 18.1 (13)
C2—C3—H3 126.4 C44ii—C41—O2ii 129 (2)
C4—C3—H3 126.4 C43ii—C41—O2ii 49.6 (12)
N1—C4—C5 125.53 (15) C42—C41—O2ii 35.6 (7)
N1—C4—C3 109.70 (14) C44ii—C41—H41A 60.7
C5—C4—C3 124.76 (16) C43ii—C41—H41A 94.4
C4—C5—C6 125.25 (16) C42—C41—H41A 110.3
C4—C5—C11 117.74 (15) O2ii—C41—H41A 143.7
C6—C5—C11 116.99 (15) C44ii—C41—H41B 114.2
N2—C6—C5 125.30 (15) C43ii—C41—H41B 124.1
N2—C6—C7 109.32 (15) C42—C41—H41B 108.7
C5—C6—C7 125.28 (16) O2ii—C41—H41B 97.5
C8—C7—C6 107.28 (16) H41A—C41—H41B 109.5
C8—C7—H7 126.4 C44ii—C41—H41C 50.2
C6—C7—H7 126.4 C43ii—C41—H41C 108.5
C7—C8—C9 106.85 (15) C42—C41—H41C 109.4
C7—C8—H8 126.6 O2ii—C41—H41C 82.6
C9—C8—H8 126.6 H41A—C41—H41C 109.5
N2—C9—C10 125.61 (15) H41B—C41—H41C 109.5
N2—C9—C8 109.64 (15) C43ii—C42—O2ii 109 (2)
C10—C9—C8 124.73 (16) C43ii—C42—O2 127 (2)
C1i—C10—C9 125.76 (16) O2ii—C42—O2 20.8 (8)
C1i—C10—C18 116.90 (15) C43ii—C42—C41 23 (2)
C9—C10—C18 117.33 (15) O2ii—C42—C41 92.9 (12)
C16—C11—C12 117.55 (16) O2—C42—C41 108.1 (13)
C16—C11—C5 120.98 (17) C43ii—C42—C42ii 156 (3)
C12—C11—C5 121.45 (16) O2ii—C42—C42ii 50.1 (8)
C13—C12—N3 117.92 (18) O2—C42—C42ii 35.3 (7)
C13—C12—C11 121.16 (18) C41—C42—C42ii 142.7 (10)
N3—C12—C11 120.92 (16) C43ii—C42—H42A 107.4
C14—C13—C12 119.9 (2) O2ii—C42—H42A 132.6
C14—C13—H13 120.0 O2—C42—H42A 112.6
C12—C13—H13 120.0 C41—C42—H42A 109.5
C13—C14—C15 120.15 (18) C42ii—C42—H42A 96.5
C13—C14—H14 119.9 C43ii—C42—H42B 88.1
C15—C14—H14 119.9 O2ii—C42—H42B 102.7
C14—C15—C16 119.83 (18) O2—C42—H42B 109.6
C14—C15—H15 120.1 C41—C42—H42B 108.8
C16—C15—H15 120.1 C42ii—C42—H42B 86.7
C15—C16—C11 121.34 (19) H42A—C42—H42B 108.1
C15—C16—H16 119.3 C42ii—C43—C41ii 138 (3)
C11—C16—H16 119.3 C42ii—C43—C44 158 (2)
C17—N3—C12 157.6 (2) C41ii—C43—C44 26.4 (16)
N3—C17—S1 176.6 (2) C42ii—C43—O2 44.9 (18)
C23—C18—C19 117.82 (16) C41ii—C43—O2 103.2 (17)
C23—C18—C10 121.48 (16) C44—C43—O2 113.4 (10)
C19—C18—C10 120.68 (17) C42ii—C43—H43A 83.7
N4—C19—C20 119.79 (18) C41ii—C43—H43A 83.3
N4—C19—C18 118.78 (16) C44—C43—H43A 102.7
C20—C19—C18 121.44 (19) O2—C43—H43A 107.3
C21—C20—C19 119.2 (2) C42ii—C43—H43B 86.1
C21—C20—H20 120.4 C41ii—C43—H43B 135.5
C19—C20—H20 120.4 C44—C43—H43B 111.5
C20—C21—C22 120.49 (18) O2—C43—H43B 113.6
C20—C21—H21 119.8 H43A—C43—H43B 107.3
C22—C21—H21 119.8 C41ii—C44—C43 32.0 (18)
C21—C22—C23 120.1 (2) C41ii—C44—H44A 115.3
C21—C22—H22 119.9 C43—C44—H44A 111.3
C23—C22—H22 119.9 C41ii—C44—H44B 82.6
C22—C23—C18 120.90 (19) C43—C44—H44B 113.0
C22—C23—H23 119.5 H44A—C44—H44B 109.5
C18—C23—H23 119.5 C41ii—C44—H44C 126.1
C24—N4—C19 161.5 (2) C43—C44—H44C 104.0
N4—C24—S2 178.01 (19) H44A—C44—H44C 109.5
C31—O1—C31i 114.7 (2) H44B—C44—H44C 109.5

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+2, y, −z+3/2.

Funding Statement

This work was funded by Deutsche Forschungsgemeinschaft grant Sonderforschungsbereich 677.

References

  1. Alizadeh, A., Bagherinejad, A., Bayat, F. & Zhu, L.-G. (2016). Tetrahedron, 72, 7070–7075.
  2. Batey, R. A. & Powell, D. A. (2000). J. Am. Chem. Soc. 2, 3237–3240.
  3. Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Collman, J. P., Gagne, R. R., Reed, C., Halbert, T. R., Lang, G. & Robinson, W. T. (1975). J. Am. Chem. Soc. 97, 1427–1439. [DOI] [PubMed]
  5. Collman, J. P., Wang, Z. & Straumanis, A. (1998). J. Org. Chem. 63, 2424–2425. [DOI] [PubMed]
  6. Cormode, D. P., Murray, S. S., Cowley, A. R. & Beer, P. D. (2006). Dalton Trans. pp. 5135–5140. [DOI] [PubMed]
  7. Denden, Z., Ezzayani, K., Saint-Aman, E., Loiseau, F., Najmudin, S., Bonifácio, C., Daran, J.-C. & Nasri, H. (2015). Eur. J. Inorg. Chem. 2015, 2596–2610.
  8. Dhifet, M., Belkhiria, M. S., Daran, J.-C., Schulz, C. E. & Nasri, H. (2010). Inorg. Chim. Acta, 363, 3208–3213.
  9. Ding, Q., Liu, X., Cao, B., Zong, Z. & Peng, Y. (2011). Tetrahedron Lett. 52, 1964–1967.
  10. Ezzayani, K., Denden, Z., Najmudin, S., Bonifácio, C., Saint-Aman, E., Loiseau, F. & Nasri, H. (2014). Eur. J. Inorg. Chem. 2014, 5348–5361.
  11. Freitag, R. A. & Whitten, D. G. (1983). J. Phys. Chem. 87, 3918–3925.
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Guo, Y.-J., Tang, R.-Y., Zhong, P. & Li, J.-H. (2010). Tetrahedron Lett. 51, 649–652.
  14. Jha, S. C., Lorch, M., Lewis, R. A., Archibald, S. J. & Boyle, R. W. (2007). Org. Biomol. Chem. 5, 1970–1974. [DOI] [PubMed]
  15. Kosurkar, U. B., Dadmal, T. L., Appalanaidu, K., Khageswara Rao, Y., Nanubolu, J. B. & Kumbhare, R. M. (2014). Tetrahedron Lett. 55, 1296–1298.
  16. Leben, L., Näther, C. & Herges, R. (2018). Acta Cryst. E74, 1285–1289. [DOI] [PMC free article] [PubMed]
  17. Le Maux, P., Bahri, H. & Simonneaux, G. (1993). Tetrahedron, 49, 1401–1408.
  18. Lindsey, J. (1980). J. Org. Chem. 45, 5215.
  19. Mansour, A., Zaied, M., Ali, I., Soliman, S. & Othmani, M. (2017). Polyhedron, 127, 496–504.
  20. Rao, D. S., Madhava, G., Rasheed, S., Thahir Basha, S., Lakshmi Devamma, M. N. & Naga Raju, C. (2015). Phosphorus Sulfur Silicon, 190, 574–584.
  21. Schappacher, M., Ricard, L., Fischer, J., Weiss, R., Montiel-Montoya, R., Bill, E. & Trautwein, A. X. (1989). Inorg. Chem. 28, 4639–4645. [DOI] [PubMed]
  22. Scheidt, W. R., Lee, Y. J., Geiger, D. K., Taylor, K. & Hatano, K. (1982). J. Am. Chem. Soc. 104, 3367–3374.
  23. Serra, S., Moineaux, L., Vancraeynest, C., Masereel, B., Wouters, J., Pochet, L. & Frédérick, R. (2014). Eur. J. Med. Chem. 82, 96–105. [DOI] [PubMed]
  24. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  25. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  26. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  27. Shin, K. J., Koo, K. D., Yoo, K. H., Kim, D. C., Kim, D. J. & Park, S. W. (2000). Bioorg. Med. Chem. Lett. 10, 1421–1425. [DOI] [PubMed]
  28. Sibrian-Vazquez, M., Jensen, T. J., Fronczek, F. R., Hammer, R. P. & Vicente, M. G. H. (2005). Bioconjugate Chem. 16, 852–863. [DOI] [PubMed]
  29. Stoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
  30. Strohmeier, M., Orendt, A. M., Facelli, J. C., Solum, M. S., Pugmire, R. J., Parry, R. W. & Grant, D. M. (1997). J. Am. Chem. Soc. 119, 7114–7120.
  31. Tabushi, I., Kodera, M. & Yokoyama, M. (1985). J. Am. Chem. Soc. 107, 4466–4473.
  32. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  33. Wuenschell, G. E., Tetreau, C., Lavalette, D. & Reed, C. A. (1992). J. Am. Chem. Soc. 114, 3346–3355.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018014238/wm5466sup1.cif

e-74-01609-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018014238/wm5466Isup2.hkl

e-74-01609-Isup2.hkl (440.3KB, hkl)

CCDC reference: 1872076

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES