Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Oct 16;74(Pt 11):1580–1583. doi: 10.1107/S2056989018014160

Crystal structure and Hirshfeld analysis of 2-[bis­(1-methyl-1H-indol-3-yl)meth­yl]benzoic acid

Suhaila Sapari a, Sheryn Wong a, Mohammad Fadzlee Ngatiman b, Huda Misral a, Siti Aishah Hasbullah a,*
PMCID: PMC6218917  PMID: 30443385

In the title compound, the dihedral angles between the 1-methyl indole units (A and B) and the benzoic acid moiety (C) are A/B = 64.87 (7), A/C = 80.92 (8) and B/C = 75.05 (8)°. An intra­molecular C—H⋯O inter­action arising from the methyne group helps to establish the conformation. In the crystal, Inline graphic(8) carb­oxy­lic acid inversion dimers linked by pairs of O—H⋯O hydrogen bonds are observed.

Keywords: crystal structure, indole derivatives, benzoic acid

Abstract

In the title compound, C26H22N2O2, the dihedral angles between the 1-methyl­indole units (A and B) and the benzoic acid moiety (C) are A/B = 64.87 (7), A/C = 80.92 (8) and B/C = 75.05 (8)°. An intra­molecular C—H⋯O inter­action arising from the methyne group helps to establish the conformation. In the crystal, R 2 2(8) carb­oxy­lic acid inversion dimers linked by pairs of O—H⋯O hydrogen bonds are observed. A Hirshfeld surface analysis shows that the greatest contributions are from H⋯H, C⋯H/H⋯C and O⋯H/H⋯O contacts (percentage values = 54.6%, 29.6% and 10.1%, respectively).

Chemical context  

Bisindolyl methane and its derivatives are relatively easy to synthesize and show a broad spectrum of potential biological activities: for example, bis­(indol­yl)imidazole shows anti­plasmodial activity towards plasmodium falciparum (Alvarado et al., 2013). Furthermore, they also have good potential as anti­bacterial (Imran et al., 2014; Challa et al., 2017), anti­leishmanial (Bharate et al., 2013), anti­tumor (Carbone et al., 2013), anti­platelet (Grumel et al., 2002) and anti­cancer (Guo et al., 2010; Jamsheena et al., 2016) agents. Oxidized bis­(indol­yl)methanes containing an acidic hydrogen-bond-donor group and a basic hydrogen-bond-acceptor group can act as selective colorimetric sensors for either F or HSO4 in an aprotic solvent (He et al., 2006). Aryl­furyl-bis­(indol­yl)methanes have selective chromogenic and fluoro­genic ratiometric receptors for the mercury ion in aqueous solution (Batista et al., 2014). As part of our studies in this area, we now report the acid-catalysed condensation reaction between carb­oxy benzaldehyde and indole to generate the title compound.graphic file with name e-74-01580-scheme1.jpg

Structural commentary  

The title compound (Fig. 1) crystallizes in the triclinic system with space group P Inline graphic and Z = 2. The mol­ecule consists of two methyl­ated indole ring systems [C8–C17/N1 (A) and C18–C26/N2 (B)] and a benzoic acid [C1–C7 (C)] system linked via the tertiary C8 atom, with dihedral angles between them of A/B = 64.87 (7), A/C = 80.92 (8) and B/C = 75.05 (8)°. Significant torsion angles include C7—C8—C9—C12 [67.3 (3)] and C7—C8—C18—C21 [50.2 (3)°]. An intra­molecular C8—H8⋯O1 hydrogen bond (Table 1) may help to establish the conformation.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O1i 0.82 (4) 1.89 (5) 2.679 (3) 163 (6)
C8—H8⋯O1 0.98 2.20 2.945 (4) 132

Symmetry code: (i) Inline graphic.

Supra­molecular features  

In the crystal of the title compound, neighbouring mol­ecules are connected into dimers with an Inline graphic(8) graph-set motif via pairwise O3—H3O⋯O1 hydrogen bonds (Table 1, Fig. 2).

Figure 2.

Figure 2

Crystal packing of the title compound viewed down [100] showing inversion dimers linked by pairs of O—H⋯O hydrogen bonds (dashed lines; Table 1).

Hirshfeld surface analysis  

The Hirshfeld surface and fingerprint (FP) plots for the title compound were generated using CrystalExplorer17 (McKinnon et al., 2007). A view of the Hirshfeld surface mapped over d norm is shown in Fig. 3. The intense red spots near the O1-carbonyl and H30-benzoic acid atoms indicate the short inter­atomic O⋯H/H⋯O contacts relating to the hydrogen bond given in Table 1. The two-dimensional fingerprint plots for the H⋯H, O⋯H/H⋯O, C⋯H/H⋯C, N⋯H/H⋯N, C⋯C and C⋯N/C⋯N contacts are illustrated in Fig. 4. The percentage contributions from the different inter­atomic contact to the Hirshfeld surface are summarized in Table 2. The fingerprint plot for the H⋯H contacts, which make the largest contribution to the Hirshfeld surface (54.6%), has a broad appearance with a single tip at d e + d i = 2.2 Å. The FP plot for the O⋯H/H⋯O (10.1%) contacts has prominent ‘forceps-like’ tips at d e + d i = 1.7 Å, whereas that for C⋯H/H⋯C contacts (29.6%) shows two pairs of adjacent peaks with d e + d i = 2.6 Å. The other remaining inter­atomic contacts, which make a small percentage contribution, have a negligible effect on the packing.

Figure 3.

Figure 3

View of the Hirshfeld surface of the title compound mapped over d norm in the range −0.68 to +1.45 au.

Figure 4.

Figure 4

Two-dimensional fingerprint plots of the title compound delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C, N⋯H/H⋯N, C⋯C, C⋯N/N⋯C contacts.

Table 2. Percentage contributions of inter­atomic contacts to the Hirshfield surface of the title compound.

Contact Percentage contribution
H⋯H 54.6
O⋯H/H⋯O 10.1
C⋯H/H⋯C 29.6
N⋯H/H⋯N 1.1
C⋯N/C⋯N 1.7
C⋯C 2.8

Database survey  

A search of the Cambridge Structural Database (Groom et al., 2016) revealed only seven structures of bis­(indole-3-yl) deriv­atives. These include 3,5-bis­(indol-3-yl)-1,2,4-triazin-6(1H,6H)-one methanol solvate (FOLSOP) and 3,6-bis­(indol-3-yl)-1,2,4-triazin-4(1H,4H)-one di­methyl­formamide solvate (FOLTAC; Garg & Stoltz, 2005), bis­(indol-3-yl)(p-tol­yl)methane (HODROH; Krishna et al., 1999), 1,1-bis­(indol-3-yl)-1-phenyl­ethane (MEDJEK; Ganesan et al., 2000), cyclo-N,N′-(α,α′-p-xyl­yl)bis­(indol-3-yl)-N-methyl­male­imide (UJALOG), cyclo-N,N′-(α,α′-m-xyl­yl)bis­(indol-3-yl)-N-methyl­male­imide (UJALUM) and cyclo-N,N′-[1,11-(3,6,9-trioxaundec­yl)]bis(indol-3-yl)-N-methyl­male­imide (UJAMAT; Mandl et al., 2003). Two of these entries (MEDJEK and HODROH) are closely related to the title compound. Two of these entries (MEDJEK and HODROH) are closely related to the title compound with dihedral angles between the 1-methyl indole units of 63.4 (2) and 73.06 (19)° for the two independent mol­ecules in MEDJEK and of 80.8 (1)° in HODROH [64.87 (7)° in the title compound]. In another related compound 4-[bis­(1H-indol-3-yl)meth­yl]benzo­nitrile (Deng et al., 2011), the dihedral angle is 72.08 (6)°.

Synthesis and crystallization  

Equimolar amounts of 2-carb­oxy­benzaldehyde (3.0 mmol) and 1-methyl­indole (3.0 mmol) was mixed in a reaction vessel. A few drops of anhydrous acetic acid was added and the mixture was then irradiated in a domestic microwave oven at 100 W for 5 min. The crude product obtained was purified by recrystallization from an acetone–EtOH solvent mixture (v:v = 1:2) to give the pure product in 13.3% yield. IR (ATR, υmax/cm−1): 3058, 2930 (broad, O—H), 1676 (C=O), 1473 (C=C), 1331–1067 (C—O, C—N), 731. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 3.67 (s, 6H, 2 × N-CH3), 6.70 (s, 2H, 2 × H), 6.91 (t, 2H, 2 × ArH), 6.99 (s, 1H, H), 7.11 (t, 2H, 2 × ArH), 7.25–7.30 (m, 3H, J = 7.6, 6.6, 2.2 Hz, ArH and 2 × ArH), 7.35–7.41 (m, 4H,J = 8.0, 5.6, 1.2 Hz, ArH and 2 × ArH), 7.77 (d, 1H, J = 8.0 Hz, ArH) (the OH signal cannot be seen in the 1H NMR sprectrum and hence there are only 21 H atoms in the integration peaks). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 32.7, 34.5, 110.1, 117.9, 118.9, 119.5, 121.6, 126.4, 127.4, 128.6, 130.0, 130.1, 131.3, 131.6, 137.4, 145.2, 170.1.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The hy­droxy H atom was freely refined. C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.96 and U iso(H) = 1.2–1.5U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula C26H22N2O2
M r 394.45
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 8.654 (5), 10.923 (6), 10.964 (5)
α, β, γ (°) 85.85 (2), 82.38 (2), 74.57 (3)
V3) 989.4 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.55 × 0.39 × 0.30
 
Data collection
Diffractometer Bruker PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.548, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 37627, 4929, 3077
R int 0.101
(sin θ/λ)max−1) 0.669
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.069, 0.190, 1.03
No. of reflections 4929
No. of parameters 277
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.72, −0.35

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), shelXle (Hübschle et al., 2011), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018014160/hb7773sup1.cif

e-74-01580-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018014160/hb7773Isup3.hkl

e-74-01580-Isup3.hkl (392.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018014160/hb7773Isup4.cml

Supplementary figures. DOI: 10.1107/S2056989018014160/hb7773sup5.pdf

e-74-01580-sup5.pdf (316.3KB, pdf)

CCDC reference: 1871874

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Universiti Kebangsaan Malaysia (UKM), the Center of Advanced Materials and Renewable Energy (CAMARR) and the Center for Research and Instrumentation Management (CRIM), UKM, for providing facilities.

supplementary crystallographic information

Crystal data

C26H22N2O2 Z = 2
Mr = 394.45 F(000) = 416
Triclinic, P1 Dx = 1.324 Mg m3
a = 8.654 (5) Å Mo Kα radiation, λ = 0.71076 Å
b = 10.923 (6) Å Cell parameters from 8410 reflections
c = 10.964 (5) Å θ = 2.9–27.3°
α = 85.85 (2)° µ = 0.08 mm1
β = 82.38 (2)° T = 293 K
γ = 74.57 (3)° Block, colourless
V = 989.4 (9) Å3 0.55 × 0.39 × 0.30 mm

Data collection

Bruker PHOTON 100 CMOS diffractometer 3077 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.101
φ and ω scans θmax = 28.4°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −11→11
Tmin = 0.548, Tmax = 0.746 k = −14→14
37627 measured reflections l = −14→14
4929 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.069 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.190 w = 1/[σ2(Fo2) + (0.0831P)2 + 0.5551P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
4929 reflections Δρmax = 0.72 e Å3
277 parameters Δρmin = −0.35 e Å3
1 restraint

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1286 (3) 0.9468 (2) 0.8786 (2) 0.0672 (6)
C1 0.0635 (3) 0.8626 (2) 0.8846 (2) 0.0418 (6)
H3O −0.070 (8) 0.925 (3) 1.005 (6) 0.20 (3)*
C26 0.8219 (3) 0.8016 (3) 0.3643 (3) 0.0575 (7)
H26A 0.840826 0.738582 0.303606 0.086*
H26B 0.901263 0.775487 0.420976 0.086*
H26C 0.829479 0.881343 0.324457 0.086*
C25 0.4893 (3) 0.9294 (2) 0.2705 (2) 0.0465 (6)
H25 0.573439 0.932437 0.209051 0.056*
C24 0.3315 (4) 0.9808 (3) 0.2504 (3) 0.0556 (7)
H24 0.308350 1.019279 0.174135 0.067*
N1 0.6152 (2) 0.6429 (2) 0.97202 (18) 0.0427 (5)
N2 0.6626 (2) 0.81578 (19) 0.43055 (18) 0.0403 (5)
C2 0.1002 (3) 0.7587 (2) 0.7937 (2) 0.0346 (5)
C14 0.7258 (3) 0.3672 (3) 0.7182 (3) 0.0517 (7)
H14 0.748386 0.307509 0.657587 0.062*
C3 −0.0168 (3) 0.6924 (2) 0.7922 (2) 0.0420 (6)
H3 −0.109288 0.711578 0.848612 0.050*
O3 −0.0538 (3) 0.8571 (2) 0.97210 (19) 0.0631 (6)
C4 0.0012 (3) 0.5995 (2) 0.7097 (2) 0.0456 (6)
H4 −0.076746 0.554773 0.711828 0.055*
C5 0.1353 (3) 0.5732 (3) 0.6238 (2) 0.0452 (6)
H5 0.147565 0.512118 0.565909 0.054*
C6 0.2518 (3) 0.6386 (2) 0.6243 (2) 0.0419 (6)
H6 0.341532 0.621037 0.565193 0.050*
C7 0.2402 (3) 0.7292 (2) 0.7094 (2) 0.0341 (5)
C21 0.3939 (3) 0.8673 (2) 0.4803 (2) 0.0339 (5)
C8 0.3842 (3) 0.7849 (2) 0.7119 (2) 0.0332 (5)
H8 0.341561 0.869135 0.746666 0.040*
C22 0.2345 (3) 0.9212 (2) 0.4559 (2) 0.0436 (6)
H22 0.148793 0.919612 0.516422 0.052*
C9 0.4939 (3) 0.7048 (2) 0.7995 (2) 0.0347 (5)
C23 0.2062 (3) 0.9762 (3) 0.3419 (3) 0.0543 (7)
H23 0.100327 1.011219 0.325564 0.065*
C10 0.5135 (3) 0.7397 (2) 0.9123 (2) 0.0414 (6)
H10 0.464125 0.819036 0.944587 0.050*
C11 0.6628 (3) 0.5408 (2) 0.8979 (2) 0.0368 (5)
C13 0.6259 (3) 0.4862 (2) 0.6972 (2) 0.0421 (6)
H13 0.582726 0.506790 0.622801 0.050*
C12 0.5903 (3) 0.5755 (2) 0.7882 (2) 0.0339 (5)
C19 0.6294 (3) 0.7755 (2) 0.5505 (2) 0.0371 (5)
H19 0.707140 0.734204 0.601145 0.044*
C15 0.7928 (3) 0.3347 (3) 0.8272 (3) 0.0542 (7)
H15 0.858248 0.253282 0.839323 0.065*
C17 0.6653 (4) 0.6456 (3) 1.0926 (2) 0.0616 (8)
H17A 0.769095 0.663417 1.083578 0.092*
H17B 0.672004 0.564573 1.134905 0.092*
H17C 0.587916 0.710521 1.139210 0.092*
C16 0.7642 (3) 0.4213 (3) 0.9186 (2) 0.0493 (6)
H16 0.811197 0.400285 0.991351 0.059*
C20 0.5193 (3) 0.8728 (2) 0.3856 (2) 0.0363 (5)
C18 0.4677 (3) 0.8041 (2) 0.5851 (2) 0.0322 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0693 (14) 0.0618 (13) 0.0698 (14) −0.0252 (11) 0.0249 (11) −0.0267 (11)
C1 0.0343 (12) 0.0498 (15) 0.0381 (13) −0.0080 (11) −0.0023 (10) 0.0048 (11)
C26 0.0394 (14) 0.0683 (19) 0.0607 (18) −0.0173 (13) 0.0129 (12) 0.0022 (14)
C25 0.0609 (16) 0.0423 (13) 0.0386 (13) −0.0200 (12) −0.0030 (12) 0.0028 (11)
C24 0.0698 (19) 0.0517 (16) 0.0477 (16) −0.0171 (14) −0.0213 (14) 0.0135 (12)
N1 0.0414 (11) 0.0582 (13) 0.0315 (10) −0.0179 (10) −0.0058 (8) −0.0007 (9)
N2 0.0317 (10) 0.0449 (11) 0.0427 (11) −0.0119 (8) 0.0025 (8) 0.0025 (9)
C2 0.0281 (10) 0.0387 (12) 0.0344 (11) −0.0053 (9) −0.0052 (9) 0.0066 (9)
C14 0.0551 (16) 0.0435 (14) 0.0540 (16) −0.0087 (12) −0.0038 (13) −0.0073 (12)
C3 0.0290 (11) 0.0503 (14) 0.0440 (13) −0.0097 (10) 0.0006 (10) 0.0045 (11)
O3 0.0614 (13) 0.0700 (14) 0.0543 (12) −0.0209 (11) 0.0201 (10) −0.0137 (11)
C4 0.0379 (13) 0.0517 (15) 0.0535 (15) −0.0237 (11) −0.0074 (11) 0.0056 (12)
C5 0.0428 (13) 0.0518 (15) 0.0448 (14) −0.0182 (11) −0.0032 (11) −0.0067 (11)
C6 0.0327 (12) 0.0542 (15) 0.0394 (13) −0.0144 (11) 0.0013 (10) −0.0040 (11)
C7 0.0287 (10) 0.0411 (12) 0.0329 (11) −0.0104 (9) −0.0055 (9) 0.0050 (9)
C21 0.0348 (11) 0.0290 (11) 0.0380 (12) −0.0089 (9) −0.0040 (9) −0.0002 (9)
C8 0.0275 (10) 0.0372 (12) 0.0351 (12) −0.0096 (9) −0.0004 (9) −0.0034 (9)
C22 0.0373 (12) 0.0411 (13) 0.0495 (15) −0.0047 (10) −0.0080 (11) 0.0016 (11)
C9 0.0292 (11) 0.0442 (13) 0.0326 (11) −0.0147 (9) 0.0001 (9) −0.0016 (9)
C23 0.0486 (15) 0.0500 (16) 0.0623 (18) −0.0049 (12) −0.0209 (13) 0.0071 (13)
C10 0.0375 (12) 0.0496 (14) 0.0383 (13) −0.0154 (11) 0.0003 (10) −0.0038 (11)
C11 0.0326 (11) 0.0463 (13) 0.0341 (12) −0.0174 (10) −0.0008 (9) 0.0023 (10)
C13 0.0420 (13) 0.0439 (14) 0.0416 (13) −0.0127 (11) −0.0060 (10) −0.0024 (11)
C12 0.0290 (10) 0.0422 (12) 0.0323 (11) −0.0144 (9) −0.0001 (9) −0.0003 (9)
C19 0.0323 (11) 0.0415 (13) 0.0369 (12) −0.0106 (10) −0.0022 (9) 0.0016 (10)
C15 0.0528 (16) 0.0438 (15) 0.0589 (17) −0.0042 (12) −0.0037 (13) 0.0072 (13)
C17 0.0698 (19) 0.087 (2) 0.0350 (14) −0.0299 (17) −0.0130 (13) −0.0032 (14)
C16 0.0462 (14) 0.0571 (16) 0.0433 (14) −0.0139 (12) −0.0085 (11) 0.0141 (12)
C20 0.0381 (12) 0.0321 (11) 0.0399 (12) −0.0125 (9) −0.0021 (10) −0.0017 (9)
C18 0.0293 (10) 0.0304 (11) 0.0363 (12) −0.0082 (9) −0.0009 (9) −0.0018 (9)

Geometric parameters (Å, º)

O1—C1 1.193 (3) C5—H5 0.9300
C1—O3 1.311 (3) C6—C7 1.384 (3)
C1—C2 1.507 (4) C6—H6 0.9300
C26—N2 1.445 (3) C7—C8 1.529 (3)
C26—H26A 0.9600 C21—C22 1.402 (3)
C26—H26B 0.9600 C21—C20 1.410 (3)
C26—H26C 0.9600 C21—C18 1.431 (3)
C25—C24 1.371 (4) C8—C9 1.507 (3)
C25—C20 1.389 (3) C8—C18 1.507 (3)
C25—H25 0.9300 C8—H8 0.9800
C24—C23 1.385 (4) C22—C23 1.370 (4)
C24—H24 0.9300 C22—H22 0.9300
N1—C11 1.368 (3) C9—C10 1.365 (3)
N1—C10 1.371 (3) C9—C12 1.441 (3)
N1—C17 1.449 (3) C23—H23 0.9300
N2—C20 1.370 (3) C10—H10 0.9300
N2—C19 1.375 (3) C11—C16 1.388 (4)
C2—C3 1.395 (3) C11—C12 1.410 (3)
C2—C7 1.402 (3) C13—C12 1.394 (3)
C14—C13 1.379 (4) C13—H13 0.9300
C14—C15 1.380 (4) C19—C18 1.358 (3)
C14—H14 0.9300 C19—H19 0.9300
C3—C4 1.373 (4) C15—C16 1.380 (4)
C3—H3 0.9300 C15—H15 0.9300
O3—H3O 0.820 (10) C17—H17A 0.9600
C4—C5 1.374 (3) C17—H17B 0.9600
C4—H4 0.9300 C17—H17C 0.9600
C5—C6 1.383 (3) C16—H16 0.9300
O1—C1—O3 120.9 (2) C9—C8—C7 108.83 (18)
O1—C1—C2 124.9 (2) C18—C8—C7 112.70 (18)
O3—C1—C2 114.1 (2) C9—C8—H8 106.9
N2—C26—H26A 109.5 C18—C8—H8 106.9
N2—C26—H26B 109.5 C7—C8—H8 106.9
H26A—C26—H26B 109.5 C23—C22—C21 119.3 (2)
N2—C26—H26C 109.5 C23—C22—H22 120.3
H26A—C26—H26C 109.5 C21—C22—H22 120.3
H26B—C26—H26C 109.5 C10—C9—C12 105.5 (2)
C24—C25—C20 117.9 (2) C10—C9—C8 125.6 (2)
C24—C25—H25 121.1 C12—C9—C8 128.7 (2)
C20—C25—H25 121.1 C22—C23—C24 121.6 (3)
C25—C24—C23 121.0 (3) C22—C23—H23 119.2
C25—C24—H24 119.5 C24—C23—H23 119.2
C23—C24—H24 119.5 C9—C10—N1 111.3 (2)
C11—N1—C10 108.1 (2) C9—C10—H10 124.4
C11—N1—C17 125.0 (2) N1—C10—H10 124.4
C10—N1—C17 126.9 (2) N1—C11—C16 129.4 (2)
C20—N2—C19 108.30 (19) N1—C11—C12 108.1 (2)
C20—N2—C26 126.1 (2) C16—C11—C12 122.5 (2)
C19—N2—C26 125.6 (2) C14—C13—C12 119.5 (2)
C3—C2—C7 119.2 (2) C14—C13—H13 120.2
C3—C2—C1 116.8 (2) C12—C13—H13 120.2
C7—C2—C1 123.9 (2) C13—C12—C11 118.0 (2)
C13—C14—C15 121.4 (3) C13—C12—C9 135.0 (2)
C13—C14—H14 119.3 C11—C12—C9 107.0 (2)
C15—C14—H14 119.3 C18—C19—N2 110.8 (2)
C4—C3—C2 121.6 (2) C18—C19—H19 124.6
C4—C3—H3 119.2 N2—C19—H19 124.6
C2—C3—H3 119.2 C14—C15—C16 121.0 (2)
C1—O3—H3O 102 (5) C14—C15—H15 119.5
C3—C4—C5 119.5 (2) C16—C15—H15 119.5
C3—C4—H4 120.2 N1—C17—H17A 109.5
C5—C4—H4 120.2 N1—C17—H17B 109.5
C4—C5—C6 119.2 (2) H17A—C17—H17B 109.5
C4—C5—H5 120.4 N1—C17—H17C 109.5
C6—C5—H5 120.4 H17A—C17—H17C 109.5
C5—C6—C7 122.6 (2) H17B—C17—H17C 109.5
C5—C6—H6 118.7 C15—C16—C11 117.6 (2)
C7—C6—H6 118.7 C15—C16—H16 121.2
C6—C7—C2 117.7 (2) C11—C16—H16 121.2
C6—C7—C8 118.5 (2) N2—C20—C25 130.2 (2)
C2—C7—C8 123.7 (2) N2—C20—C21 107.6 (2)
C22—C21—C20 118.0 (2) C25—C20—C21 122.2 (2)
C22—C21—C18 134.8 (2) C19—C18—C21 106.1 (2)
C20—C21—C18 107.2 (2) C19—C18—C8 126.7 (2)
C9—C8—C18 114.13 (18) C21—C18—C8 126.96 (19)
C20—C25—C24—C23 −0.1 (4) C14—C13—C12—C11 1.9 (3)
O1—C1—C2—C3 −161.0 (3) C14—C13—C12—C9 −179.8 (2)
O3—C1—C2—C3 16.6 (3) N1—C11—C12—C13 178.30 (19)
O1—C1—C2—C7 16.6 (4) C16—C11—C12—C13 −1.4 (3)
O3—C1—C2—C7 −165.8 (2) N1—C11—C12—C9 −0.5 (2)
C7—C2—C3—C4 −0.5 (3) C16—C11—C12—C9 179.8 (2)
C1—C2—C3—C4 177.2 (2) C10—C9—C12—C13 −178.4 (2)
C2—C3—C4—C5 −1.9 (4) C8—C9—C12—C13 5.4 (4)
C3—C4—C5—C6 1.7 (4) C10—C9—C12—C11 0.1 (2)
C4—C5—C6—C7 0.8 (4) C8—C9—C12—C11 −176.1 (2)
C5—C6—C7—C2 −3.1 (4) C20—N2—C19—C18 0.3 (3)
C5—C6—C7—C8 172.9 (2) C26—N2—C19—C18 179.6 (2)
C3—C2—C7—C6 2.9 (3) C13—C14—C15—C16 −1.0 (4)
C1—C2—C7—C6 −174.7 (2) C14—C15—C16—C11 1.5 (4)
C3—C2—C7—C8 −172.9 (2) N1—C11—C16—C15 −179.9 (2)
C1—C2—C7—C8 9.5 (3) C12—C11—C16—C15 −0.2 (4)
C6—C7—C8—C9 −90.0 (2) C19—N2—C20—C25 179.3 (2)
C2—C7—C8—C9 85.8 (3) C26—N2—C20—C25 0.1 (4)
C6—C7—C8—C18 37.6 (3) C19—N2—C20—C21 −0.2 (3)
C2—C7—C8—C18 −146.6 (2) C26—N2—C20—C21 −179.4 (2)
C20—C21—C22—C23 0.4 (3) C24—C25—C20—N2 −179.5 (2)
C18—C21—C22—C23 179.7 (3) C24—C25—C20—C21 −0.1 (4)
C18—C8—C9—C10 125.1 (2) C22—C21—C20—N2 179.5 (2)
C7—C8—C9—C10 −108.1 (2) C18—C21—C20—N2 0.0 (2)
C18—C8—C9—C12 −59.5 (3) C22—C21—C20—C25 0.0 (3)
C7—C8—C9—C12 67.3 (3) C18—C21—C20—C25 −179.5 (2)
C21—C22—C23—C24 −0.6 (4) N2—C19—C18—C21 −0.3 (3)
C25—C24—C23—C22 0.4 (4) N2—C19—C18—C8 −174.8 (2)
C12—C9—C10—N1 0.4 (3) C22—C21—C18—C19 −179.2 (3)
C8—C9—C10—N1 176.70 (19) C20—C21—C18—C19 0.2 (2)
C11—N1—C10—C9 −0.7 (3) C22—C21—C18—C8 −4.7 (4)
C17—N1—C10—C9 179.4 (2) C20—C21—C18—C8 174.7 (2)
C10—N1—C11—C16 −179.6 (2) C9—C8—C18—C19 −11.6 (3)
C17—N1—C11—C16 0.3 (4) C7—C8—C18—C19 −136.4 (2)
C10—N1—C11—C12 0.7 (2) C9—C8—C18—C21 175.0 (2)
C17—N1—C11—C12 −179.4 (2) C7—C8—C18—C21 50.2 (3)
C15—C14—C13—C12 −0.7 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3O···O1i 0.82 (4) 1.89 (5) 2.679 (3) 163 (6)
C8—H8···O1 0.98 2.20 2.945 (4) 132

Symmetry code: (i) −x, −y+2, −z+2.

Percentage contributions of interatomic contacts to the Hirshfeld surface for (I)

Contact Percentage contribution
H ··· H 54.6
O ··· H / H ··· O 10.1
C ··· H / H ··· C 29.6
N ··· H / H ··· N 1.1
C ··· N / N ··· C 1.7
C ··· C 2.8

Funding Statement

This work was funded by Ministry of Higher Education grant FRGS-1-2015-STO1-UKM-02/2. Universiti Kebangsaan Malaysia grants GUP- 2017-086 and DIP-2015-015.

References

  1. Alvarado, S., Roberts, B. F., Wright, A. E. & Chakrabarti, D. (2013). Antimicrob. Agents Chemother. 57, 2362–2364. [DOI] [PMC free article] [PubMed]
  2. Batista, R. M. F., Costa, S. P. G., Silva, R. M. P., Lima, N. E. M. & Raposo, M. M. M. (2014). Dyes Pigments, 102, 293–300.
  3. Bharate, S. B., Bharate, J. B., Khan, S. I., Tekwani, B. L., Jacob, M. R., Mudududdla, R., Yadav, R. Y., Singh, B., Sharma, P. R., Maity, S., Singh, B., Khan, I. A. & Vishwakarma, R. A. (2013). Eur. J. Med. Chem. 63, 435–443. [DOI] [PMC free article] [PubMed]
  4. Bruker (2016). APEX3, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Carbone, A., Parrino, B., Barraja, P., Spanò, V., Cirrincione, G., Diana, P., Maier, A., Kelter, G. & Fiebig, H. (2013). Mar. Drugs. 11, 643–654. [DOI] [PMC free article] [PubMed]
  6. Challa, C., Ravindran, J., Konai, M. M., Varughese, S., Jacob, J., Kumar, B. S. D., Haldar, J. & Lankalapalli, R. S. (2017). ACS Omega. 2 (8), 5187–5195. [DOI] [PMC free article] [PubMed]
  7. Deng, X., Wu, D., Huang, X. & Luo, F. (2011). Acta Cryst. E67, o1603. [DOI] [PMC free article] [PubMed]
  8. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  9. Ganesan, M., Gambarotta, S. & Yap, G. P. A. (2000). Private communication (refcode MEDJEK). CCDC, Cambridge, England.
  10. Garg, N. K. & Stoltz, B. M. (2005). Tetrahedron Lett. 46, 1997–2000.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Grumel, V., Mérour, J., Lesur, B., Giboulot, T., Frydman, A. & Guillaumet, G. (2002). Eur. J. Med. Chem. 37, 45–62. [DOI] [PubMed]
  13. Guo, J., Chintharlapalli, S., Lee, S., Cho, S. D., Lei, P., Papineni, S. & Safe, S. (2010). Cancer Chemother. Pharmacol. 66, 141–150. [DOI] [PMC free article] [PubMed]
  14. He, X., Hu, S., Liu, K., Guo, Y., Xu, J. & Shao, S. (2006). Org. Lett. 8, 333–336. [DOI] [PubMed]
  15. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  16. Imran, S., Taha, M., Ismail, N. H., Khan, K. M., Naz, F., Hussain, F. & Tauseef, S. (2014). Molecules, 19, 11722–11740. [DOI] [PMC free article] [PubMed]
  17. Jamsheena, V., Shilpa, G., Saranya, J., Harry, N. A., Lankalapalli, R. S. & Priya, S. (2016). Chem. Biol. Interact. 247, 11–21. [DOI] [PubMed]
  18. Krishna, R., Velmurugan, D., Babu, G. & Perumal, P. T. (1999). Acta Cryst. C55, 75–78.
  19. Mandl, C., Zabel, M. & König, B. (2003). Collect. Czech. Chem. Commun. 68, 899–906.
  20. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  21. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  22. Sheldrick, G. M. (2015a). Acta Cryst A71, 3–8.
  23. Sheldrick, G. M. (2015b). Acta Cryst C71, 3–8.
  24. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  25. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018014160/hb7773sup1.cif

e-74-01580-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018014160/hb7773Isup3.hkl

e-74-01580-Isup3.hkl (392.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018014160/hb7773Isup4.cml

Supplementary figures. DOI: 10.1107/S2056989018014160/hb7773sup5.pdf

e-74-01580-sup5.pdf (316.3KB, pdf)

CCDC reference: 1871874

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES