Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Oct 2;74(Pt 11):1532–1535. doi: 10.1107/S2056989018013610

Crystal structure of di­chlorido­bis­{μ-2-meth­oxy-6-[(methyl­imino)­meth­yl]phenolato}{2-meth­oxy-6-[(methyl­imino)­meth­yl]phenolato}cadmium(II)cobalt(III) monohydrate

Olga Yu Vassilyeva a,*, Katerina V Kasyanova a, Vladimir N Kokozay a, Brian W Skelton b
PMCID: PMC6218914  PMID: 30443374

Heterometallic Co/Cd solvatomorphs, which differ by half of the solvent water mol­ecule, show a remarkable variation in the cadmium coordination sphere.

Keywords: crystal structure, heterometallic complex, Schiff base ligand, o-vanillin, methyl­amine

Abstract

The title compound, [CoCd(C9H10NO2)3Cl2]·H2O, is a solvatomorph of the corresponding hemihydrate recently published by us [Nesterova et al. (2018). Appl. Cat. A, 560, 171–184]. The current structure reveals different cell parameters and space group compared with the published one while both are monoclinic with almost the same cell volume. The title compound is formed of discrete neutral dinuclear mol­ecules with no crystallographically imposed symmetry and water mol­ecules of crystallization. The overall geometry about the cobalt(III) ion is octa­hedral with an N3O3 environment; each ligand acts as a meridional ONO donor. The CdII coordination sphere approximates an irregular square pyramid with a chlorine atom at the apex. There is significant shortening of a Cd—O bond length to the oxygen atom of the methoxo group on one of the ligands [2.459 (3) Å] compared to the corresponding distance in the published structure [2.724 (7) Å], while other Cd—Cl/N/O bonds remain roughly the same. In the crystal lattice, the heterometallic mol­ecules, which are related by the crystallographic n-glide plane and inter­linked by weak hydrogen bonds to solvent water mol­ecules, form columns along [101]. Adjacent columns lie anti­parallel to each other.

Chemical context  

The title compound, [CoCd(C9H10NO2)3Cl2]·H2O, (1) is a solvatomorph of the corresponding hemihydrate recently published by us (CSD refcode TEZKER; Nesterova et al., 2018). We have studied the heterometallic hemihydrate [CoCdL 3Cl2]·0.5H2O (2) with a Schiff base ligand {HL is 2-meth­oxy-6-[(methyl­imino)­meth­yl]phenol} and its related complex [CoL 3]·DMF (DMF is N,N′-di­methyl­formamide) in alkanes oxidation reactions. Complexes of transition metals have proved to be efficient catalysts for a broad range of organic reactions, including direct C—H functionalization (Pototschnig et al., 2017; Nesterov et al., 2018). At the same time, the catalytic properties of heterometallic compounds, and those combining catalytically active and non-active metals in particular, in stereospecific sp 3 C—H oxidation with m-chloro­perbenzoic acid have received significantly less attention. A comparison of the catalytic behaviours of the hetero- and monometallic analogues provided further insight into the origin of stereoselectivity of the oxidation of C—H bonds (Nesterova et al., 2018).graphic file with name e-74-01532-scheme1.jpg

While the hemihydrate (2) was prepared by direct synthesis (Kokozay et al., 2018) employing Co powder and cadmium chloride as starting materials, for the synthesis of the title compound two metal acetate salts were reacted with the Schiff base formed in situ from the condensation between o-vanillin and CH3NH2·HCl in water/ethanol in a 1:1:3 molar ratio. Remarkably, the isolated plate-like crystals of (1) were brown–red, not brown–green, and appeared non-isostructural with the prismatic hemihydrate (2) while both are monoclinic with almost the same cell volume [2923.10 (10) Å3 in (1) and 2931.3 (7) Å3 in (2)]. The previously published structure was solved and refined in the standard setting P21/c whereas the current structure is in P21/n [a, b, c, β: 9.4036 (2), 21.1588 (4), 15.0319 (3) Å, 102.221 (2)°, respectively in (1) and 14.090 (2), 16.887 (2), 13.179 (2) Å, 110.84 (2)° in (2)]. Another striking difference is a significantly shorter Cd—O bond length to the oxygen atom of the methoxo group on one of the ligands [2.459 (3) Å] compared to the corresponding distance in (2) [2.724 (7) Å], while other Cd—Cl/N/O bonds remain roughly the same. The reason for such a discrepancy could be the incorporation of a whole water mol­ecule in (1) instead of a half-mol­ecule in (2), which slightly changes the hydrogen bonding and packing motifs in the former compound.

Structural commentary  

The heterometallic complex (1) is built up from discrete CoCdL 3Cl2 mol­ecules and water mol­ecules of crystallization. The mol­ecular structure of (1) closely resembles that of the hemihydrate (Nesterova et al., 2018). The complex mol­ecule has no crystallographically imposed symmetry (Fig. 1). The ligand moieties are deprotonated at the phenol O atom and octa­hedrally coordinate the CoIII ion through the three azomethine N and three phenolate O atoms in a mer configur­ation. The three crystallographically non-equivalent salicyl­aldimine ligands have Co—O and Co—N bond lengths in the ranges 1.871 (4)–1.932 (3) and 1.933 (4)–1.961 (5) Å, respectively, (Table 1). Average Co—O and Co—N bond lengths in (1) and (2) are almost equal, being 1.905 and 1.945 Å, respectively, in the monohydrate and 1.900 and 1.945 Å in the hemihydrate. The trans angles at the cobalt atom vary from 173.23 (16) to 176.3 (2)° while the cis angles are in the range 82.67 (14)–93.70 (19)° (Table 1).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom-numbering scheme. Non-H atoms are shown with displacement ellipsoids at the 30% probability level.

Table 1. Selected geometric parameters (Å, °).

Cd1—O11 2.235 (3) Co1—O11 1.913 (3)
Cd1—O31 2.286 (3) Co1—O31 1.932 (3)
Cd1—Cl1 2.4091 (14) Co1—N16 1.933 (4)
Cd1—Cl2 2.4222 (12) Co1—N26 1.942 (4)
Cd1—O12 2.459 (3) Co1—N36 1.961 (5)
Co1—O21 1.871 (4)    
       
O11—Cd1—O31 68.33 (12) O21—Co1—N16 92.19 (18)
O11—Cd1—Cl1 127.90 (10) O11—Co1—N16 92.91 (17)
O31—Cd1—Cl1 111.39 (9) O31—Co1—N16 174.93 (18)
O11—Cd1—Cl2 116.80 (10) O21—Co1—N26 92.72 (18)
O31—Cd1—Cl2 107.72 (9) O11—Co1—N26 91.78 (17)
Cl1—Cd1—Cl2 112.53 (5) O31—Co1—N26 88.21 (16)
O11—Cd1—O12 66.48 (12) N16—Co1—N26 89.43 (19)
O31—Cd1—O12 134.52 (12) O21—Co1—N36 85.17 (17)
Cl1—Cd1—O12 92.53 (9) O11—Co1—N36 90.06 (17)
Cl2—Cd1—O12 96.82 (9) O31—Co1—N36 88.82 (17)
O21—Co1—O11 173.23 (16) N16—Co1—N36 93.70 (19)
O21—Co1—O31 92.41 (15) N26—Co1—N36 176.3 (2)
O11—Co1—O31 82.67 (14)    

The nearest coordination geometry of the cadmium centre in (1) is strictly comparable to that for (2). The cadmium atom has two quite short bonds with the bridging phenolato oxygen atoms, O11 and O31 [2.235 (3), 2.286 (3) Å], of the two deprotonated Schiff bases and two longer bonding distances to the chlorine atoms [Cl1: 2.4091 (14), Cl2: 2.4222 (12) Å] in a distorted tetra­hedral geometry. The angles at the metal atom vary from 68.33 (12) to 127.90 (10)° (Table 1). In addition, Cd1 is weakly bonded to the oxygen atom O12 at 2.459 (3) Å, which implies that the Cd1 coordination sphere approximates an irregular square pyramid with Cl1 atom at the apex. There is a marked decrease in the Cd—O12 bond length when (1) is compared to (2) [2.724 (7) Å] and the cobalt–cadmium separation [3.286 Å in (1) versus 3.315 Å in (2)], providing a rare structural example of variations in the metal coordination sphere to accommodate changes possibly caused by a different number of solvent mol­ecules in the crystal lattice.

Supra­molecular features  

The heterometallic mol­ecules related by the crystallographic n-glide plane are stacked along [101] with adjacent columns lying anti­parallel to each other (Fig. 2). The dinuclear units show no significant inter­molecular inter­actions in the solid state: the minimum Co⋯Cd separation between the neighbouring CoCdL 3Cl2 mol­ecules within a column is 8.372 Å. There are weak hydrogen bonds between the solvent water mol­ecule and the oxygen atoms on one of the ligands (O21, O22) and also to the Cl1 atom of the mol­ecule related by the crystallographic n-glide plane (Fig. 2, Table 2). Very weak C—H⋯Cl/O hydrogen-bonding inter­actions between the complex mol­ecules lead to a consolidation of the crystal packing.

Figure 2.

Figure 2

Crystal packing of (1) showing columns of CoCdL 3Cl2 mol­ecules joined by hydrogen-bonding inter­actions through the solvent water mol­ecules along [101]. The symmetry code is as in Table 2. Hydrogen bonds are shown as blue dashed lines. Only water H atoms are shown.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C361—H361⋯Cl1i 0.95 2.76 3.509 (5) 137
C362—H36A⋯O32i 0.98 2.45 3.204 (7) 134
O1—H1AO⋯O21 0.84 (6) 2.45 (7) 3.140 (6) 139 (9)
O1—H1AO⋯O22 0.84 (6) 2.19 (5) 2.965 (7) 153 (9)
O1—H1BO⋯Cl1i 0.84 (6) 2.54 (7) 3.368 (6) 173 (9)

Symmetry code: (i) Inline graphic.

Database survey  

A search of the Cambridge Structural Database (CSD; Groom et al., 2016) via the WebCSD inter­face in September 2018 returned 43 hits for the crystal structures of metal complexes with HL and the ligand itself. Almost half of the complexes are hepta­nuclear homometallic assemblies (M = Mn, Co, Ni, Zn) with planar hexa­gonal disc-like cores and varying anions and solvent mol­ecules. The metal centres in the cores are in distorted octa­hedral geometries with the six μ3-bridging OH or MeO ions linking the central metal atom to the six peripheral ones; the metal-to-ligand ratio M II:L is 7:6. The ligand mol­ecules are singly deprotonated at the phenolate site and adopt a chelating bridging mode, forming five- and six-membered rings similar to those in (1). The rest of the complexes are mainly mononuclear compounds with mol­ecular (Mn, Co and Pt) or polymeric (Mn) arrangements in the crystal lattice and metal-to-ligand ratios M II/III:L of 1:2 and 1:3. There are also dimeric (Cu) and tetra­meric (Co, Mn) complexes with the teranuclear cores additionally supported by other bridging ligands. The heterometallic examples with HL are limited to the four Na/M (M = Fe, Ni) 1s–3d structures of 4 and 5 nuclearity and [CoCdL 3Cl2]·0.5H2O (2) already mentioned.

Synthesis and crystallization  

2-Hy­droxy-3-meth­oxy-benzaldehyde (0.23 g, 1.5 mmol) and methyl­amine hydro­chloride (0.10 g, 1.5 mmol) were added to ethanol (10 ml) and stirred magnetically for 10 min. Cd(CH3COO)2·2H2O (0.13 g, 0.5 mmol) and Co(CH3COO)2·4H2O (0.12 g, 0.5 mmol) both dissolved in 2 ml water were added to the light-yellow solution of the Schiff base formed in situ. The resultant red–brown solution was stirred at room temperature for an hour, then filtered and left to stand at room temperature. Brown–red plate-like crystals of (1) suitable for crystallographic characterization were formed over several days in a mixture with yellow flakes. They were collected by filter-suction, washed with ethanol and finally dried in air.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The P21/n setting is the obvious choice for (1) as this leads to a smaller β angle. The P21/c setting of the current structure can be determined by the transformation [1 0 0, 0 Inline graphic 0, Inline graphic 0 Inline graphic] to give the unit cell a = 9.404, b = 21.159, c = 15.954 Å, α = γ = 90, β = 112.95°. It is clear that the unit cells of (1) and (2) are different even if both are compared in the standard P21/c settings. The water mol­ecule hydrogen atoms in (1) were located and refined with geom­etries restrained to ideal values. All remaining hydrogen atoms were added at calculated positions and refined by use of a riding model with isotropic displacement parameters based on those of the parent atom (C—H = 0.95 Å, U iso(H) = 1.2U eqC for CH, C—H = 0.98 Å, U iso(H) = 1.5U eqC for CH3).

Table 3. Experimental details.

Crystal data
Chemical formula [CoCd(C9H10NO2)3Cl2]·H2O
M r 752.78
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.4036 (2), 21.1588 (4), 15.0319 (3)
β (°) 102.221 (2)
V3) 2923.10 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 12.38
Crystal size (mm) 0.29 × 0.07 × 0.02
 
Data collection
Diffractometer Oxford Diffraction Gemini
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.216, 0.808
No. of measured, independent and observed [I > 2σ(I)] reflections 25774, 5222, 4362
R int 0.060
(sin θ/λ)max−1) 0.599
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.117, 1.02
No. of reflections 5222
No. of parameters 382
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.10, −0.76

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SIR92 (Altomare et al., 1994), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999). Mercury (Macrae et al., 2006) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018013610/lh5882sup1.cif

e-74-01532-sup1.cif (876.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018013610/lh5882Isup2.hkl

e-74-01532-Isup2.hkl (415.6KB, hkl)

CCDC reference: 1869534

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[CoCd(C9H10NO2)3Cl2]·H2O F(000) = 1520
Mr = 752.78 Dx = 1.711 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2yn Cell parameters from 7300 reflections
a = 9.4036 (2) Å θ = 3.7–66.9°
b = 21.1588 (4) Å µ = 12.38 mm1
c = 15.0319 (3) Å T = 100 K
β = 102.221 (2)° Plate, dark red
V = 2923.10 (10) Å3 0.29 × 0.07 × 0.02 mm
Z = 4

Data collection

Oxford Diffraction Gemini diffractometer 5222 independent reflections
Radiation source: sealed X-ray tube 4362 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.060
Detector resolution: 10.4738 pixels mm-1 θmax = 67.3°, θmin = 3.7°
ω scans h = −7→11
Absorption correction: analytical (CrysAlis Pro; Rigaku OD, 2015) k = −25→25
Tmin = 0.216, Tmax = 0.808 l = −17→17
25774 measured reflections

Refinement

Refinement on F2 2 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0562P)2 + 8.2206P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
5222 reflections Δρmax = 2.10 e Å3
382 parameters Δρmin = −0.76 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The water molecule hydrogen atoms were located and refined with geometries restrained to ideal values. The largest peak is 0.80 Angstroms from Cd1; the deepest hole is 0.73 Angstroms from Cd1.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.83717 (3) 0.66924 (2) 0.43122 (2) 0.02764 (12)
Co1 0.54906 (8) 0.75790 (4) 0.42739 (5) 0.02739 (19)
Cl1 1.03803 (16) 0.63906 (7) 0.55162 (10) 0.0487 (4)
Cl2 0.89886 (13) 0.66652 (6) 0.28277 (8) 0.0347 (3)
O11 0.6005 (3) 0.67029 (15) 0.4340 (2) 0.0288 (7)
C11 0.5129 (5) 0.6209 (2) 0.4128 (3) 0.0292 (10)
C12 0.5785 (5) 0.5615 (2) 0.4072 (3) 0.0304 (11)
O12 0.7279 (4) 0.56332 (16) 0.4243 (3) 0.0344 (8)
C121 0.8027 (7) 0.5055 (3) 0.4161 (4) 0.0451 (14)
H12A 0.7824 0.475 0.4609 0.068*
H12B 0.9076 0.5136 0.4272 0.068*
H12C 0.7694 0.4884 0.3547 0.068*
C13 0.4944 (7) 0.5080 (3) 0.3858 (4) 0.0397 (13)
H13 0.5397 0.4681 0.3827 0.048*
C14 0.3425 (7) 0.5123 (3) 0.3688 (4) 0.0441 (15)
H14 0.2845 0.4756 0.3528 0.053*
C15 0.2777 (6) 0.5695 (3) 0.3751 (4) 0.0420 (14)
H15 0.1747 0.5722 0.3644 0.05*
C16 0.3625 (6) 0.6246 (3) 0.3975 (4) 0.0339 (11)
C161 0.2874 (5) 0.6845 (3) 0.3990 (4) 0.0388 (13)
H161 0.1849 0.6823 0.3928 0.047*
N16 0.3433 (4) 0.7399 (2) 0.4076 (3) 0.0361 (10)
C162 0.2435 (6) 0.7940 (3) 0.4047 (5) 0.0498 (16)
H16A 0.1439 0.7784 0.3993 0.075*
H16B 0.2483 0.8207 0.3521 0.075*
H16C 0.272 0.8188 0.4607 0.075*
C21 0.5855 (5) 0.8855 (3) 0.4726 (4) 0.0344 (12)
O21 0.5157 (4) 0.84486 (17) 0.4129 (3) 0.0351 (8)
C22 0.6147 (6) 0.9468 (3) 0.4418 (4) 0.0360 (12)
O22 0.5648 (4) 0.95460 (18) 0.3497 (3) 0.0402 (9)
C221 0.5993 (7) 1.0125 (3) 0.3126 (4) 0.0464 (14)
H22A 0.5663 1.0476 0.3457 0.07*
H22B 0.5507 1.0147 0.2482 0.07*
H22C 0.7048 1.0154 0.3182 0.07*
C23 0.6830 (6) 0.9915 (3) 0.5003 (4) 0.0447 (14)
H23 0.7012 1.032 0.4778 0.054*
C24 0.7272 (7) 0.9785 (3) 0.5946 (4) 0.0436 (14)
H24 0.7754 1.0098 0.6354 0.052*
C25 0.6993 (6) 0.9197 (3) 0.6259 (4) 0.0416 (13)
H25 0.7275 0.9106 0.6891 0.05*
C26 0.6302 (6) 0.8730 (3) 0.5665 (4) 0.0358 (12)
C261 0.5976 (5) 0.8127 (3) 0.6033 (4) 0.0351 (12)
H261 0.6065 0.8104 0.6673 0.042*
N26 0.5577 (5) 0.7616 (2) 0.5575 (3) 0.0326 (10)
C262 0.5263 (7) 0.7067 (3) 0.6084 (4) 0.0427 (13)
H26A 0.6005 0.6742 0.608 0.064*
H26B 0.4303 0.6898 0.5801 0.064*
H26C 0.5269 0.719 0.6713 0.064*
O31 0.7577 (4) 0.76899 (16) 0.4532 (2) 0.0288 (7)
C31 0.8156 (5) 0.8150 (2) 0.4098 (4) 0.0296 (11)
C32 0.9275 (5) 0.8534 (3) 0.4572 (4) 0.0328 (11)
O32 0.9740 (4) 0.84021 (19) 0.5477 (3) 0.0418 (9)
C321 1.0785 (7) 0.8820 (3) 0.6003 (4) 0.0517 (16)
H32A 1.1694 0.88 0.5784 0.078*
H32B 1.0971 0.8693 0.6645 0.078*
H32C 1.0408 0.9253 0.5943 0.078*
C33 0.9856 (6) 0.9006 (3) 0.4114 (4) 0.0404 (13)
H33 1.0592 0.9275 0.4442 0.048*
C34 0.9374 (6) 0.9089 (3) 0.3184 (4) 0.0405 (13)
H34 0.9793 0.9409 0.2877 0.049*
C35 0.8303 (6) 0.8714 (3) 0.2708 (4) 0.0370 (12)
H35 0.7988 0.8767 0.2069 0.044*
C36 0.7665 (6) 0.8248 (2) 0.3164 (4) 0.0317 (11)
C361 0.6466 (6) 0.7878 (2) 0.2648 (4) 0.0326 (11)
H361 0.6391 0.7853 0.2008 0.039*
N36 0.5503 (5) 0.7583 (2) 0.2971 (3) 0.0328 (9)
C362 0.4337 (6) 0.7279 (3) 0.2312 (4) 0.0405 (13)
H36A 0.4517 0.7332 0.1697 0.061*
H36B 0.3403 0.7473 0.2344 0.061*
H36C 0.431 0.6827 0.2453 0.061*
O1 0.3489 (6) 0.8820 (3) 0.2162 (4) 0.0631 (13)
H1AO 0.408 (9) 0.892 (4) 0.265 (4) 0.095*
H1BO 0.403 (9) 0.878 (5) 0.179 (5) 0.095*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.02341 (18) 0.03144 (19) 0.0287 (2) 0.00034 (13) 0.00698 (13) −0.00319 (14)
Co1 0.0266 (4) 0.0294 (4) 0.0262 (4) 0.0041 (3) 0.0058 (3) −0.0003 (3)
Cl1 0.0484 (8) 0.0558 (9) 0.0347 (7) 0.0149 (7) −0.0076 (6) −0.0074 (6)
Cl2 0.0320 (6) 0.0434 (7) 0.0309 (6) 0.0019 (5) 0.0116 (5) −0.0038 (5)
O11 0.0230 (16) 0.0268 (17) 0.038 (2) −0.0002 (13) 0.0100 (14) 0.0007 (15)
C11 0.032 (3) 0.033 (3) 0.024 (3) −0.002 (2) 0.009 (2) 0.004 (2)
C12 0.035 (3) 0.033 (3) 0.023 (2) −0.004 (2) 0.006 (2) 0.001 (2)
O12 0.0344 (19) 0.0258 (18) 0.045 (2) 0.0039 (14) 0.0131 (16) −0.0004 (16)
C121 0.051 (3) 0.035 (3) 0.052 (4) 0.013 (3) 0.018 (3) 0.005 (3)
C13 0.054 (3) 0.034 (3) 0.032 (3) −0.006 (2) 0.013 (3) −0.001 (2)
C14 0.053 (4) 0.048 (3) 0.029 (3) −0.025 (3) 0.004 (2) 0.001 (2)
C15 0.037 (3) 0.060 (4) 0.030 (3) −0.016 (3) 0.008 (2) 0.006 (3)
C16 0.030 (3) 0.045 (3) 0.027 (3) −0.005 (2) 0.008 (2) 0.003 (2)
C161 0.016 (2) 0.065 (4) 0.037 (3) 0.002 (2) 0.008 (2) 0.004 (3)
N16 0.023 (2) 0.045 (3) 0.039 (3) 0.0044 (19) 0.0065 (18) 0.000 (2)
C162 0.029 (3) 0.050 (4) 0.071 (4) 0.013 (3) 0.012 (3) −0.002 (3)
C21 0.027 (2) 0.039 (3) 0.039 (3) 0.007 (2) 0.012 (2) −0.006 (2)
O21 0.0331 (19) 0.036 (2) 0.034 (2) 0.0036 (15) 0.0034 (15) −0.0030 (16)
C22 0.038 (3) 0.031 (3) 0.041 (3) 0.002 (2) 0.013 (2) −0.003 (2)
O22 0.047 (2) 0.036 (2) 0.038 (2) 0.0058 (17) 0.0084 (17) 0.0001 (17)
C221 0.052 (4) 0.042 (3) 0.048 (4) 0.011 (3) 0.017 (3) 0.007 (3)
C23 0.045 (3) 0.042 (3) 0.049 (4) −0.003 (3) 0.016 (3) −0.008 (3)
C24 0.044 (3) 0.045 (3) 0.043 (3) −0.007 (3) 0.012 (3) −0.013 (3)
C25 0.035 (3) 0.054 (4) 0.035 (3) −0.001 (3) 0.007 (2) −0.008 (3)
C26 0.030 (3) 0.045 (3) 0.034 (3) 0.004 (2) 0.011 (2) −0.006 (2)
C261 0.030 (3) 0.051 (3) 0.026 (3) 0.004 (2) 0.011 (2) −0.004 (2)
N26 0.031 (2) 0.042 (3) 0.025 (2) 0.0081 (18) 0.0093 (17) 0.0019 (19)
C262 0.047 (3) 0.047 (3) 0.036 (3) −0.002 (3) 0.013 (2) 0.004 (3)
O31 0.0298 (17) 0.0287 (17) 0.0291 (18) 0.0003 (14) 0.0084 (14) 0.0012 (14)
C31 0.023 (2) 0.034 (3) 0.034 (3) 0.0031 (19) 0.011 (2) −0.002 (2)
C32 0.029 (3) 0.034 (3) 0.035 (3) 0.002 (2) 0.008 (2) 0.004 (2)
O32 0.036 (2) 0.051 (2) 0.035 (2) −0.0085 (17) 0.0009 (16) 0.0033 (18)
C321 0.045 (3) 0.065 (4) 0.043 (4) −0.016 (3) 0.003 (3) 0.001 (3)
C33 0.033 (3) 0.038 (3) 0.049 (4) 0.000 (2) 0.008 (2) 0.000 (3)
C34 0.036 (3) 0.039 (3) 0.047 (3) −0.002 (2) 0.008 (2) 0.011 (3)
C35 0.036 (3) 0.038 (3) 0.038 (3) 0.007 (2) 0.010 (2) 0.006 (2)
C36 0.032 (3) 0.032 (3) 0.033 (3) 0.006 (2) 0.011 (2) 0.003 (2)
C361 0.038 (3) 0.030 (3) 0.031 (3) 0.009 (2) 0.008 (2) −0.001 (2)
N36 0.037 (2) 0.032 (2) 0.028 (2) 0.0012 (18) 0.0016 (18) −0.0008 (18)
C362 0.046 (3) 0.043 (3) 0.031 (3) −0.008 (3) 0.004 (2) −0.004 (2)
O1 0.058 (3) 0.062 (3) 0.063 (3) 0.014 (2) −0.004 (2) −0.002 (3)

Geometric parameters (Å, º)

Cd1—O11 2.235 (3) C221—H22B 0.98
Cd1—O31 2.286 (3) C221—H22C 0.98
Cd1—Cl1 2.4091 (14) C23—C24 1.417 (9)
Cd1—Cl2 2.4222 (12) C23—H23 0.95
Cd1—O12 2.459 (3) C24—C25 1.375 (9)
Co1—O21 1.871 (4) C24—H24 0.95
Co1—O11 1.913 (3) C25—C26 1.396 (8)
Co1—O31 1.932 (3) C25—H25 0.95
Co1—N16 1.933 (4) C26—C261 1.450 (8)
Co1—N26 1.942 (4) C261—N26 1.293 (7)
Co1—N36 1.961 (5) C261—H261 0.95
O11—C11 1.327 (6) N26—C262 1.456 (7)
C11—C16 1.386 (7) C262—H26A 0.98
C11—C12 1.409 (7) C262—H26B 0.98
C12—O12 1.374 (6) C262—H26C 0.98
C12—C13 1.381 (8) O31—C31 1.349 (6)
O12—C121 1.429 (6) C31—C36 1.398 (8)
C121—H12A 0.98 C31—C32 1.399 (8)
C121—H12B 0.98 C32—O32 1.367 (7)
C121—H12C 0.98 C32—C33 1.389 (8)
C13—C14 1.400 (9) O32—C321 1.430 (7)
C13—H13 0.95 C321—H32A 0.98
C14—C15 1.367 (9) C321—H32B 0.98
C14—H14 0.95 C321—H32C 0.98
C15—C16 1.412 (8) C33—C34 1.387 (8)
C15—H15 0.95 C33—H33 0.95
C16—C161 1.454 (8) C34—C35 1.360 (8)
C161—N16 1.279 (8) C34—H34 0.95
C161—H161 0.95 C35—C36 1.405 (8)
N16—C162 1.474 (7) C35—H35 0.95
C162—H16A 0.98 C36—C361 1.455 (8)
C162—H16B 0.98 C361—N36 1.277 (7)
C162—H16C 0.98 C361—H361 0.95
C21—O21 1.313 (7) N36—C362 1.463 (7)
C21—C26 1.410 (8) C362—H36A 0.98
C21—C22 1.422 (8) C362—H36B 0.98
C22—C23 1.357 (8) C362—H36C 0.98
C22—O22 1.374 (7) O1—H1AO 0.84 (6)
O22—C221 1.413 (7) O1—H1BO 0.84 (6)
C221—H22A 0.98
O11—Cd1—O31 68.33 (12) O22—C22—C21 112.9 (5)
O11—Cd1—Cl1 127.90 (10) C22—O22—C221 116.4 (5)
O31—Cd1—Cl1 111.39 (9) O22—C221—H22A 109.5
O11—Cd1—Cl2 116.80 (10) O22—C221—H22B 109.5
O31—Cd1—Cl2 107.72 (9) H22A—C221—H22B 109.5
Cl1—Cd1—Cl2 112.53 (5) O22—C221—H22C 109.5
O11—Cd1—O12 66.48 (12) H22A—C221—H22C 109.5
O31—Cd1—O12 134.52 (12) H22B—C221—H22C 109.5
Cl1—Cd1—O12 92.53 (9) C22—C23—C24 120.7 (6)
Cl2—Cd1—O12 96.82 (9) C22—C23—H23 119.6
O21—Co1—O11 173.23 (16) C24—C23—H23 119.6
O21—Co1—O31 92.41 (15) C25—C24—C23 118.8 (5)
O11—Co1—O31 82.67 (14) C25—C24—H24 120.6
O21—Co1—N16 92.19 (18) C23—C24—H24 120.6
O11—Co1—N16 92.91 (17) C24—C25—C26 121.2 (6)
O31—Co1—N16 174.93 (18) C24—C25—H25 119.4
O21—Co1—N26 92.72 (18) C26—C25—H25 119.4
O11—Co1—N26 91.78 (17) C25—C26—C21 120.5 (5)
O31—Co1—N26 88.21 (16) C25—C26—C261 119.1 (5)
N16—Co1—N26 89.43 (19) C21—C26—C261 120.3 (5)
O21—Co1—N36 85.17 (17) N26—C261—C26 126.4 (5)
O11—Co1—N36 90.06 (17) N26—C261—H261 116.8
O31—Co1—N36 88.82 (17) C26—C261—H261 116.8
N16—Co1—N36 93.70 (19) C261—N26—C262 117.1 (5)
N26—Co1—N36 176.3 (2) C261—N26—Co1 121.0 (4)
C11—O11—Co1 127.9 (3) C262—N26—Co1 121.8 (4)
C11—O11—Cd1 123.9 (3) N26—C262—H26A 109.5
Co1—O11—Cd1 104.50 (14) N26—C262—H26B 109.5
O11—C11—C16 123.7 (5) H26A—C262—H26B 109.5
O11—C11—C12 117.3 (4) N26—C262—H26C 109.5
C16—C11—C12 119.0 (5) H26A—C262—H26C 109.5
O12—C12—C13 125.3 (5) H26B—C262—H26C 109.5
O12—C12—C11 114.1 (4) C31—O31—Co1 119.2 (3)
C13—C12—C11 120.6 (5) C31—O31—Cd1 114.7 (3)
C12—O12—C121 117.6 (4) Co1—O31—Cd1 102.02 (14)
C12—O12—Cd1 115.7 (3) O31—C31—C36 120.8 (5)
C121—O12—Cd1 125.1 (3) O31—C31—C32 120.7 (5)
O12—C121—H12A 109.5 C36—C31—C32 118.6 (5)
O12—C121—H12B 109.5 O32—C32—C33 124.3 (5)
H12A—C121—H12B 109.5 O32—C32—C31 115.8 (5)
O12—C121—H12C 109.5 C33—C32—C31 119.9 (5)
H12A—C121—H12C 109.5 C32—O32—C321 117.5 (5)
H12B—C121—H12C 109.5 O32—C321—H32A 109.5
C12—C13—C14 120.1 (5) O32—C321—H32B 109.5
C12—C13—H13 120 H32A—C321—H32B 109.5
C14—C13—H13 120 O32—C321—H32C 109.5
C15—C14—C13 119.8 (5) H32A—C321—H32C 109.5
C15—C14—H14 120.1 H32B—C321—H32C 109.5
C13—C14—H14 120.1 C34—C33—C32 120.8 (5)
C14—C15—C16 120.7 (5) C34—C33—H33 119.6
C14—C15—H15 119.7 C32—C33—H33 119.6
C16—C15—H15 119.7 C35—C34—C33 120.2 (5)
C11—C16—C15 119.8 (5) C35—C34—H34 119.9
C11—C16—C161 121.9 (5) C33—C34—H34 119.9
C15—C16—C161 118.2 (5) C34—C35—C36 119.9 (5)
N16—C161—C16 127.6 (5) C34—C35—H35 120
N16—C161—H161 116.2 C36—C35—H35 120
C16—C161—H161 116.2 C31—C36—C35 120.6 (5)
C161—N16—C162 117.6 (5) C31—C36—C361 120.6 (5)
C161—N16—Co1 124.9 (4) C35—C36—C361 118.7 (5)
C162—N16—Co1 117.5 (4) N36—C361—C36 126.3 (5)
N16—C162—H16A 109.5 N36—C361—H361 116.9
N16—C162—H16B 109.5 C36—C361—H361 116.9
H16A—C162—H16B 109.5 C361—N36—C362 116.6 (5)
N16—C162—H16C 109.5 C361—N36—Co1 122.5 (4)
H16A—C162—H16C 109.5 C362—N36—Co1 120.8 (4)
H16B—C162—H16C 109.5 N36—C362—H36A 109.5
O21—C21—C26 124.1 (5) N36—C362—H36B 109.5
O21—C21—C22 118.6 (5) H36A—C362—H36B 109.5
C26—C21—C22 117.3 (5) N36—C362—H36C 109.5
C21—O21—Co1 121.2 (3) H36A—C362—H36C 109.5
C23—C22—O22 125.6 (5) H36B—C362—H36C 109.5
C23—C22—C21 121.5 (6) H1AO—O1—H1BO 103 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C361—H361···Cl1i 0.95 2.76 3.509 (5) 137
C362—H36A···O32i 0.98 2.45 3.204 (7) 134
O1—H1AO···O21 0.84 (6) 2.45 (7) 3.140 (6) 139 (9)
O1—H1AO···O22 0.84 (6) 2.19 (5) 2.965 (7) 153 (9)
O1—H1BO···Cl1i 0.84 (6) 2.54 (7) 3.368 (6) 173 (9)

Symmetry code: (i) x−1/2, −y+3/2, z−1/2.

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Kokozay, V. N., Vassilyeva, O. Y. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. Kharisov, pp. 183–237. Amsterdam: Elsevier.
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  7. Nesterova, O. V., Kasyanova, K. V., Makhankova, V. G., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Nesterov, D. S. & Pombeiro, A. J. L. (2018). Appl. Cat. A, 560, 171–184.
  8. Nesterov, D. S., Nesterova, O. V. & Pombeiro, A. J. L. (2018). Coord. Chem. Rev. 355, 199–222.
  9. Pototschnig, G., Maulide, N. & Schnürch, M. (2017). Chem. Eur. J. 23, 9206–9232. [DOI] [PubMed]
  10. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018013610/lh5882sup1.cif

e-74-01532-sup1.cif (876.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018013610/lh5882Isup2.hkl

e-74-01532-Isup2.hkl (415.6KB, hkl)

CCDC reference: 1869534

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES