Description and comparison of the crystal structure of (Ni(1,2–bis(diphenylphosphanyl)ethane)2)(CF3SO3)2 at 100 K with its nitrate and bromide analogues.
Keywords: 100 K, RT, dppe, square-planar geometry, Negative thermal expansion, NTE, crystal structure
Abstract
In the title salt, [Ni(C26H24P2)2](CF3SO3)2 or [Ni(dppe)2]2+·(OTf−)2 [dppe = 1,2-bis(diphenylphosphanyl)ethane and OTf− = trifluoromethanesulfonate], the Ni atom (site symmetry ) has a square-planar geometry with the bidentate ligands chelating the metal. As a result of the steric hindrance of the phenyl rings, the counter-ions are blocked from the metal coordination sphere. The dynamic disorder of the anion existing at 296 K is reduced at 100 K and based on these two temperatures, negative thermal expansion behaviour is observed.
Chemical context
The cation presented here has been synthesized with different counter-ions [Ni(C26H24P2)2]·X
2 for different reasons: as by-product in a halogenation process (X = Cl−, Br−, I−) (Zarkesh et al., 2014 ▸); to research its anticancer properties (X = Br−, I−, NO3
−) (Jarrett & Sadler, 1991 ▸); as result of protonation studies (X = ClO4
−) (Cariati et al., 1966 ▸); and as byproducts while trying to increase the coordination number of [Ni(dppe)X
2] (X = Cl−, Br−, I−; Hudson et al., 1968 ▸). Moreover, to date there are just two reports of its crystal structure with NO3
− (VASCIB; Williams, 1989 ▸) and Br− counter-ions (XUQYOZ; Higgs et al., 2010 ▸).
Triflates (trifluromethanesulfonates, CF3SO4 −) are known as precursors of a wide range of compounds due to their lability (Lawrence, 1986 ▸). Therefore, we compare the title structure, 1, to the structures reported with the other two counter-ions to evaluate the effect of introducing the triflate. As we describe below, the crystal structure at room temperature (see supplementary material) shows disorder of the anion that is reduced, but not completely eliminated at 100 K. In addition, the structure shows negative thermal expansion (NTE) (Liu et al., 2018 ▸) based on the unit-cell volume at the two measured temperatures.
Structural commentary
The geometry of the cation formed by Ni (site symmetry ) with the two dppe ligands is square planar (Fig. 1 ▸). We might expect the Ni—P distances to be the same (the ligand is symmetric); however, they are different. The corresponding distances are listed in Table 1 ▸ for the structure collected at 296 and 100 K and compared to the ones from VASCIB (Williams, 1989 ▸) and XUQYOZ (Higgs et al., 2010 ▸). As this structure is formed by chelation of a simple bidentate ligand, the counter-ion has a limited effect on it, and as in the two previous structures reported, the triflate ions remain outside of the coordination sphere, being blocked from the metal center by the phenyl rings. However, there is an effect on the P—C—C—P torsion angle of the chelate ring, which is probably dependent on the size of the counter-ion (Table 1 ▸).
Figure 1.
ORTEP rendering of 1 at 100 K with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms and the disordered parts of the anion were omitted for clarity. Atoms with the suffix A are generated by the symmetry operation (1 − x, 1 − y, 1 − z).
Table 1. Comparison of selected geometric parameters (Å, °) for 1 at 296 and 100 K, VASCIB and XUQYOZ.
Parameter | 1 at 296 K | 1 at 100 K | VASCIB | XUQYOZ |
---|---|---|---|---|
Ni—P | 2.219 (2) | 2.243 (1) | 2.256 (3) | 2.237 (1) |
2.238 (2) | 2.265 (1) | 2.261 (3) | 2.245 (1) | |
P1—Ni—P2 | 84.7 (1) | 84.9 (1) | 83.2 (1) | 83.6 (1) |
P1—C—C—P2 | 43.9 (4) | 42.8 (2) | 30.8 (1) | 39.9 (3) |
The bulky cation formed and the lack of strong interactions with the counter-ions lead to presumed dynamic disorder of the triflate ion at room temperature (296 K), which was also observed in the case of VASCIB (Williams, 1989 ▸). XUQYOZ on the other hand was acquired at a lower temperature (85 K) and no reference to any disorder was reported (Higgs et al., 2010 ▸).
For 1 at 296 K, the triflate anion is disordered over two sets of sites with 65% occupancy for the major component, which is the one with the shortest distance to the Ni atom (Fig. 2 ▸). The distance between the disordered structures is as follows, for the carbon atoms 0.744 (15) and for the S atoms 0.34 (4) Å (Fig. 2 ▸). For 1 at 100 K, the disorder is reduced although not eliminated completely (Fig. 2 ▸): the two disorder components share the S atom, while the distance between the carbon atoms is 0.354 (19) Å; the major component occupancy is similar, 67%. At 296 K there is a differentiation between the distances Ni—O from each of the parts [4.272 (8) and 4.365 (14) Å], but at 100 K the two distances are not statistically different [4.267 (8) and 4.320 (14) Å]. This could be analysed in two ways: the disorder is also static or the temperature is not low enough to eliminate completely the dynamic disorder.
Figure 2.
Ball and stick rendering of the trifluoromethanesulfonate ion for 1 at 100 K (left) and at 296 K (right) showing both disorder components. Open bonds indicate the minor disorder component.
Surprisingly, a negative thermal expansion was observed (Liu et al., 2018 ▸). The Ni—P bond distances for 1 at 100 K (Table 1 ▸) are elongated by 1.08 and 1.20% in comparison to the values for 1 at 296 K, very close values to the volumetric expansion of the unit cell of 1.25 (12)%. With respect to the unit cell, the a and b axes are affected most in comparison with c, with coefficients of linear expansion (αl) of −29 (4) × 10−6, −30 (4) × 10−6, and −6(4) × 10 −6 K−1 respectively. Based on two temperatures, the volumetric thermal expansion coefficient for the title compound is −63 (6) × 10 −6 K−1.
Another feature of the anion–cation interaction is that the Ni⋯O long-distance interaction is not perpendicular to the mean plane formed by Ni and the four P atoms but tilted at an angle of 74° (Fig. 3 ▸). This tilted orientation is also present in the crystal structures of VASCIB (Williams, 1989 ▸) and XUQYOZ (Higgs et al., 2010 ▸) with angles of 73 and 71°, respectively.
Figure 3.
View parallel to the coordination plane of the Ni and P atoms, showing the counter-ions blocked by the phenyl rings. A space-filling rendering was used for the phenyl groups, the Ni atom and the oxygen atom pointed towards Ni. The disordered part of the anion is omitted for clarity.
A packing diagram of 1 at 100 K viewed down [100] is shown in Fig. 4 ▸; there are C—H⋯X (X = O, F) interactions, but because of the disorder of the triflate ion they are not described in detail.
Figure 4.
Packing view of 1 at 100 K along the a axis.
Database survey
Dppe is a very common ligand: more than 2800 structures are reported in the Cambridge Structural Database (CSD version 5.38, updated ofMay2017; Groom et al., 2016 ▸), 240 of them are with nickel, and only one (LUCLOK; Uehara et al., 2002 ▸) has triflate as counter-ion. In this example, as in other reports of nickel with different ligands (e.g. Lyubartseva et al., 2013 ▸), the triflate anions are outside the coordination sphere as is the case with the title compound and with the two reports with different counter-ions: NO3 − (VASCIB; Williams, 1989 ▸) and Cl− (XUQYOZ; Higgs et al., 2010 ▸).
For comparison, compounds with similar structures to the title compound and the same metallic group (group 10: PII, PtII) with bis[1,2–bis(diphenylphosphanyl)ethane], show almost an ideal square-planar geometry and also counter-ions outside the coordination sphere (see, for example, Engelhardt et al., 1984 ▸).
With respect to the Ni—P distances, we found in the CSD that both equivalent and non-equivalent Ni—P distances occur for Ni(+2)-bis(diphosphines), although it is hard to discern a pattern: for example, the Ni complexes formed with the 1-para-X-phenyl-3,6-triphenyl-1-aza-3,6-diphosphacycloheptane ligand, X = Cl (IFOFOA) or Br (IFOFEQ), are isostructural compounds that crystallize in space group P
(Stewart et al., 2013 ▸), but one has equivalent Ni—P bonds while the other does not.
Synthesis and crystallization
The title compound was prepared in two steps. First, 1,2–bis(diphenylphosphanyl)ethane and nickel(II) chloride hexahydrate (molar ratio 1:2) were reacted in hot ethanol. The product obtained, dichloro-bis[1,2–bis(diphenylphosphanyl)ethane]nickel(II), was then reacted with silver(I) trifluoromethanesulfonate in dichloromethane (molar ratio 1:2). The product of this second reaction was filtered off and purified using a Soxhlet system with dichloromethane in which the by product, silver(I) chloride, was insoluble (Cano, 2012 ▸).
The crystallization process was carried out by dissolution of the purified compound in the minimum volume of methanol at 323 K (≃ 2.5 mg mL−1). When the solution reached room temperature, it was transferred to a chamber saturated with diethyl ether. Diffusion of diethyl ether into the solution over a three-week period led to the formation of translucent intensely yellow block-like crystals at the bottom and on the walls of the vessel.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. H atoms were positioned geometrically and refined as riding with C—H = 0.95–0.99 Å and U iso(H) = 1.2U eq(C).
Table 2. Experimental details.
Crystal data | |
Chemical formula | [Ni(C25H24P2)2](CF3O3S)2 |
M r | 1153.63 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 11.0462 (4), 16.1813 (6), 14.3914 (5) |
β (°) | 98.143 (1) |
V (Å3) | 2546.41 (16) |
Z | 2 |
Radiation type | Mo Kα |
μ (mm−1) | 0.66 |
Crystal size (mm) | 0.21 × 0.19 × 0.09 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2013 ▸) |
T min, T max | 0.828, 0.974 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 30965, 7253, 5928 |
R int | 0.039 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F 2 > 2σ(F 2)], wR(F 2), S | 0.040, 0.099, 1.04 |
No. of reflections | 7253 |
No. of parameters | 395 |
No. of restraints | 144 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.64, −0.30 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018014846/hb7775sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018014846/hb7775Isup2.hkl
Data at 296K. DOI: 10.1107/S2056989018014846/hb7775sup3.txt
CCDC reference: 1874698
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
AD-R would like to acknowledge the unconditional support given by Dr Echegoyen from the Department of Chemistry at UTEP, and the kind collaboration of the College of Science at UTEP.
supplementary crystallographic information
Crystal data
[Ni(C26H24P2)2](CF3O3S)2 | F(000) = 1188 |
Mr = 1153.63 | Dx = 1.505 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 11.0462 (4) Å | Cell parameters from 8190 reflections |
b = 16.1813 (6) Å | θ = 2.3–29.9° |
c = 14.3914 (5) Å | µ = 0.66 mm−1 |
β = 98.143 (1)° | T = 100 K |
V = 2546.41 (16) Å3 | Cube, yellow |
Z = 2 | 0.21 × 0.19 × 0.09 mm |
Data collection
Bruker SMART APEX CCD diffractometer | 5928 reflections with I > 2σ(I) |
Radiation source: fine-focus X-ray tube, Bruker SMART APEX CCD | Rint = 0.039 |
ω and φ scans | θmax = 30.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | h = −15→15 |
Tmin = 0.828, Tmax = 0.974 | k = −22→20 |
30965 measured reflections | l = −19→16 |
7253 independent reflections |
Refinement
Refinement on F2 | Primary atom site location: other |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0417P)2 + 1.7778P] where P = (Fo2 + 2Fc2)/3 |
7253 reflections | (Δ/σ)max = 0.001 |
395 parameters | Δρmax = 0.64 e Å−3 |
144 restraints | Δρmin = −0.30 e Å−3 |
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.5000 | 0.5000 | 0.5000 | 0.01104 (8) | |
P1 | 0.53302 (4) | 0.38286 (3) | 0.42411 (3) | 0.01285 (10) | |
P2 | 0.69870 (4) | 0.48827 (3) | 0.56393 (3) | 0.01274 (10) | |
S1 | 0.26698 (4) | 0.39668 (3) | 0.80990 (3) | 0.02173 (11) | |
F1 | 0.2529 (7) | 0.5524 (4) | 0.8625 (7) | 0.0447 (13) | 0.65 (2) |
F2 | 0.4016 (7) | 0.4830 (5) | 0.9367 (4) | 0.0379 (13) | 0.65 (2) |
F3 | 0.2175 (10) | 0.4617 (6) | 0.9650 (5) | 0.0491 (18) | 0.65 (2) |
O1 | 0.3362 (11) | 0.4294 (11) | 0.7393 (10) | 0.0208 (17) | 0.65 (2) |
O2 | 0.1365 (6) | 0.3986 (9) | 0.7762 (11) | 0.039 (2) | 0.65 (2) |
O3 | 0.3121 (10) | 0.3245 (4) | 0.8587 (7) | 0.0390 (14) | 0.65 (2) |
C27 | 0.2842 (7) | 0.4783 (5) | 0.8967 (5) | 0.0258 (12) | 0.65 (2) |
F1A | 0.2385 (18) | 0.5530 (8) | 0.8295 (13) | 0.054 (3) | 0.35 (2) |
F2A | 0.3693 (16) | 0.5037 (11) | 0.9377 (10) | 0.052 (3) | 0.35 (2) |
F3A | 0.1751 (13) | 0.4830 (6) | 0.9399 (10) | 0.038 (2) | 0.35 (2) |
O1A | 0.353 (2) | 0.419 (2) | 0.7470 (19) | 0.018 (3) | 0.35 (2) |
O2A | 0.1429 (12) | 0.3789 (17) | 0.778 (2) | 0.040 (4) | 0.35 (2) |
O3A | 0.323 (2) | 0.3366 (11) | 0.8793 (14) | 0.052 (4) | 0.35 (2) |
C27A | 0.2607 (15) | 0.4870 (11) | 0.8830 (11) | 0.039 (3) | 0.35 (2) |
C1 | 0.69589 (16) | 0.38126 (12) | 0.41112 (13) | 0.0163 (3) | |
H1A | 0.7191 | 0.3259 | 0.3902 | 0.020* | |
H1B | 0.7127 | 0.4224 | 0.3636 | 0.020* | |
C2 | 0.76932 (16) | 0.40193 (11) | 0.50616 (13) | 0.0163 (3) | |
H2A | 0.8537 | 0.4173 | 0.4974 | 0.020* | |
H2B | 0.7739 | 0.3525 | 0.5470 | 0.020* | |
C3 | 0.79945 (15) | 0.57547 (11) | 0.55049 (12) | 0.0146 (3) | |
C4 | 0.82936 (17) | 0.59377 (12) | 0.46148 (13) | 0.0189 (4) | |
H4 | 0.7979 | 0.5603 | 0.4094 | 0.023* | |
C5 | 0.90443 (17) | 0.66028 (13) | 0.44857 (14) | 0.0216 (4) | |
H5 | 0.9241 | 0.6724 | 0.3879 | 0.026* | |
C6 | 0.95088 (17) | 0.70922 (12) | 0.52492 (14) | 0.0218 (4) | |
H6 | 1.0015 | 0.7552 | 0.5162 | 0.026* | |
C7 | 0.92328 (18) | 0.69083 (12) | 0.61367 (14) | 0.0217 (4) | |
H7 | 0.9562 | 0.7238 | 0.6658 | 0.026* | |
C8 | 0.84752 (17) | 0.62430 (12) | 0.62676 (13) | 0.0177 (4) | |
H8 | 0.8286 | 0.6122 | 0.6877 | 0.021* | |
C9 | 0.72551 (16) | 0.45953 (11) | 0.68697 (12) | 0.0144 (3) | |
C10 | 0.84583 (16) | 0.45136 (12) | 0.73350 (13) | 0.0170 (4) | |
H10 | 0.9133 | 0.4647 | 0.7020 | 0.020* | |
C11 | 0.86528 (17) | 0.42372 (12) | 0.82559 (13) | 0.0194 (4) | |
H11 | 0.9464 | 0.4189 | 0.8575 | 0.023* | |
C12 | 0.76717 (18) | 0.40297 (12) | 0.87152 (13) | 0.0206 (4) | |
H12 | 0.7815 | 0.3842 | 0.9347 | 0.025* | |
C13 | 0.64807 (18) | 0.40952 (12) | 0.82552 (14) | 0.0202 (4) | |
H13 | 0.5810 | 0.3948 | 0.8568 | 0.024* | |
C14 | 0.62791 (16) | 0.43798 (12) | 0.73299 (13) | 0.0173 (4) | |
H14 | 0.5467 | 0.4426 | 0.7013 | 0.021* | |
C15 | 0.51023 (15) | 0.29773 (11) | 0.50214 (12) | 0.0145 (3) | |
C16 | 0.55540 (17) | 0.21858 (12) | 0.48785 (13) | 0.0183 (4) | |
H16 | 0.5976 | 0.2081 | 0.4359 | 0.022* | |
C17 | 0.53812 (18) | 0.15561 (12) | 0.55013 (14) | 0.0207 (4) | |
H17 | 0.5694 | 0.1020 | 0.5411 | 0.025* | |
C18 | 0.47550 (18) | 0.17043 (13) | 0.62542 (14) | 0.0215 (4) | |
H18 | 0.4645 | 0.1270 | 0.6678 | 0.026* | |
C19 | 0.42870 (18) | 0.24842 (13) | 0.63928 (14) | 0.0216 (4) | |
H19 | 0.3848 | 0.2583 | 0.6904 | 0.026* | |
C20 | 0.44672 (16) | 0.31192 (12) | 0.57772 (13) | 0.0175 (4) | |
H20 | 0.4155 | 0.3655 | 0.5872 | 0.021* | |
C21 | 0.45902 (16) | 0.35263 (11) | 0.30856 (12) | 0.0145 (3) | |
C22 | 0.49303 (17) | 0.39130 (12) | 0.22954 (13) | 0.0184 (4) | |
H22 | 0.5538 | 0.4333 | 0.2367 | 0.022* | |
C23 | 0.43798 (18) | 0.36837 (12) | 0.14041 (13) | 0.0212 (4) | |
H23 | 0.4621 | 0.3941 | 0.0866 | 0.025* | |
C24 | 0.34774 (17) | 0.30791 (12) | 0.12975 (13) | 0.0188 (4) | |
H24 | 0.3092 | 0.2932 | 0.0688 | 0.023* | |
C25 | 0.31386 (17) | 0.26894 (12) | 0.20790 (13) | 0.0195 (4) | |
H25 | 0.2524 | 0.2274 | 0.2004 | 0.023* | |
C26 | 0.37007 (16) | 0.29075 (11) | 0.29752 (13) | 0.0158 (3) | |
H26 | 0.3478 | 0.2635 | 0.3511 | 0.019* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01002 (14) | 0.01164 (16) | 0.01101 (15) | 0.00041 (11) | −0.00007 (11) | −0.00175 (11) |
P1 | 0.01274 (19) | 0.0129 (2) | 0.0127 (2) | −0.00012 (15) | 0.00118 (16) | −0.00210 (16) |
P2 | 0.01096 (19) | 0.0140 (2) | 0.0127 (2) | 0.00037 (15) | −0.00016 (16) | −0.00071 (16) |
S1 | 0.0190 (2) | 0.0257 (3) | 0.0215 (2) | −0.00271 (18) | 0.00664 (18) | −0.00384 (19) |
F1 | 0.059 (2) | 0.0265 (18) | 0.054 (3) | 0.0053 (13) | 0.028 (3) | −0.008 (2) |
F2 | 0.040 (2) | 0.051 (3) | 0.0218 (16) | −0.0196 (18) | −0.0022 (15) | −0.0033 (15) |
F3 | 0.063 (3) | 0.058 (3) | 0.035 (2) | −0.027 (3) | 0.033 (2) | −0.019 (2) |
O1 | 0.014 (3) | 0.029 (4) | 0.019 (2) | 0.001 (3) | 0.002 (2) | −0.0005 (18) |
O2 | 0.0135 (16) | 0.068 (6) | 0.036 (2) | −0.0056 (18) | 0.0026 (14) | −0.015 (4) |
O3 | 0.052 (3) | 0.0208 (18) | 0.047 (3) | −0.0021 (16) | 0.015 (2) | 0.0070 (19) |
C27 | 0.031 (2) | 0.028 (2) | 0.020 (2) | −0.0097 (18) | 0.0108 (17) | −0.0060 (16) |
F1A | 0.077 (6) | 0.037 (3) | 0.059 (6) | 0.015 (3) | 0.048 (5) | 0.005 (4) |
F2A | 0.049 (5) | 0.065 (7) | 0.045 (4) | −0.027 (4) | 0.019 (3) | −0.026 (4) |
F3A | 0.049 (4) | 0.038 (3) | 0.036 (4) | −0.007 (3) | 0.032 (3) | −0.009 (3) |
O1A | 0.011 (4) | 0.027 (6) | 0.017 (5) | 0.006 (3) | 0.003 (4) | −0.002 (3) |
O2A | 0.032 (4) | 0.057 (9) | 0.033 (4) | −0.014 (4) | 0.014 (3) | −0.016 (5) |
O3A | 0.057 (6) | 0.045 (6) | 0.053 (7) | 0.022 (5) | 0.011 (5) | 0.017 (5) |
C27A | 0.044 (5) | 0.042 (5) | 0.036 (5) | −0.012 (4) | 0.024 (4) | −0.006 (3) |
C1 | 0.0148 (7) | 0.0181 (9) | 0.0163 (8) | 0.0003 (6) | 0.0036 (7) | −0.0036 (7) |
C2 | 0.0140 (7) | 0.0174 (9) | 0.0169 (8) | 0.0037 (6) | 0.0008 (6) | −0.0007 (7) |
C3 | 0.0111 (7) | 0.0153 (9) | 0.0171 (8) | 0.0011 (6) | 0.0008 (6) | 0.0005 (7) |
C4 | 0.0170 (8) | 0.0227 (10) | 0.0167 (9) | −0.0017 (7) | 0.0011 (7) | −0.0014 (7) |
C5 | 0.0195 (8) | 0.0256 (10) | 0.0202 (9) | −0.0013 (7) | 0.0046 (7) | 0.0028 (8) |
C6 | 0.0194 (8) | 0.0186 (10) | 0.0275 (10) | −0.0031 (7) | 0.0036 (8) | 0.0003 (8) |
C7 | 0.0230 (9) | 0.0195 (10) | 0.0219 (9) | −0.0034 (7) | 0.0005 (8) | −0.0029 (7) |
C8 | 0.0194 (8) | 0.0168 (9) | 0.0168 (8) | 0.0011 (7) | 0.0017 (7) | −0.0011 (7) |
C9 | 0.0158 (7) | 0.0136 (8) | 0.0131 (8) | 0.0016 (6) | 0.0002 (6) | −0.0011 (6) |
C10 | 0.0150 (8) | 0.0180 (9) | 0.0172 (8) | 0.0009 (6) | −0.0003 (7) | 0.0007 (7) |
C11 | 0.0201 (8) | 0.0186 (9) | 0.0177 (9) | 0.0035 (7) | −0.0033 (7) | 0.0006 (7) |
C12 | 0.0275 (9) | 0.0194 (9) | 0.0145 (8) | 0.0057 (7) | 0.0018 (7) | 0.0006 (7) |
C13 | 0.0217 (9) | 0.0204 (10) | 0.0199 (9) | 0.0030 (7) | 0.0074 (7) | 0.0012 (7) |
C14 | 0.0162 (8) | 0.0184 (9) | 0.0173 (8) | 0.0023 (7) | 0.0017 (7) | −0.0004 (7) |
C15 | 0.0141 (7) | 0.0147 (8) | 0.0140 (8) | 0.0003 (6) | −0.0010 (6) | −0.0011 (6) |
C16 | 0.0188 (8) | 0.0182 (9) | 0.0178 (8) | 0.0022 (7) | 0.0027 (7) | −0.0032 (7) |
C17 | 0.0247 (9) | 0.0152 (9) | 0.0211 (9) | 0.0034 (7) | 0.0001 (8) | 0.0003 (7) |
C18 | 0.0222 (9) | 0.0212 (10) | 0.0204 (9) | −0.0007 (7) | 0.0006 (7) | 0.0052 (7) |
C19 | 0.0215 (9) | 0.0268 (11) | 0.0174 (9) | 0.0013 (8) | 0.0053 (7) | 0.0026 (7) |
C20 | 0.0177 (8) | 0.0179 (9) | 0.0170 (8) | 0.0024 (7) | 0.0025 (7) | −0.0002 (7) |
C21 | 0.0156 (7) | 0.0129 (8) | 0.0148 (8) | 0.0018 (6) | 0.0011 (6) | −0.0026 (6) |
C22 | 0.0223 (8) | 0.0162 (9) | 0.0168 (9) | −0.0044 (7) | 0.0024 (7) | −0.0013 (7) |
C23 | 0.0264 (9) | 0.0218 (10) | 0.0155 (9) | −0.0016 (8) | 0.0029 (7) | 0.0003 (7) |
C24 | 0.0199 (8) | 0.0200 (9) | 0.0153 (8) | 0.0009 (7) | −0.0012 (7) | −0.0035 (7) |
C25 | 0.0192 (8) | 0.0176 (9) | 0.0205 (9) | −0.0026 (7) | −0.0013 (7) | −0.0036 (7) |
C26 | 0.0180 (8) | 0.0143 (9) | 0.0152 (8) | −0.0014 (6) | 0.0026 (7) | −0.0015 (6) |
Geometric parameters (Å, º)
Ni1—P1 | 2.2431 (5) | C3—C8 | 1.395 (2) |
Ni1—P1i | 2.2431 (5) | C3—C4 | 1.399 (3) |
Ni1—P2 | 2.2646 (4) | C4—C5 | 1.387 (3) |
Ni1—P2i | 2.2646 (4) | C5—C6 | 1.392 (3) |
P1—C21 | 1.8132 (18) | C6—C7 | 1.387 (3) |
P1—C15 | 1.8172 (19) | C7—C8 | 1.393 (3) |
P1—C1 | 1.8350 (18) | C9—C14 | 1.387 (3) |
P2—C9 | 1.8141 (18) | C9—C10 | 1.407 (2) |
P2—C3 | 1.8243 (19) | C10—C11 | 1.386 (3) |
P2—C2 | 1.8533 (18) | C11—C12 | 1.388 (3) |
S1—O2A | 1.413 (12) | C12—C13 | 1.390 (3) |
S1—O3 | 1.416 (6) | C13—C14 | 1.397 (3) |
S1—O1A | 1.442 (12) | C15—C20 | 1.394 (3) |
S1—O2 | 1.454 (6) | C15—C16 | 1.400 (3) |
S1—O1 | 1.455 (7) | C16—C17 | 1.388 (3) |
S1—O3A | 1.467 (11) | C17—C18 | 1.386 (3) |
S1—C27A | 1.807 (17) | C18—C19 | 1.389 (3) |
S1—C27 | 1.809 (7) | C19—C20 | 1.389 (3) |
F1—C27 | 1.323 (6) | C21—C22 | 1.395 (3) |
F2—C27 | 1.345 (6) | C21—C26 | 1.396 (2) |
F3—C27 | 1.337 (6) | C22—C23 | 1.390 (3) |
F1A—C27A | 1.319 (11) | C23—C24 | 1.390 (3) |
F2A—C27A | 1.366 (11) | C24—C25 | 1.386 (3) |
F3A—C27A | 1.337 (11) | C25—C26 | 1.395 (2) |
C1—C2 | 1.525 (2) | ||
P1—Ni1—P1i | 179.999 (19) | F3A—C27A—F2A | 107.2 (11) |
P1—Ni1—P2 | 84.943 (16) | F1A—C27A—S1 | 109.5 (10) |
P1i—Ni1—P2 | 95.056 (16) | F3A—C27A—S1 | 114.0 (11) |
P1—Ni1—P2i | 95.057 (16) | F2A—C27A—S1 | 113.2 (10) |
P1i—Ni1—P2i | 84.945 (16) | C2—C1—P1 | 108.06 (12) |
P2—Ni1—P2i | 180.0 | C1—C2—P2 | 111.31 (12) |
C21—P1—C15 | 106.16 (8) | C8—C3—C4 | 119.18 (17) |
C21—P1—C1 | 102.94 (8) | C8—C3—P2 | 121.64 (14) |
C15—P1—C1 | 106.01 (8) | C4—C3—P2 | 119.18 (14) |
C21—P1—Ni1 | 126.24 (6) | C5—C4—C3 | 120.67 (18) |
C15—P1—Ni1 | 107.06 (6) | C4—C5—C6 | 119.74 (19) |
C1—P1—Ni1 | 106.91 (6) | C7—C6—C5 | 120.03 (18) |
C9—P2—C3 | 106.51 (8) | C6—C7—C8 | 120.34 (18) |
C9—P2—C2 | 102.93 (8) | C7—C8—C3 | 120.03 (18) |
C3—P2—C2 | 103.51 (8) | C14—C9—C10 | 119.65 (16) |
C9—P2—Ni1 | 115.65 (6) | C14—C9—P2 | 120.00 (13) |
C3—P2—Ni1 | 117.57 (6) | C10—C9—P2 | 120.08 (14) |
C2—P2—Ni1 | 109.04 (6) | C11—C10—C9 | 119.56 (17) |
O2A—S1—O1A | 122.4 (18) | C10—C11—C12 | 120.49 (17) |
O3—S1—O2 | 116.5 (7) | C11—C12—C13 | 120.31 (17) |
O3—S1—O1 | 117.6 (7) | C12—C13—C14 | 119.43 (18) |
O2—S1—O1 | 110.7 (9) | C9—C14—C13 | 120.55 (16) |
O2A—S1—O3A | 112.6 (15) | C20—C15—C16 | 119.63 (17) |
O1A—S1—O3A | 109.8 (13) | C20—C15—P1 | 119.09 (14) |
O2A—S1—C27A | 103.9 (12) | C16—C15—P1 | 121.28 (14) |
O1A—S1—C27A | 104.4 (16) | C17—C16—C15 | 119.48 (18) |
O3A—S1—C27A | 100.8 (8) | C18—C17—C16 | 120.48 (18) |
O3—S1—C27 | 105.3 (4) | C17—C18—C19 | 120.43 (18) |
O2—S1—C27 | 102.5 (6) | C18—C19—C20 | 119.38 (18) |
O1—S1—C27 | 101.7 (9) | C19—C20—C15 | 120.59 (18) |
F1—C27—F3 | 108.3 (6) | C22—C21—C26 | 119.69 (16) |
F1—C27—F2 | 107.0 (6) | C22—C21—P1 | 119.21 (14) |
F3—C27—F2 | 107.1 (5) | C26—C21—P1 | 121.10 (14) |
F1—C27—S1 | 114.1 (5) | C23—C22—C21 | 119.96 (17) |
F3—C27—S1 | 110.3 (5) | C24—C23—C22 | 120.20 (18) |
F2—C27—S1 | 109.7 (5) | C25—C24—C23 | 120.17 (17) |
F1A—C27A—F3A | 107.9 (11) | C24—C25—C26 | 119.94 (17) |
F1A—C27A—F2A | 104.5 (13) | C25—C26—C21 | 120.03 (17) |
O3—S1—C27—F1 | 176.3 (7) | Ni1—P2—C9—C14 | 6.68 (17) |
O2—S1—C27—F1 | −61.4 (9) | C3—P2—C9—C10 | −46.75 (17) |
O1—S1—C27—F1 | 53.1 (7) | C2—P2—C9—C10 | 61.80 (16) |
O3—S1—C27—F3 | −61.6 (7) | Ni1—P2—C9—C10 | −179.41 (13) |
O2—S1—C27—F3 | 60.7 (9) | C14—C9—C10—C11 | −1.5 (3) |
O1—S1—C27—F3 | 175.2 (6) | P2—C9—C10—C11 | −175.45 (15) |
O3—S1—C27—F2 | 56.2 (7) | C9—C10—C11—C12 | 0.9 (3) |
O2—S1—C27—F2 | 178.5 (8) | C10—C11—C12—C13 | 0.1 (3) |
O1—S1—C27—F2 | −67.0 (7) | C11—C12—C13—C14 | −0.7 (3) |
O2A—S1—C27A—F1A | −77.5 (16) | C10—C9—C14—C13 | 1.0 (3) |
O1A—S1—C27A—F1A | 51.8 (14) | P2—C9—C14—C13 | 174.95 (15) |
O3A—S1—C27A—F1A | 165.7 (13) | C12—C13—C14—C9 | 0.1 (3) |
O2A—S1—C27A—F3A | 43.5 (16) | C21—P1—C15—C20 | −119.49 (14) |
O1A—S1—C27A—F3A | 172.8 (13) | C1—P1—C15—C20 | 131.50 (14) |
O3A—S1—C27A—F3A | −73.3 (13) | Ni1—P1—C15—C20 | 17.63 (15) |
O2A—S1—C27A—F2A | 166.3 (15) | C21—P1—C15—C16 | 60.66 (16) |
O1A—S1—C27A—F2A | −64.4 (14) | C1—P1—C15—C16 | −48.34 (16) |
O3A—S1—C27A—F2A | 49.5 (14) | Ni1—P1—C15—C16 | −162.22 (13) |
C21—P1—C1—C2 | −177.35 (12) | C20—C15—C16—C17 | −1.1 (3) |
C15—P1—C1—C2 | −66.06 (14) | P1—C15—C16—C17 | 178.74 (14) |
Ni1—P1—C1—C2 | 47.91 (13) | C15—C16—C17—C18 | 0.7 (3) |
P1—C1—C2—P2 | −42.78 (16) | C16—C17—C18—C19 | 0.3 (3) |
C9—P2—C2—C1 | 143.54 (13) | C17—C18—C19—C20 | −0.9 (3) |
C3—P2—C2—C1 | −105.67 (14) | C18—C19—C20—C15 | 0.5 (3) |
Ni1—P2—C2—C1 | 20.24 (14) | C16—C15—C20—C19 | 0.5 (3) |
C9—P2—C3—C8 | −20.77 (17) | P1—C15—C20—C19 | −179.36 (14) |
C2—P2—C3—C8 | −128.91 (15) | C15—P1—C21—C22 | −159.38 (15) |
Ni1—P2—C3—C8 | 110.83 (14) | C1—P1—C21—C22 | −48.20 (17) |
C9—P2—C3—C4 | 159.16 (14) | Ni1—P1—C21—C22 | 74.38 (16) |
C2—P2—C3—C4 | 51.03 (16) | C15—P1—C21—C26 | 19.77 (17) |
Ni1—P2—C3—C4 | −69.23 (15) | C1—P1—C21—C26 | 130.94 (15) |
C8—C3—C4—C5 | −0.9 (3) | Ni1—P1—C21—C26 | −106.47 (14) |
P2—C3—C4—C5 | 179.16 (15) | C26—C21—C22—C23 | 0.3 (3) |
C3—C4—C5—C6 | 0.2 (3) | P1—C21—C22—C23 | 179.44 (15) |
C4—C5—C6—C7 | 0.8 (3) | C21—C22—C23—C24 | 1.0 (3) |
C5—C6—C7—C8 | −1.1 (3) | C22—C23—C24—C25 | −1.3 (3) |
C6—C7—C8—C3 | 0.3 (3) | C23—C24—C25—C26 | 0.3 (3) |
C4—C3—C8—C7 | 0.6 (3) | C24—C25—C26—C21 | 1.0 (3) |
P2—C3—C8—C7 | −179.43 (14) | C22—C21—C26—C25 | −1.3 (3) |
C3—P2—C9—C14 | 139.35 (15) | P1—C21—C26—C25 | 179.59 (14) |
C2—P2—C9—C14 | −112.11 (16) |
Symmetry code: (i) −x+1, −y+1, −z+1.
Funding Statement
This work was funded by Universidad Nacional de Colombia, Dirección de Investigación, Universidad Nacional de Colombia grant 35544 to Á. Duarte-Ruiz. Departamento Administrativo de Ciencia, Tecnología e Innovación-COLCIENCIAS grant 110171249591 to Á. Duarte-Ruiz.
References
- Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, USA.
- Cano, C. A. (2012). Undergraduate thesis, Universidad Nacional de Colombia, Bogotá D. C., Colombia.
- Cariati, F., Ugo, R. & Bonati, F. (1966). Inorg. Chem. 5, 1128–1132.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Engelhardt, L. M., Patrick, J. M., Raston, C. L., Twiss, P. & White, A. H. (1984). Aust. J. Chem. 37, 2193–2200.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Higgs, A. T., Zinn, P. J. & Sanford, M. S. (2010). Organometallics, 29, 5446–5449.
- Hudson, M. J., Nyholm, R. S. & Stiddard, M. H. B. (1968). J. Chem. Soc. A, pp. 40–43.
- Jarrett, P. S. & Sadler, P. J. (1991). Inorg. Chem. 30, 2098–2104.
- Lawrence, G. A. (1986). Chem. Rev. 86, 17–33.
- Liu, Z., Gao, Q., Chen, J., Deng, J., Lin, K. & Xing, X. (2018). Chem. Commun. 54, 5164–5176. [DOI] [PubMed]
- Lyubartseva, G., Parkin, S. & Mallik, U. P. (2013). Acta Cryst. E69, m532–m533. [DOI] [PMC free article] [PubMed]
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Stewart, M. P., Ho, M.-H., Wiese, S., Lindstrom, M. L., Thogerson, C. E., Raugei, S., Bullock, R. M. & Helm, M. L. (2013). J. Am. Chem. Soc. 135, 6033–6046. [DOI] [PubMed]
- Uehara, K., Hikichi, S. & Akita, M. (2002). J. Chem. Soc. Dalton Trans. pp. 3529–3538.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Williams, A. F. (1989). Acta Cryst. C45, 1002–1005.
- Zarkesh, R. A., Hopkins, M. D. & Jordan, R. F. (2014). Eur. J. Inorg. Chem. pp. 5491–5494.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018014846/hb7775sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018014846/hb7775Isup2.hkl
Data at 296K. DOI: 10.1107/S2056989018014846/hb7775sup3.txt
CCDC reference: 1874698
Additional supporting information: crystallographic information; 3D view; checkCIF report