Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Oct 26;74(Pt 11):1669–1673. doi: 10.1107/S2056989018014779

Crystal structure and Hirshfeld surface analysis of (4Z)-1-butyl-4-(2-oxo­propyl­idene)-2,3,4,5-tetra­hydro-1H-1,5-benzodiazepin-2-one

Karim Chkirate a,*, Nada Kheira Sebbar b, Tuncer Hökelek c, Damodaran Krishnan d, Joel T Mague e, El Mokhtar Essassi a
PMCID: PMC6218913  PMID: 30443403

The asymmetric unit of the title compound consists of two independent mol­ecules differing slightly in the conformations of the seven-membered rings and the butyl substituents.

Keywords: crystal structure, benzodiazepine, hydrogen bond, π-stacking, Hirshfeld surface

Abstract

The asymmetric unit of the title compound, C16H20N2O2, consists of two independent mol­ecules differing slightly in the conformations of the seven-membered rings and the butyl substituents, where the benzene rings are oriented at a dihedral angle of 34.56 (3)°. In the crystal, pairwise inter­molecular C—H⋯O and complementary intra­molecular C—H⋯O hydrogen bonds form twisted strips extending parallel to (012). These strips are connected into layers parallel to (111) by additional inter­molecular C—H⋯O hydrogen bonds. The layers are further joined by C—H⋯π inter­actions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (65.5%), H⋯C/C⋯H (16.0%) and H⋯O/O⋯H (15.8%) inter­actions.

Chemical context  

1,5-Benzodiazepine derivatives constituted an important class of heterocyclic compounds possessing a wide spectrum of biological properties. They exhibit anti-inflammatory (Roma et al., 1991), hypnotic (Kudo et al., 1982), anti-HIV-1 (Di Braccio et al., 2001), anti­convulsant (De Sarro et al., 1996), anti­microbial (Kumar et al., 2007) and anti­tumor (Kamal et al., 2008) activities. The present work is a continuation of the synthesis of the N-substituted 1,5-benzodiazepines derivatives performed recently by our team (Sebhaoui et al., 2016, 2017; Chkirate et al., 2018). In this work, we prepared the title compound, for an investigation of its biological activities, by reacting (Z)-4-(2-oxo­propyl­idene)-4,5-di­hydro-1H-benzo[b][1,5]diazepin-2(3H)-one with 1-bromo­butane, under liquid–liquid phase-transfer catalysis (PTC) conditions using tetra n-butyl ammonium bromide (TBAB) as catalyst and an aqueous solution of potassium hydroxide as base in di­chloro­methane (Fig. 1). We report herein its crystal and mol­ecular structures along with the Hirshfeld surface analysis.

Figure 1.

Figure 1

The asymmetric unit with the labelling scheme and 50% probability ellipsoids. N—H⋯O and C—H⋯O hydrogen bonds are indicated by blue and black dashed lines, respectively.

Structural commentary  

The asymmetric unit of the title compound consists of two independent mol­ecules differing modestly in the conformations of the seven-membered B (N1/N2/C1/C6–C9) and D (N3/N4/C17/C22–C25) rings and the n-butyl substituents, where the benzene A (C1–C6) and C (C17–C22) rings are oriented at a dihedral angle of 34.56 (3)°. Rings B and D have boat conformations with slightly different Cremer–Pople puckering parameters [for ring B: Q(2) = 0.8872 (13) Å, Q(3) = 0.2030 (13) Å, φ(2) = 28.49 (8)° and φ(3) = 138.6 (4)°, Q T = 0.9102 (13) Å and for ring D: Q(2) = 0.8631 (13) Å, Q(3) = 0.2113 (13) Å, φ(2) = 24.61 (8)° and φ(3) = 136.8 (3)°, Q T = 0.8886 (13) Å]. In the n-butyl substituents, the C13—C14—C15—C16 [177.96 (13)°] and C29—C30—C31—C32 [174.97 (12)°] chains also have slightly different torsion angles. The conformation of the 2-oxo­propyl­idene units are partially determined by the intra­molecular N—H⋯O hydrogen bonds (Table 1, Fig. 1) The r.m.s. deviation of the overlay of two molecules is 0.1367 Å.graphic file with name e-74-01669-scheme1.jpg

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of benzene ring A (C1–C6).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.927 (17) 1.834 (17) 2.5998 (14) 138.2 (13)
N3—H3A⋯O4 0.898 (17) 1.901 (17) 2.6349 (14) 137.6 (14)
C2—H2⋯O1ii 0.964 (15) 2.469 (16) 3.4235 (17) 170.6 (11)
C3—H3⋯O3vi 0.968 (15) 2.420 (17) 3.3714 (16) 166.0 (11)
C5—H5⋯O4 0.998 (16) 2.456 (15) 3.4086 (17) 159.3 (11)
C18—H18⋯O3v 0.961 (14) 2.556 (15) 3.5165 (16) 176.4 (11)
C19—H19⋯O1i 1.001 (15) 2.330 (15) 3.3273 (15) 177.0 (12)
C21—H21⋯O2 0.986 (15) 2.277 (15) 3.1933 (16) 154.1 (11)
C28—H28C⋯O4vi 0.98 2.48 3.4342 (18) 164
C12—H12ACg1x 0.999 (19) 2.921 (19) 3.9047 (16) 167.8 (13)
C30—H30ACg1xii 1.007 (16) 2.903 (15) 3.8016 (15) 149.0 (11)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (x) Inline graphic; (xii) Inline graphic.

Supra­molecular features  

Hydrogen bonding and van der Waals contacts are the dominant inter­actions in the crystal packing. In the crystal, pairwise inter­molecular C—HBnz⋯OOxoprp (Bnz = Benzene and Oxoprp = 2-oxo­propyl­idene) and complementary intra­molecular C—HBnz⋯OBnzdzp (Bnzdzp = 1,5-benzodiazepin-2-one) hydrogen bonds (Table 1) form twisted strips extending parallel to (012) (Fig. 2). These strips are connected into layers parallel to (111) (Fig. 3) by inter­molecular C—HBnz⋯OOxoprp and C—HBnzdzp⋯OBnzdzp hydrogen bonds (Table 1). The layers are further joined by C—HBnzdzp⋯π and C—HBty⋯π (Bty = n-but­yl) inter­actions (Table 1 and Figs. 2 and 3).

Figure 2.

Figure 2

Detail of inter­molecular C—H⋯O hydrogen bonding (black dashed lines) and C—H⋯π (ring) inter­actions (green dashed lines) viewed along the a-axis direction.

Figure 3.

Figure 3

Packing viewed along the a-axis direction with inter­molecular inter­actions depicted as in Fig. 2.

Hirshfeld surface analysis  

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using Crystal Explorer17.5 (Turner et al., 2017). In the HS plotted over d norm (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near O1, O2, O3 and hydrogen atoms H18, H19 and H28C indicate their roles as the respective donors and acceptors in the dominant C—H⋯O and N—H⋯O hydrogen bonds. The shape-index of the HS is a tool for visualizing π–π stacking inter­actions by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π inter­actions. Fig. 5 clearly suggests that there are no π–π inter­actions.

Figure 4.

Figure 4

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.2745 to 1.3634 a.u.

Figure 5.

Figure 5

Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 6 a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H, O⋯C/C⋯O, N⋯C/C⋯N and C⋯C contacts (McKinnon et al., 2007) are illustrated in Fig. 6 bh, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H contributing 65.5% to the overall crystal packing, which is reflected in Fig. 6 b as widely scattered points of high density due to the large hydrogen-atom content of the mol­ecule. The wide peak in the centre at d e = d i = 1.16 Å in Fig. 6 b is due to the short inter­atomic H⋯H contacts (Table 2). In the presence of weak C—H⋯π inter­actions (Table 1) in the crystal, the pair of characteristic wings resulting in the fingerprint plot delineated into H⋯C/C⋯H contacts, Fig. 6 c, the 16.0% contribution to the HS is viewed as pair of spikes with the tips at d e + d i ∼ 2.73 Å. The H⋯O/O⋯H contacts in the structure, with 15.8% contribution to the HS, have a symmetrical distribution of points, Fig. 6 d, with the tips at d e + d i ∼2.24 Å arising from the short intra- and/or inter­atomic C—H⋯O and N—H⋯O hydrogen bonding (Table 1) as well as from the H⋯O/O⋯H contacts (Table 2). Finally, the H⋯N/N⋯H (Fig. 6 e) contacts (Table 2) in the structure, with a 1.4% contribution to the HS, have a symmetrical distribution of points, with a pair of wings appearing at d e = d i = 2.67 Å. The Hirshfeld surface representations for d norm are shown for the H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions in Fig. 7 ac, respectively.

Figure 6.

Figure 6

The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯N/N⋯H, (f) O⋯C/C⋯O, (g) N⋯C/C⋯N and (h) C⋯C inter­actions. d i and d e are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Table 2. Selected interatomic distances (Å).

O1⋯H19i 2.328 (16) C11⋯H26iv 2.976 (14)
O1⋯H13A ii 2.878 (18) C13⋯H2 2.746 (15)
O1⋯H2ii 2.468 (15) C17⋯H24B 2.635 (14)
O1⋯H13B 2.242 (15) C17⋯H30B 2.810 (15)
O1⋯H8B iii 2.858 (15) C18⋯H29B 2.688 (14)
O2⋯H21 2.277 (15) C21⋯H14B ix 2.961 (17)
O2⋯H12C i 2.627 (18) C21⋯H28A iv 2.94
O2⋯H1 1.834 (17) C22⋯H24B 2.679 (14)
O2⋯H26iv 2.780 (14) C25⋯H29B v 2.815 (14)
O3⋯H18v 2.556 (15) C26⋯H4vi 2.988 (16)
O3⋯H3vi 2.424 (15) C27⋯H3A 2.459 (17)
O3⋯H29B v 2.637 (15) C29⋯H18 2.768 (15)
O3⋯H29A 2.300 (14) H1⋯H5 2.48 (2)
O4⋯H3A 1.901 (18) H2⋯H13A 2.26 (2)
O4⋯H24B iv 2.761 (14) H2⋯H13B ii 2.51 (2)
O4⋯H5 2.456 (15) H3A⋯H21 2.39 (2)
O4⋯H28C vi 2.48 H8B⋯H10 2.40 (2)
N1⋯H24A iv 2.775 (15) H10⋯H12A 2.50 (2)
N1⋯H15A 2.858 (17) H12A⋯H14A x 2.49 (2)
N2⋯H13A ii 2.828 (16) H13B⋯H32A ix 2.54 (2)
N2⋯H15A 2.704 (16) H13B⋯H15B 2.57 (2)
N3⋯H31B 2.915 (17) H14A⋯H16A 2.52 (2)
N4⋯H31B 2.705 (17) H15B⋯H32A ix 2.54 (2)
C1⋯H8A 2.669 (16) H18⋯H29B 2.21 (2)
C1⋯H14A 2.818 (15) H24A⋯H26 2.34 (2)
C2⋯H13A 2.790 (16) H26⋯H28A 2.33
C2⋯H30A vii 2.970 (14) H28B⋯H32C vi 2.50
C3⋯H12A viii 2.833 (19) H29A⋯H31A 2.54 (2)
C3⋯H30A vii 2.852 (15) H29A⋯H32B xi 2.58 (2)
C6⋯H8A 2.652 (15) H30A⋯H32B 2.50 (2)
C9⋯H13A ii 2.828 (17) H31A⋯H31A xi 2.55 (2)
C10⋯H20i 2.871 (15) H31A⋯H32B xi 2.57 (2)
C11⋯H1 2.424 (17) H32C⋯H28B vi 2.50

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic; (x) Inline graphic; (xi) Inline graphic.

Figure 7.

Figure 7

Hirshfeld surface representations of d norm for (a) H⋯H, (b) H⋯C/C⋯H and (c) H⋯O/O⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Synthesis and crystallization  

To a solution of (Z)-4-(2-oxo­propyl­idene)-4,5-di­hydro-1H-benzo[b][1,5]diazepin-2(3H)-one (2.38 mmol) in 15 ml of di­chloro­methane were added 1.5 eq of 1-bromo­butane, (3.57 mmol) of potassium hydroxide dissolved in water and 0.23 mmol of tetra-n-butyl ammonium bromide (BTBA). The mixture was kept under magnetic stirring at room temperature for 48 h. A little water was added and then the organic phase was extracted. The mixture obtained was chromatographed on a column of silica gel (eluent hexa­ne/ethyl acetate 8/2) to give three products. The title compound was isolated as the major product in a yield of 77%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms attached to C28 did not give a satisfactory geometry so they were positioned geometrically with C—H = 0.98 Å, and refined as riding with U iso(H) = 1.5U eq(C). The remaining H atoms were located in a difference-Fourier map and were freely refined. The crystal studied was twinned.

Table 3. Experimental details.

Crystal data
Chemical formula C16H20N2O2
M r 272.34
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 9.1132 (6), 12.6676 (9), 12.8164 (9)
α, β, γ (°) 91.344 (1), 99.537 (1), 96.340 (1)
V3) 1448.87 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.34 × 0.29 × 0.25
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009)
T min, T max 0.97, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 51542, 51542, 40020
R int 0.029
(sin θ/λ)max−1) 0.696
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.133, 1.08
No. of reflections 51542
No. of parameters 511
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.32

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018014779/xu5946sup1.cif

e-74-01669-sup1.cif (40.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018014779/xu5946Isup2.hkl

e-74-01669-Isup2.hkl (2.4MB, hkl)

Supporting information file. DOI: 10.1107/S2056989018014779/xu5946Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989018014779/xu5946Isup4.cml

CCDC reference: 1874203

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C16H20N2O2 Z = 4
Mr = 272.34 F(000) = 584
Triclinic, P1 Dx = 1.249 Mg m3
a = 9.1132 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.6676 (9) Å Cell parameters from 9901 reflections
c = 12.8164 (9) Å θ = 2.2–29.6°
α = 91.344 (1)° µ = 0.08 mm1
β = 99.537 (1)° T = 100 K
γ = 96.340 (1)° Block, colourless
V = 1448.87 (17) Å3 0.34 × 0.28 × 0.25 mm

Data collection

Bruker SMART APEX CCD diffractometer 51542 independent reflections
Radiation source: fine-focus sealed tube 40020 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
Detector resolution: 8.3333 pixels mm-1 θmax = 29.7°, θmin = 1.6°
φ and ω scans h = −12→12
Absorption correction: multi-scan (TWINABS; Sheldrick, 2009) k = −17→17
Tmin = 0.97, Tmax = 0.98 l = −17→17
51542 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: mixed
wR(F2) = 0.133 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0752P)2 + 0.0382P] where P = (Fo2 + 2Fc2)/3
51542 reflections (Δ/σ)max = 0.001
511 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame. Analysis of 641 reflections having I/σ(I) > 13 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the triclinic system and to be twinned by a 180° rotation about the reciprocal axis [111]. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refined as a 2-component twin. Individual refinement of the H-atoms attached to C28 did not give a satisfactory geometry so these were included as riding contributions in idealized positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.72177 (11) 0.04051 (8) 0.54430 (7) 0.0238 (2)
O2 0.56968 (10) 0.43831 (7) 0.35257 (7) 0.0215 (2)
N1 0.72935 (12) 0.28280 (9) 0.33604 (8) 0.0158 (2)
H1 0.7127 (18) 0.3534 (13) 0.3296 (12) 0.032 (4)*
N2 0.89478 (12) 0.13227 (8) 0.46108 (8) 0.0165 (2)
C1 0.93805 (14) 0.17354 (10) 0.36609 (9) 0.0157 (3)
C2 1.06770 (15) 0.14365 (11) 0.33411 (10) 0.0185 (3)
H2 1.1192 (17) 0.0914 (12) 0.3745 (11) 0.023 (4)*
C3 1.11875 (15) 0.18668 (11) 0.24671 (11) 0.0204 (3)
H3 1.2087 (17) 0.1646 (11) 0.2263 (11) 0.023 (4)*
C4 1.04086 (15) 0.26135 (11) 0.18968 (11) 0.0208 (3)
H4 1.0748 (17) 0.2907 (12) 0.1285 (12) 0.023 (4)*
C5 0.91218 (15) 0.29138 (11) 0.21946 (10) 0.0185 (3)
H5 0.8544 (18) 0.3453 (12) 0.1809 (12) 0.026 (4)*
C6 0.85894 (14) 0.24746 (10) 0.30730 (9) 0.0155 (3)
C7 0.61586 (14) 0.22068 (10) 0.36742 (9) 0.0151 (3)
C8 0.63211 (15) 0.10416 (10) 0.37404 (10) 0.0178 (3)
H8A 0.6596 (17) 0.0781 (12) 0.3060 (11) 0.023 (4)*
H8B 0.5373 (17) 0.0641 (12) 0.3867 (11) 0.023 (4)*
C9 0.75241 (15) 0.08784 (10) 0.46686 (10) 0.0169 (3)
C10 0.49225 (14) 0.26264 (10) 0.39233 (9) 0.0162 (3)
H10 0.4120 (17) 0.2170 (12) 0.4145 (11) 0.023 (4)*
C11 0.47391 (14) 0.37296 (10) 0.38320 (9) 0.0171 (3)
C12 0.33482 (16) 0.41213 (12) 0.41142 (12) 0.0235 (3)
H12A 0.243 (2) 0.3606 (15) 0.3887 (14) 0.046 (5)*
H12B 0.321 (2) 0.4819 (14) 0.3787 (13) 0.038 (5)*
H12C 0.348 (2) 0.4220 (14) 0.4879 (14) 0.045 (5)*
C13 1.01107 (16) 0.13553 (11) 0.55643 (10) 0.0214 (3)
H13A 1.086 (2) 0.0890 (13) 0.5451 (13) 0.038 (5)*
H13B 0.9588 (16) 0.1036 (11) 0.6123 (11) 0.019 (4)*
C14 1.08024 (16) 0.24803 (11) 0.59066 (11) 0.0214 (3)
H14A 1.1376 (17) 0.2780 (12) 0.5385 (11) 0.023 (4)*
H14B 1.1531 (19) 0.2442 (12) 0.6570 (13) 0.031 (4)*
C15 0.96927 (17) 0.32465 (11) 0.60967 (12) 0.0246 (3)
H15A 0.899 (2) 0.3314 (13) 0.5431 (13) 0.038 (5)*
H15B 0.9065 (19) 0.2921 (13) 0.6622 (13) 0.036 (4)*
C16 1.0457 (2) 0.43481 (13) 0.64748 (14) 0.0331 (4)
H16A 1.109 (2) 0.4651 (14) 0.5958 (14) 0.045 (5)*
H16B 1.113 (2) 0.4355 (15) 0.7181 (15) 0.051 (5)*
H16C 0.973 (2) 0.4854 (15) 0.6559 (13) 0.044 (5)*
O3 0.58897 (11) 0.87290 (7) −0.13509 (7) 0.0202 (2)
O4 0.79438 (11) 0.48603 (7) 0.05767 (7) 0.0237 (2)
N3 0.63297 (12) 0.64210 (9) 0.08256 (8) 0.0159 (2)
H3A 0.690 (2) 0.5925 (14) 0.1094 (13) 0.035 (5)*
N4 0.58830 (12) 0.86428 (8) 0.04194 (8) 0.0145 (2)
C17 0.54349 (14) 0.81037 (10) 0.13050 (9) 0.0148 (3)
C18 0.47824 (15) 0.86709 (11) 0.20216 (10) 0.0182 (3)
H18 0.4569 (16) 0.9382 (12) 0.1862 (11) 0.020 (4)*
C19 0.44752 (16) 0.82329 (11) 0.29503 (10) 0.0218 (3)
H19 0.4001 (18) 0.8658 (12) 0.3443 (12) 0.028 (4)*
C20 0.48108 (16) 0.72094 (11) 0.31750 (10) 0.0216 (3)
H20 0.4601 (18) 0.6882 (12) 0.3839 (12) 0.028 (4)*
C21 0.54102 (15) 0.66222 (11) 0.24625 (10) 0.0189 (3)
H21 0.5639 (17) 0.5889 (12) 0.2591 (11) 0.025 (4)*
C22 0.57102 (14) 0.70569 (10) 0.15174 (9) 0.0152 (3)
C23 0.59693 (14) 0.63618 (10) −0.02420 (9) 0.0157 (3)
C24 0.48707 (15) 0.70842 (10) −0.07315 (10) 0.0169 (3)
H24A 0.4620 (17) 0.6921 (11) −0.1483 (12) 0.022 (4)*
H24B 0.3985 (17) 0.7000 (11) −0.0395 (11) 0.018 (4)*
C25 0.55790 (13) 0.82264 (10) −0.05945 (10) 0.0152 (3)
C26 0.65922 (15) 0.56812 (10) −0.08471 (10) 0.0180 (3)
H26 0.6285 (17) 0.5668 (11) −0.1622 (11) 0.020 (4)*
C27 0.76044 (14) 0.49577 (10) −0.03993 (11) 0.0198 (3)
C28 0.82882 (17) 0.42914 (12) −0.11377 (12) 0.0292 (3)
H28A 0.773193 0.430696 −0.185929 0.044*
H28B 0.824151 0.355681 −0.091077 0.044*
H28C 0.933585 0.457712 −0.112321 0.044*
C29 0.68172 (15) 0.96788 (10) 0.06506 (11) 0.0178 (3)
H29A 0.6920 (15) 0.9984 (11) −0.0031 (11) 0.013 (3)*
H29B 0.6320 (16) 1.0178 (11) 0.1058 (11) 0.018 (4)*
C30 0.83516 (15) 0.95516 (11) 0.12782 (11) 0.0189 (3)
H30A 0.8940 (17) 1.0277 (12) 0.1407 (11) 0.025 (4)*
H30B 0.8225 (17) 0.9296 (11) 0.2017 (11) 0.021 (4)*
C31 0.92392 (15) 0.88366 (11) 0.07175 (12) 0.0223 (3)
H31A 0.9269 (17) 0.9081 (12) −0.0022 (12) 0.026 (4)*
H31B 0.8703 (18) 0.8104 (13) 0.0616 (12) 0.028 (4)*
C32 1.08216 (17) 0.87977 (14) 0.13147 (14) 0.0300 (3)
H32A 1.080 (2) 0.8497 (14) 0.2012 (15) 0.045 (5)*
H32B 1.1370 (19) 0.9530 (14) 0.1406 (12) 0.034 (4)*
H32C 1.1392 (19) 0.8371 (13) 0.0902 (13) 0.038 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0278 (5) 0.0238 (5) 0.0237 (5) 0.0096 (4) 0.0103 (4) 0.0092 (4)
O2 0.0236 (5) 0.0172 (5) 0.0250 (5) 0.0042 (4) 0.0056 (4) 0.0058 (4)
N1 0.0169 (5) 0.0140 (5) 0.0174 (5) 0.0042 (4) 0.0037 (4) 0.0030 (4)
N2 0.0200 (6) 0.0153 (5) 0.0140 (5) 0.0031 (4) 0.0011 (4) 0.0020 (4)
C1 0.0178 (6) 0.0144 (6) 0.0138 (6) 0.0003 (5) 0.0010 (5) −0.0004 (5)
C2 0.0174 (6) 0.0151 (6) 0.0219 (7) 0.0024 (5) −0.0002 (5) −0.0013 (5)
C3 0.0162 (6) 0.0208 (7) 0.0239 (7) −0.0001 (5) 0.0044 (5) −0.0056 (5)
C4 0.0212 (7) 0.0220 (7) 0.0184 (6) −0.0035 (5) 0.0050 (5) −0.0009 (5)
C5 0.0199 (6) 0.0176 (7) 0.0168 (6) 0.0005 (5) 0.0006 (5) 0.0014 (5)
C6 0.0152 (6) 0.0149 (6) 0.0159 (6) 0.0013 (5) 0.0019 (5) −0.0015 (5)
C7 0.0176 (6) 0.0156 (6) 0.0112 (5) 0.0020 (5) −0.0006 (5) 0.0010 (5)
C8 0.0192 (6) 0.0150 (6) 0.0192 (6) 0.0015 (5) 0.0036 (5) 0.0008 (5)
C9 0.0220 (7) 0.0123 (6) 0.0181 (6) 0.0065 (5) 0.0056 (5) 0.0006 (5)
C10 0.0164 (6) 0.0167 (6) 0.0150 (6) 0.0015 (5) 0.0015 (5) 0.0014 (5)
C11 0.0192 (6) 0.0196 (7) 0.0123 (6) 0.0040 (5) 0.0007 (5) 0.0009 (5)
C12 0.0220 (7) 0.0217 (7) 0.0282 (8) 0.0067 (6) 0.0061 (6) −0.0003 (6)
C13 0.0241 (7) 0.0225 (7) 0.0169 (6) 0.0073 (6) −0.0019 (6) 0.0028 (5)
C14 0.0189 (7) 0.0242 (7) 0.0198 (7) 0.0021 (5) −0.0001 (6) −0.0001 (5)
C15 0.0246 (7) 0.0225 (7) 0.0254 (7) 0.0026 (6) 0.0013 (6) −0.0023 (6)
C16 0.0341 (9) 0.0256 (8) 0.0373 (9) 0.0006 (7) 0.0024 (8) −0.0083 (7)
O3 0.0272 (5) 0.0192 (5) 0.0164 (4) 0.0063 (4) 0.0071 (4) 0.0050 (4)
O4 0.0235 (5) 0.0206 (5) 0.0277 (5) 0.0055 (4) 0.0039 (4) 0.0050 (4)
N3 0.0187 (5) 0.0137 (5) 0.0155 (5) 0.0040 (4) 0.0016 (4) 0.0022 (4)
N4 0.0161 (5) 0.0137 (5) 0.0139 (5) 0.0013 (4) 0.0028 (4) 0.0030 (4)
C17 0.0141 (6) 0.0161 (6) 0.0134 (6) −0.0004 (5) 0.0014 (5) 0.0028 (5)
C18 0.0182 (6) 0.0169 (7) 0.0192 (6) 0.0017 (5) 0.0028 (5) 0.0006 (5)
C19 0.0222 (7) 0.0262 (8) 0.0172 (6) 0.0012 (6) 0.0059 (6) −0.0024 (5)
C20 0.0236 (7) 0.0259 (7) 0.0141 (6) −0.0027 (6) 0.0032 (5) 0.0031 (5)
C21 0.0204 (7) 0.0178 (7) 0.0165 (6) −0.0013 (5) −0.0005 (5) 0.0032 (5)
C22 0.0134 (6) 0.0164 (6) 0.0145 (6) 0.0001 (5) 0.0003 (5) 0.0002 (5)
C23 0.0157 (6) 0.0131 (6) 0.0171 (6) −0.0018 (5) 0.0014 (5) 0.0025 (5)
C24 0.0171 (6) 0.0178 (7) 0.0148 (6) 0.0017 (5) −0.0002 (5) 0.0008 (5)
C25 0.0136 (6) 0.0162 (6) 0.0168 (6) 0.0060 (5) 0.0023 (5) 0.0027 (5)
C26 0.0196 (6) 0.0165 (6) 0.0174 (6) −0.0010 (5) 0.0034 (5) 0.0003 (5)
C27 0.0159 (6) 0.0154 (6) 0.0271 (7) −0.0025 (5) 0.0043 (5) −0.0005 (5)
C28 0.0256 (7) 0.0271 (8) 0.0362 (8) 0.0070 (6) 0.0071 (6) −0.0053 (6)
C29 0.0202 (6) 0.0132 (6) 0.0206 (6) 0.0013 (5) 0.0056 (5) 0.0016 (5)
C30 0.0185 (6) 0.0180 (7) 0.0191 (6) −0.0017 (5) 0.0024 (5) 0.0002 (5)
C31 0.0185 (7) 0.0195 (7) 0.0289 (8) 0.0015 (5) 0.0047 (6) 0.0005 (6)
C32 0.0204 (7) 0.0333 (9) 0.0368 (9) 0.0054 (7) 0.0036 (7) 0.0089 (7)

Geometric parameters (Å, º)

O1—C9 1.2269 (14) O3—C25 1.2271 (14)
O2—C11 1.2532 (15) O4—C27 1.2503 (16)
N1—C7 1.3504 (16) N3—C23 1.3515 (16)
N1—C6 1.4086 (15) N3—C22 1.4095 (15)
N1—H1 0.927 (17) N3—H3A 0.898 (17)
N2—C9 1.3704 (16) N4—C25 1.3637 (15)
N2—C1 1.4333 (15) N4—C17 1.4316 (14)
N2—C13 1.4755 (17) N4—C29 1.4786 (16)
C1—C2 1.3998 (17) C17—C18 1.3993 (17)
C1—C6 1.4023 (18) C17—C22 1.4011 (17)
C2—C3 1.3833 (18) C18—C19 1.3820 (18)
C2—H2 0.964 (15) C18—H18 0.961 (14)
C3—C4 1.3935 (19) C19—C20 1.3905 (19)
C3—H3 0.968 (15) C19—H19 1.001 (15)
C4—C5 1.3804 (18) C20—C21 1.3816 (18)
C4—H4 0.958 (14) C20—H20 0.993 (14)
C5—C6 1.4012 (17) C21—C22 1.3974 (16)
C5—H5 0.998 (16) C21—H21 0.986 (15)
C7—C10 1.3772 (17) C23—C26 1.3746 (17)
C7—C8 1.5025 (17) C23—C24 1.5014 (17)
C8—C9 1.5131 (19) C24—C25 1.5118 (18)
C8—H8A 1.005 (14) C24—H24A 0.964 (15)
C8—H8B 0.992 (15) C24—H24B 0.974 (14)
C10—C11 1.4309 (17) C26—C27 1.4339 (18)
C10—H10 0.966 (15) C26—H26 0.986 (14)
C11—C12 1.5054 (18) C27—C28 1.5068 (18)
C12—H12A 0.999 (19) C28—H28A 0.9800
C12—H12B 0.999 (17) C28—H28B 0.9800
C12—H12C 0.971 (18) C28—H28C 0.9800
C13—C14 1.5170 (19) C29—C30 1.5203 (19)
C13—H13A 0.979 (17) C29—H29A 0.977 (13)
C13—H13B 0.993 (13) C29—H29B 1.002 (14)
C14—C15 1.5204 (19) C30—C31 1.5215 (18)
C14—H14A 0.974 (14) C30—H30A 1.007 (16)
C14—H14B 0.994 (17) C30—H30B 1.028 (14)
C15—C16 1.520 (2) C31—C32 1.523 (2)
C15—H15A 0.990 (18) C31—H31A 1.008 (14)
C15—H15B 1.020 (16) C31—H31B 0.995 (16)
C16—H16A 1.005 (18) C32—H32A 0.982 (17)
C16—H16B 1.00 (2) C32—H32B 0.998 (18)
C16—H16C 0.986 (19) C32—H32C 0.990 (17)
O1···H19i 2.328 (16) C11···H26iv 2.976 (14)
O1···H13Aii 2.878 (18) C13···H2 2.746 (15)
O1···H2ii 2.468 (15) C17···H24B 2.635 (14)
O1···H13B 2.242 (15) C17···H30B 2.810 (15)
O1···H8Biii 2.858 (15) C18···H29B 2.688 (14)
O2···H21 2.277 (15) C21···H14Bix 2.961 (17)
O2···H12Ci 2.627 (18) C21···H28Aiv 2.94
O2···H1 1.834 (17) C22···H24B 2.679 (14)
O2···H26iv 2.780 (14) C25···H29Bv 2.815 (14)
O3···H18v 2.556 (15) C26···H4vi 2.988 (16)
O3···H3vi 2.424 (15) C27···H3A 2.459 (17)
O3···H29Bv 2.637 (15) C29···H18 2.768 (15)
O3···H29A 2.300 (14) H1···H5 2.48 (2)
O4···H3A 1.901 (18) H2···H13A 2.26 (2)
O4···H24Biv 2.761 (14) H2···H13Bii 2.51 (2)
O4···H5 2.456 (15) H3A···H21 2.39 (2)
O4···H28Cvi 2.48 H8B···H10 2.40 (2)
N1···H24Aiv 2.775 (15) H10···H12A 2.50 (2)
N1···H15A 2.858 (17) H12A···H14Ax 2.49 (2)
N2···H13Aii 2.828 (16) H13B···H32Aix 2.54 (2)
N2···H15A 2.704 (16) H13B···H15B 2.57 (2)
N3···H31B 2.915 (17) H14A···H16A 2.52 (2)
N4···H31B 2.705 (17) H15B···H32Aix 2.54 (2)
C1···H8A 2.669 (16) H18···H29B 2.21 (2)
C1···H14A 2.818 (15) H24A···H26 2.34 (2)
C2···H13A 2.790 (16) H26···H28A 2.33
C2···H30Avii 2.970 (14) H28B···H32Cvi 2.50
C3···H12Aviii 2.833 (19) H29A···H31A 2.54 (2)
C3···H30Avii 2.852 (15) H29A···H32Bxi 2.58 (2)
C6···H8A 2.652 (15) H30A···H32B 2.50 (2)
C9···H13Aii 2.828 (17) H31A···H31Axi 2.55 (2)
C10···H20i 2.871 (15) H31A···H32Bxi 2.57 (2)
C11···H1 2.424 (17) H32C···H28Bvi 2.50
C7—N1—C6 125.71 (11) C23—N3—C22 125.86 (11)
C7—N1—H1 113.8 (10) C23—N3—H3A 114.1 (10)
C6—N1—H1 120.3 (10) C22—N3—H3A 119.2 (10)
C9—N2—C1 123.36 (10) C25—N4—C17 123.89 (10)
C9—N2—C13 118.67 (10) C25—N4—C29 119.17 (10)
C1—N2—C13 117.95 (10) C17—N4—C29 116.80 (10)
C2—C1—C6 118.91 (11) C18—C17—C22 118.86 (11)
C2—C1—N2 119.06 (11) C18—C17—N4 118.36 (11)
C6—C1—N2 121.94 (10) C22—C17—N4 122.65 (10)
C3—C2—C1 120.99 (12) C19—C18—C17 121.09 (12)
C3—C2—H2 121.3 (8) C19—C18—H18 120.4 (8)
C1—C2—H2 117.7 (8) C17—C18—H18 118.5 (8)
C2—C3—C4 119.77 (12) C18—C19—C20 119.57 (12)
C2—C3—H3 119.3 (8) C18—C19—H19 119.0 (8)
C4—C3—H3 121.0 (8) C20—C19—H19 121.4 (8)
C5—C4—C3 120.16 (12) C21—C20—C19 120.30 (12)
C5—C4—H4 119.6 (9) C21—C20—H20 118.9 (9)
C3—C4—H4 120.2 (9) C19—C20—H20 120.7 (9)
C4—C5—C6 120.43 (13) C20—C21—C22 120.39 (13)
C4—C5—H5 122.2 (8) C20—C21—H21 122.3 (8)
C6—C5—H5 117.4 (8) C22—C21—H21 117.3 (8)
C5—C6—C1 119.73 (11) C21—C22—C17 119.69 (11)
C5—C6—N1 118.21 (11) C21—C22—N3 117.74 (11)
C1—C6—N1 122.02 (11) C17—C22—N3 122.54 (11)
N1—C7—C10 121.39 (11) N3—C23—C26 121.48 (12)
N1—C7—C8 116.55 (11) N3—C23—C24 116.67 (11)
C10—C7—C8 122.07 (11) C26—C23—C24 121.85 (11)
C7—C8—C9 109.20 (11) C23—C24—C25 109.99 (10)
C7—C8—H8A 108.7 (8) C23—C24—H24A 109.3 (9)
C9—C8—H8A 110.6 (9) C25—C24—H24A 106.8 (9)
C7—C8—H8B 110.3 (9) C23—C24—H24B 109.5 (8)
C9—C8—H8B 107.5 (8) C25—C24—H24B 109.8 (8)
H8A—C8—H8B 110.5 (12) H24A—C24—H24B 111.4 (13)
O1—C9—N2 122.40 (12) O3—C25—N4 122.76 (11)
O1—C9—C8 121.18 (11) O3—C25—C24 121.48 (11)
N2—C9—C8 116.38 (11) N4—C25—C24 115.73 (10)
C7—C10—C11 122.38 (12) C23—C26—C27 123.00 (12)
C7—C10—H10 120.3 (9) C23—C26—H26 118.0 (8)
C11—C10—H10 117.3 (9) C27—C26—H26 118.9 (8)
O2—C11—C10 122.32 (11) O4—C27—C26 122.69 (11)
O2—C11—C12 118.72 (12) O4—C27—C28 118.82 (12)
C10—C11—C12 118.95 (12) C26—C27—C28 118.50 (12)
C11—C12—H12A 112.7 (10) C27—C28—H28A 109.5
C11—C12—H12B 109.2 (10) C27—C28—H28B 109.5
H12A—C12—H12B 110.0 (15) H28A—C28—H28B 109.5
C11—C12—H12C 108.3 (11) C27—C28—H28C 109.5
H12A—C12—H12C 107.4 (14) H28A—C28—H28C 109.5
H12B—C12—H12C 109.1 (15) H28B—C28—H28C 109.5
N2—C13—C14 112.25 (11) N4—C29—C30 111.51 (10)
N2—C13—H13A 110.0 (10) N4—C29—H29A 106.9 (8)
C14—C13—H13A 112.2 (10) C30—C29—H29A 110.2 (8)
N2—C13—H13B 105.2 (8) N4—C29—H29B 111.1 (8)
C14—C13—H13B 110.1 (8) C30—C29—H29B 108.8 (8)
H13A—C13—H13B 106.6 (12) H29A—C29—H29B 108.2 (11)
C13—C14—C15 114.98 (12) C29—C30—C31 113.61 (11)
C13—C14—H14A 110.6 (9) C29—C30—H30A 108.1 (9)
C15—C14—H14A 107.9 (9) C31—C30—H30A 108.5 (8)
C13—C14—H14B 107.6 (9) C29—C30—H30B 108.9 (8)
C15—C14—H14B 109.0 (9) C31—C30—H30B 112.1 (8)
H14A—C14—H14B 106.4 (13) H30A—C30—H30B 105.2 (11)
C16—C15—C14 112.47 (13) C30—C31—C32 112.70 (13)
C16—C15—H15A 108.2 (10) C30—C31—H31A 109.6 (8)
C14—C15—H15A 109.5 (10) C32—C31—H31A 110.4 (9)
C16—C15—H15B 111.8 (9) C30—C31—H31B 109.8 (9)
C14—C15—H15B 108.1 (9) C32—C31—H31B 109.4 (9)
H15A—C15—H15B 106.6 (14) H31A—C31—H31B 104.6 (12)
C15—C16—H16A 111.0 (11) C31—C32—H32A 110.7 (11)
C15—C16—H16B 113.0 (11) C31—C32—H32B 109.7 (10)
H16A—C16—H16B 107.2 (16) H32A—C32—H32B 109.6 (14)
C15—C16—H16C 112.3 (11) C31—C32—H32C 110.6 (10)
H16A—C16—H16C 107.2 (14) H32A—C32—H32C 109.8 (14)
H16B—C16—H16C 105.7 (14) H32B—C32—H32C 106.4 (13)
C9—N2—C1—C2 −131.39 (13) C25—N4—C17—C18 −133.96 (13)
C13—N2—C1—C2 46.95 (15) C29—N4—C17—C18 50.34 (15)
C9—N2—C1—C6 52.13 (16) C25—N4—C17—C22 50.23 (17)
C13—N2—C1—C6 −129.53 (13) C29—N4—C17—C22 −125.47 (13)
C6—C1—C2—C3 0.67 (19) C22—C17—C18—C19 3.05 (19)
N2—C1—C2—C3 −175.92 (11) N4—C17—C18—C19 −172.93 (12)
C1—C2—C3—C4 0.34 (19) C17—C18—C19—C20 −0.4 (2)
C2—C3—C4—C5 −0.78 (19) C18—C19—C20—C21 −1.7 (2)
C3—C4—C5—C6 0.20 (19) C19—C20—C21—C22 1.1 (2)
C4—C5—C6—C1 0.82 (19) C20—C21—C22—C17 1.57 (19)
C4—C5—C6—N1 178.38 (12) C20—C21—C22—N3 179.63 (12)
C2—C1—C6—C5 −1.24 (18) C18—C17—C22—C21 −3.61 (18)
N2—C1—C6—C5 175.25 (11) N4—C17—C22—C21 172.18 (11)
C2—C1—C6—N1 −178.70 (11) C18—C17—C22—N3 178.43 (12)
N2—C1—C6—N1 −2.21 (18) N4—C17—C22—N3 −5.78 (19)
C7—N1—C6—C5 138.62 (13) C23—N3—C22—C21 140.48 (13)
C7—N1—C6—C1 −43.88 (18) C23—N3—C22—C17 −41.51 (19)
C6—N1—C7—C10 −178.93 (12) C22—N3—C23—C26 −177.17 (12)
C6—N1—C7—C8 1.32 (18) C22—N3—C23—C24 3.50 (18)
N1—C7—C8—C9 70.83 (13) N3—C23—C24—C25 69.03 (14)
C10—C7—C8—C9 −108.91 (13) C26—C23—C24—C25 −110.29 (13)
C1—N2—C9—O1 170.18 (11) C17—N4—C25—O3 175.20 (11)
C13—N2—C9—O1 −8.15 (17) C29—N4—C25—O3 −9.19 (17)
C1—N2—C9—C8 −12.36 (16) C17—N4—C25—C24 −6.60 (16)
C13—N2—C9—C8 169.31 (10) C29—N4—C25—C24 169.00 (10)
C7—C8—C9—O1 113.48 (13) C23—C24—C25—O3 110.58 (13)
C7—C8—C9—N2 −64.01 (13) C23—C24—C25—N4 −67.64 (13)
N1—C7—C10—C11 2.17 (19) N3—C23—C26—C27 2.88 (19)
C8—C7—C10—C11 −178.09 (11) C24—C23—C26—C27 −177.82 (11)
C7—C10—C11—O2 −0.45 (19) C23—C26—C27—O4 3.2 (2)
C7—C10—C11—C12 179.61 (12) C23—C26—C27—C28 −176.60 (12)
C9—N2—C13—C14 −121.28 (12) C25—N4—C29—C30 −109.33 (12)
C1—N2—C13—C14 60.30 (14) C17—N4—C29—C30 66.58 (13)
N2—C13—C14—C15 55.44 (16) N4—C29—C30—C31 59.09 (14)
C13—C14—C15—C16 177.96 (13) C29—C30—C31—C32 174.97 (12)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y, −z+1; (iii) −x+1, −y, −z+1; (iv) −x+1, −y+1, −z; (v) −x+1, −y+2, −z; (vi) −x+2, −y+1, −z; (vii) x, y−1, z; (viii) x+1, y, z; (ix) −x+2, −y+1, −z+1; (x) x−1, y, z; (xi) −x+2, −y+2, −z.

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of benzene ring A (C1–C6).

D—H···A D—H H···A D···A D—H···A
N1—H1···O2 0.927 (17) 1.834 (17) 2.5998 (14) 138.2 (13)
N3—H3A···O4 0.898 (17) 1.901 (17) 2.6349 (14) 137.6 (14)
C2—H2···O1ii 0.964 (15) 2.469 (16) 3.4235 (17) 170.6 (11)
C3—H3···O3vi 0.968 (15) 2.420 (17) 3.3714 (16) 166.0 (11)
C5—H5···O4 0.998 (16) 2.456 (15) 3.4086 (17) 159.3 (11)
C18—H18···O3v 0.961 (14) 2.556 (15) 3.5165 (16) 176.4 (11)
C19—H19···O1i 1.001 (15) 2.330 (15) 3.3273 (15) 177.0 (12)
C21—H21···O2 0.986 (15) 2.277 (15) 3.1933 (16) 154.1 (11)
C28—H28C···O4vi 0.98 2.48 3.4342 (18) 164
C12—H12A···Cg1x 0.999 (19) 2.921 (19) 3.9047 (16) 167.8 (13)
C30—H30A···Cg1xii 1.007 (16) 2.903 (15) 3.8016 (15) 149.0 (11)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y, −z+1; (v) −x+1, −y+2, −z; (vi) −x+2, −y+1, −z; (x) x−1, y, z; (xii) x, y+1, z.

Funding Statement

This work was funded by Tulane University grant . Hacettepe University Scientific Research Project Unit grant 013 D04 602 004 to T. Hökelek.

References

  1. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chkirate, K., Sebbar, N. K., Karrouchi, K. & Essassi, E. M. (2018). J. Mar. Chim. Heterocycl. 17, 1–27.
  4. De Sarro, G., Gitto, R., Rizzo, M., Zappia, M. & De Sarro, A. (1996). Gen. Pharmacol. 27, 935–941. [DOI] [PubMed]
  5. Di Braccio, M., Grossi, G. C., Roma, G., Vargiu, L., Mura, M. & Marongiu, M. E. (2001). Eur. J. Med. Chem. 36, 935–949. [DOI] [PubMed]
  6. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  7. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  8. Kamal, A., Shankaraiah, N., Prabhakar, S., Reddy, C. R., Markandeya, N., Reddy, K. L. & Devaiah, X. (2008). Bioorg. Med. Chem. Lett. 18, 2434–2439. [DOI] [PubMed]
  9. Kudo, Y. (1982). Int. Pharmacopsychiatry, 17, 49–64. [DOI] [PubMed]
  10. Kumar, R. & Joshi, Y. C. (2007). Arkivoc. XIII, 142–149.
  11. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. [DOI] [PubMed]
  12. Roma, G., Grossi, G. C., Di Braccio, M., Ghia, M. & Mattioli, F. (1991). Eur. J. Med. Chem. 26, 489–496. [DOI] [PubMed]
  13. Sebhaoui, J., El Bakri, Y., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x161696.
  14. Sebhaoui, J., El Bakri, Y., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171057.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  20. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal. Explorer17. The University of Western Australia.
  21. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018014779/xu5946sup1.cif

e-74-01669-sup1.cif (40.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018014779/xu5946Isup2.hkl

e-74-01669-Isup2.hkl (2.4MB, hkl)

Supporting information file. DOI: 10.1107/S2056989018014779/xu5946Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989018014779/xu5946Isup4.cml

CCDC reference: 1874203

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES