Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Oct 19;74(Pt 11):1599–1604. doi: 10.1107/S2056989018014305

Crystal structure and Hirshfeld surface analysis of dimethyl (3aS,6R,6aS,7S)-2-(2,2,2-tri­fluoro­acet­yl)-2,3-di­hydro-1H,6H,7H-3a,6:7,9a-di­epoxy­benzo[de]iso­quinoline-3a1,6a-di­carboxyl­ate

Zeliha Atioğlu a, Mehmet Akkurt b, Flavien A A Toze c,*, Pavel V Dorovatovskii d, Narmina A Guliyeva e, Humay M Panahova f
PMCID: PMC6218921  PMID: 30443389

In the mol­ecular structure of the title compound, two di­hydro­furan and two tetra­hydro­furan rings as well as one piperidine ring are fused together. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯F hydrogen bonds, forming a three-dimensional network.

Keywords: crystal structure, di­hydro­furan ring, tetra­hydro­furan ring, fused hexa­cyclic system, piperidine ring, Hiershfeld surface analysis

Abstract

The title mol­ecule, C18H16F3NO7, comprises a fused cyclic system containing four five-membered (two di­hydro­furan and two tetra­hydro­furan) rings and one six-membered (piperidine) ring. The five-membered di­hydro­furan and tetra­hydro­furan rings adopt envelope conformations, and the six-membered piperidine ring adopts a distorted chair conformation. Intra­molecular OF inter­actions help to stabilize the conformational arrangement. In the crystal structure, mol­ecules are linked by weak C—H⋯O and C—H⋯F hydrogen bonds, forming a three-dimensional network. The Hirshfeld surface analysis confirms the dominant role of H⋯H contacts in establishing the packing.

Chemical context  

Non-covalent inter­actions, such as hydrogen, aerogen, halogen, chalcogen, pnicogen, tetrel and icosa­gen bonds, as well as n–π*, π–π stacking, π–cation, π–anion and hydro­phobic inter­actions, have an impact on the synthesis, catalysis and design of materials and on biological processes (Shikhaliyev et al., 2018; Hazra et al., 2018). These weak forces can also control or organize the aggregation, conformation, tertiary and quaternary structure of a mol­ecule, and its stabilization or other particular properties (Legon, 2017; Mahmudov et al., 2017a ,b ). In comparison with well-established hydrogen and halogen bonds (Cavallo et al., 2016; Mahmoudi et al., 2018; Vandyshev et al., 2017), chalcogen, pnicogen, tetrel and icosa­gen bonds are much less explored (Mahmudov et al., 2017a ; Scheiner, 2013; Mikherdov et al., 2016).

The title compound, C18H16F3NO7, has a 7-oxabi­cyclo[2.2.1]heptene scaffold, thus making it a potential tool for the design and synthesis of new organic materials with various useful properties such as electronic materials, molecular tweezers, etc (Borisova et al., 2018a ,b ). During the structure determination, we noted rather unusual intra­molecular O⋯F inter­actions. Here we report the synthesis, mol­ecular and crystal structure of this compound as well as a Hirshfeld surface analysis.graphic file with name e-74-01599-scheme1.jpg

Structural commentary  

The mol­ecule of the title compound (Fig. 1) is made up from a fused cyclic system containing four five-membered rings (two di­hydro­furan and two tetra­hydro­furan) in the usual envelope conformations and a six-membered piperidine ring in a chair conformation. The latter is distorted because the environment of the N1 atom is inter­mediate between trigonal–planar and trigonal–pyramidal. The puckering parameters of the five-membered di­hydro­furan [A (O1/C1/C2/C5/C6), B (O2/C1/C6/C7/C10)] and tetra­hydro­furan [C (O1/C2–C5), D (O2/C7–C10)] rings are A: Q(2) = 0.5780 (15) Å, φ(2) = 359.75 (17)°; B: Q(2) = 0.5737 (16) Å, φ(2) = 4.53 (17)°; C: Q(2) = 0.5173 (15) Å, φ(2) = 179.60 (19)°; D: Q(2) = 0.5154 (16) Å, φ(2) = 178.2 (2)°. The puckering parameters of the six-membered piperidine ring (N1/C1/C2/C10–C12) are Q T = 0.5312 (17) Å, θ = 9.58 (18)°, φ = 329.1 (11)°.

Figure 1.

Figure 1

The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

The mol­ecular conformations are stabilized by weak intra­molecular C—H⋯O and C—H⋯F inter­actions (Table 1) between methyl­ene groups (C11; C12) and a meth­oxy group and the –CF3 group, respectively. A rather unusual intra­molecular OF inter­action between one of the oxygen bridgehead atoms (O1) and one of the F atoms of the –CF3 group [C5—O1⋯F2 = 2.9336 (16) Å; C5—O1⋯F2 = 153.60 (9)°] might help to consolidate the conformational arrangement.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3i 0.95 2.44 3.116 (2) 128
C5—H5⋯O2ii 1.00 2.60 3.1960 (19) 118
C7—H7⋯O1ii 1.00 2.54 3.2091 (19) 124
C11—H11B⋯O4 0.99 2.57 3.093 (2) 113
C12—H12A⋯O7iii 0.99 2.52 3.328 (2) 138
C12—H12B⋯O5iii 0.99 2.34 3.030 (2) 127
C12—H12B⋯F1 0.99 2.40 3.043 (2) 122
C12—H12B⋯F2 0.99 2.33 2.962 (2) 121
C16—H16A⋯F3iv 0.98 2.62 3.475 (2) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Supra­molecular features  

Inter­molecular C—H⋯O inter­actions involving the O atoms of carbonyl groups, the oxygen bridgehead atoms and meth­oxy O atoms, as well as C—H⋯F hydrogen bonds define the crystal packing, which is shown in Fig. 2. These packing features lead to the formation of a three-dimensional network structure. C—H⋯π and π–π inter­actions are not observed, but H⋯H inter­actions dominate in the packing as detailed in the next section.

Figure 2.

Figure 2

The crystal structure of the title compound in a view along [100], emphasizing the inter­molecular C—H⋯O and C—H⋯F hydrogen bonds (dashed lines).

Hirshfeld surface analysis  

Hirshfeld surface and fingerprint plots were generated using CrystalExplorer (McKinnon et al., 2007). Hirshfeld surfaces enable the visualization of inter­molecular inter­actions by different colors and color intensity, representing short or long contacts and indicating the relative strength of the inter­actions. Fig. 3 shows the Hirshfeld surface of the title compound mapped over d norm where it is evident from the bright-red spots appearing near the oxygen atoms that these atoms play a significant role in the mol­ecular packing. The red spots represent closer contacts and negative d norm values on the surface, corresponding to the C—H⋯O inter­actions. The percentage contributions of various contacts to the total Hirshfeld surface are given in Table 2 and are also shown as two-dimensional fingerprint plots in Fig. 4. The H⋯H inter­actions appear in the middle of the scattered points in the two-dimensional fingerprint plots with an overall contribution to the Hirshfeld surface of 35.6% (Fig. 4 b). The contribution from the O⋯H/H⋯O contacts, corresponding to C—H⋯O inter­actions, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bonding inter­action (28.5%; Fig. 4 c). The contribution of the F⋯H/H⋯F inter­molecular contacts to the Hirshfeld surfaces is 23.8% (Fig. 4 d). The small percentage contributions from the remaining inter­atomic contacts are summarized in Table 2 and indicated by their fingerprint plots for C⋯H/H⋯C (Fig. 4 e), F⋯F (Fig. 4 f), F⋯O/O⋯F (Fig. 4 g), O⋯O (Fig. 4 h), N⋯H/H⋯N (Fig. 4 i) and C⋯O/O⋯C (Fig. 4 j). The large number of H⋯H, O⋯H/H⋯O and F⋯H/H⋯F inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Figure 3.

Figure 3

Hirshfeld surface of the title compound mapped over d norm.

Table 2. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound.

Contact Percentage contribution
H⋯H 35.6
O⋯H/H⋯O 28.5
F⋯H/H⋯F 23.8
C⋯H/H⋯C 5.5
F⋯F 2.7
F⋯O/O⋯F 1.6
N⋯H/H⋯N 1.1
O⋯O 1.1
C⋯O/O⋯C 0.2

Figure 4.

Figure 4

The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/ H⋯O, (d) F⋯H/H⋯F, (e) C⋯H/H⋯C, (f) F⋯F, (g) F⋯O/O⋯F, (h) O⋯O, (i) N⋯H/H⋯N and (j) C⋯O/O⋯C inter­actions [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

Database survey  

A search of the Cambridge Structural Database (Version 5.39; Groom et al., 2016) for similar structures showed the two closest are those of 2-benzyl-6a,9b-bis­(tri­fluoro­meth­yl)-2,3,6a,9b-tetra­hydro-1H,6H,7H-3a,6:7,9a-di­epoxy­benzo[de]iso­quinoline (CSD refcode HENLAQ; Borisova et al., 2018c ) and 2-benzyl-4,5-bis­(tri­fluoro­meth­yl)-2,3,6a,9b-tetra­hydro-1H,6H,7H-3a,6:7,9a-di­epoxy­benzo[de]iso­quinoline (HEN­LEU; Borisova et al., 2018d ). In the crystal of HENLAQ, inversion-related pairs of mol­ecules are linked into dimers by C—H⋯O hydrogen bonds. These dimers form sheets lying parallel to (100). C—H⋯π inter­actions are also observed in the crystal structure of HENLAQ, together with intra­molecular F⋯F contacts. The asymmetric unit of HENLEU contains two mol­ecules. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯F hydrogen bonds, forming columns along [010]. Likewise, C—H⋯π inter­actions and F⋯F intra­molecular contacts are also present.

Synthesis and crystallization  

The synthesis of the title compound and its characterization by 1H NMR, 13C NMR, IR and HRMS spectroscopy have previously been reported (Borisova et al., 2018a ). Dimethyl acetyl­enedi­carboxyl­ate (DMAD, 1.84 ml, 0.015 mol) was added to a solution of 2,2,2-tri­fluoro-N,N-bis­(furan-2-yl­meth­yl)acetamide (0.01 mol) in benzene (30 ml). The mixture was heated at reflux for 15.5–40 h at 353 K (GC–MS monitoring until disappearance of the starting material). The reaction mixture was cooled and left overnight at room temperature. The solvent was removed under reduced pressure. The residue (brown oil) was triturated with diethyl ether. The obtained crystals were filtered off and recrystallized from hexa­ne/EtOAc (v:v = 2:1) to give the pure compound as a white powder (2.57 g, 6.2 mmol, yield 62%). R f = 0.56 (EtOAc/hexane, 2:1, Sorbfil). M.p. 467.2–467.9 K (from hexa­ne/EtOAc). 1H NMR (400 MHz, CDCl3): δ 6.74–6.71 (2H, m, H-4 and H-9), 6.46 (2H, dd, J = 2.3 and J = 5.5 Hz, H-5 and H-8), 5.14 (2H, br s, H-6 and H-7), 5.10 (1H, d, J = 14.9 Hz, H-1A), 4.43 (1H, br d, J = 14.9 Hz, H-3A), 4.08 (1H, d, J = 14.9 Hz, H-3B), 3.64 (6H, s, 2 × CO2Me), 3.59 (1H, d, J = 14.9, H-1B). 13C NMR (100 MHz, CDCl3): δ 170.1 (2 × CO2Me), 157.2 (q, J = 35.5 Hz, F3C—C), 141.2 (C-5 and C-8), 137.5 (C-4 and C-9), 116.4 (q, J = 288.1 Hz, CF3), 87.1 (C-3a and C-9a), 83.8 (C-6 and C-7), 71.4 and 68.8 (C-9 and C-6a), 52.4 (2 × CO2Me), 44.8 (q, J = 3.8 Hz, C-1), 42.4 (C-3). 19F NMR (282 MHz, CDCl3): δ −67.7 (s, CF3). IR νmax/cm−1 (KBr): 3109, 3055, 2956, 1713, 1688, 1197. HRMS (ESI–TOF): calculated for C18H16F3NO7 [M + H]+, 415.0879; found, 415.0889.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were fixed and allowed to ride on the parent atoms, with C—H = 0.95–1.00 Å, and with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) for all other H atoms. Eight outliers [(101), (011), (Inline graphic01), (002), (110), (363), (Inline graphic03), (111)] were omitted in the final cycles of refinement.

Table 3. Experimental details.

Crystal data
Chemical formula C18H16F3NO7
M r 415.32
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 8.7661 (2), 11.2908 (3), 17.5089 (4)
β (°) 96.021 (1)
V3) 1723.41 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.14
Crystal size (mm) 0.35 × 0.32 × 0.30
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.942, 0.946
No. of measured, independent and observed [I > 2σ(I)] reflections 11170, 3496, 2739
R int 0.028
(sin θ/λ)max−1) 0.626
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.091, 1.01
No. of reflections 3496
No. of parameters 264
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.25

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018014305/wm5463sup1.cif

e-74-01599-sup1.cif (360.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018014305/wm5463Isup2.hkl

e-74-01599-Isup2.hkl (191.9KB, hkl)

CCDC reference: 1872524

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C18H16F3NO7 F(000) = 856
Mr = 415.32 Dx = 1.601 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 8.7661 (2) Å Cell parameters from 3572 reflections
b = 11.2908 (3) Å θ = 3.0–25.9°
c = 17.5089 (4) Å µ = 0.14 mm1
β = 96.021 (1)° T = 150 K
V = 1723.41 (7) Å3 Block, colourless
Z = 4 0.35 × 0.32 × 0.30 mm

Data collection

Bruker APEXII CCD diffractometer 2739 reflections with I > 2σ(I)
φ and ω scans Rint = 0.028
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 26.4°, θmin = 3.1°
Tmin = 0.942, Tmax = 0.946 h = −10→10
11170 measured reflections k = −14→11
3496 independent reflections l = −21→20

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.8462P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
3496 reflections Δρmax = 0.30 e Å3
264 parameters Δρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.39473 (17) 0.49611 (14) 0.67777 (9) 0.0151 (3)
C2 0.34636 (17) 0.36454 (14) 0.65512 (9) 0.0159 (3)
C3 0.17517 (18) 0.35392 (15) 0.66061 (10) 0.0188 (4)
H3 0.125910 0.313775 0.698918 0.023*
C4 0.10926 (18) 0.41275 (15) 0.60044 (9) 0.0190 (4)
H4 0.002414 0.423058 0.586488 0.023*
C5 0.23948 (17) 0.46040 (14) 0.55824 (9) 0.0166 (3)
H5 0.211134 0.478143 0.502604 0.020*
C6 0.31682 (17) 0.56580 (14) 0.60653 (9) 0.0156 (3)
C7 0.46580 (18) 0.61837 (14) 0.57545 (9) 0.0181 (3)
H7 0.450625 0.648514 0.521478 0.022*
C8 0.53785 (19) 0.70697 (16) 0.63430 (10) 0.0223 (4)
H8 0.534938 0.790901 0.630565 0.027*
C9 0.60537 (19) 0.64310 (16) 0.69172 (10) 0.0215 (4)
H9 0.663054 0.671359 0.737022 0.026*
C10 0.57077 (18) 0.51491 (15) 0.66959 (9) 0.0173 (3)
C11 0.67413 (18) 0.41488 (15) 0.70014 (9) 0.0196 (4)
H11A 0.777907 0.426465 0.683886 0.023*
H11B 0.683028 0.415179 0.756980 0.023*
C12 0.45739 (18) 0.27365 (15) 0.69121 (9) 0.0187 (3)
H12A 0.456518 0.274715 0.747704 0.022*
H12B 0.426248 0.193647 0.672394 0.022*
C13 0.68211 (18) 0.24366 (16) 0.61696 (10) 0.0213 (4)
C14 0.61562 (19) 0.12361 (17) 0.58786 (11) 0.0268 (4)
C15 0.34324 (19) 0.52840 (15) 0.75488 (9) 0.0187 (4)
C16 0.4132 (2) 0.54441 (18) 0.88782 (9) 0.0294 (4)
H16A 0.502378 0.535376 0.926090 0.044*
H16B 0.332265 0.489567 0.899623 0.044*
H16C 0.375106 0.625921 0.888922 0.044*
C17 0.20610 (18) 0.66654 (15) 0.61749 (9) 0.0171 (3)
C18 −0.0373 (2) 0.74427 (17) 0.57152 (12) 0.0332 (5)
H18A −0.136339 0.716249 0.547019 0.050*
H18B −0.001422 0.810491 0.541928 0.050*
H18C −0.048909 0.770680 0.623910 0.050*
N1 0.61226 (15) 0.30034 (12) 0.67137 (8) 0.0174 (3)
O1 0.35051 (12) 0.36756 (10) 0.57348 (6) 0.0157 (2)
O2 0.57083 (12) 0.52159 (10) 0.58756 (6) 0.0171 (3)
O3 0.79898 (15) 0.27623 (13) 0.59189 (8) 0.0386 (4)
O4 0.45760 (13) 0.51821 (11) 0.81186 (6) 0.0234 (3)
O5 0.21495 (14) 0.55547 (12) 0.76498 (7) 0.0274 (3)
O6 0.07292 (13) 0.64922 (10) 0.57403 (7) 0.0226 (3)
O7 0.23490 (14) 0.75410 (11) 0.65517 (7) 0.0263 (3)
F1 0.60895 (14) 0.04589 (10) 0.64497 (7) 0.0422 (3)
F2 0.47566 (12) 0.13074 (10) 0.55061 (6) 0.0350 (3)
F3 0.70476 (14) 0.07621 (12) 0.53923 (8) 0.0509 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0169 (8) 0.0155 (8) 0.0130 (8) −0.0009 (6) 0.0023 (6) −0.0006 (6)
C2 0.0181 (8) 0.0163 (8) 0.0139 (8) −0.0018 (6) 0.0051 (6) −0.0002 (6)
C3 0.0172 (8) 0.0149 (8) 0.0254 (9) −0.0042 (6) 0.0082 (7) −0.0020 (7)
C4 0.0163 (8) 0.0167 (9) 0.0244 (9) −0.0025 (6) 0.0033 (6) −0.0048 (7)
C5 0.0173 (8) 0.0169 (8) 0.0153 (8) 0.0008 (6) 0.0002 (6) −0.0011 (7)
C6 0.0185 (8) 0.0150 (8) 0.0134 (8) −0.0012 (6) 0.0022 (6) −0.0005 (6)
C7 0.0199 (8) 0.0168 (9) 0.0179 (8) −0.0009 (6) 0.0039 (6) 0.0027 (7)
C8 0.0226 (9) 0.0184 (9) 0.0268 (9) −0.0068 (7) 0.0060 (7) −0.0007 (7)
C9 0.0213 (8) 0.0222 (9) 0.0205 (9) −0.0071 (7) −0.0002 (7) −0.0038 (7)
C10 0.0191 (8) 0.0184 (9) 0.0144 (8) −0.0048 (6) 0.0024 (6) −0.0019 (7)
C11 0.0173 (8) 0.0230 (9) 0.0180 (8) −0.0029 (7) −0.0003 (6) −0.0014 (7)
C12 0.0181 (8) 0.0198 (9) 0.0193 (8) −0.0011 (7) 0.0064 (6) 0.0027 (7)
C13 0.0171 (8) 0.0241 (10) 0.0225 (9) 0.0007 (7) 0.0020 (7) −0.0008 (7)
C14 0.0226 (9) 0.0268 (10) 0.0315 (10) 0.0019 (7) 0.0048 (7) −0.0048 (8)
C15 0.0254 (9) 0.0149 (8) 0.0161 (8) −0.0005 (7) 0.0042 (7) 0.0006 (7)
C16 0.0470 (11) 0.0304 (11) 0.0114 (8) 0.0037 (9) 0.0057 (8) −0.0025 (8)
C17 0.0211 (8) 0.0172 (9) 0.0131 (8) −0.0012 (6) 0.0030 (6) 0.0016 (7)
C18 0.0299 (10) 0.0263 (11) 0.0409 (11) 0.0115 (8) −0.0074 (8) −0.0080 (9)
N1 0.0158 (7) 0.0180 (7) 0.0184 (7) −0.0010 (5) 0.0016 (5) 0.0014 (6)
O1 0.0176 (5) 0.0157 (6) 0.0141 (6) −0.0001 (4) 0.0034 (4) −0.0016 (4)
O2 0.0170 (6) 0.0201 (6) 0.0148 (6) −0.0021 (5) 0.0039 (4) 0.0005 (5)
O3 0.0259 (7) 0.0424 (9) 0.0509 (9) −0.0105 (6) 0.0205 (6) −0.0156 (7)
O4 0.0297 (7) 0.0287 (7) 0.0116 (6) 0.0004 (5) 0.0019 (5) −0.0020 (5)
O5 0.0296 (7) 0.0322 (8) 0.0215 (6) 0.0095 (6) 0.0086 (5) −0.0015 (5)
O6 0.0212 (6) 0.0194 (6) 0.0261 (6) 0.0044 (5) −0.0023 (5) −0.0039 (5)
O7 0.0296 (7) 0.0210 (7) 0.0272 (7) 0.0035 (5) −0.0020 (5) −0.0069 (5)
F1 0.0515 (7) 0.0218 (6) 0.0523 (8) 0.0029 (5) 0.0002 (6) 0.0056 (5)
F2 0.0279 (6) 0.0320 (6) 0.0427 (7) −0.0024 (5) −0.0073 (5) −0.0102 (5)
F3 0.0405 (7) 0.0496 (8) 0.0662 (9) −0.0048 (6) 0.0225 (6) −0.0341 (7)

Geometric parameters (Å, º)

C1—C15 1.512 (2) C11—N1 1.471 (2)
C1—C6 1.569 (2) C11—H11A 0.9900
C1—C10 1.579 (2) C11—H11B 0.9900
C1—C2 1.584 (2) C12—N1 1.467 (2)
C2—O1 1.4341 (19) C12—H12A 0.9900
C2—C12 1.507 (2) C12—H12B 0.9900
C2—C3 1.519 (2) C13—O3 1.213 (2)
C3—C4 1.326 (2) C13—N1 1.347 (2)
C3—H3 0.9500 C13—C14 1.541 (3)
C4—C5 1.522 (2) C14—F3 1.327 (2)
C4—H4 0.9500 C14—F2 1.330 (2)
C5—O1 1.4363 (19) C14—F1 1.336 (2)
C5—C6 1.572 (2) C15—O5 1.196 (2)
C5—H5 1.0000 C15—O4 1.343 (2)
C6—C17 1.520 (2) C16—O4 1.455 (2)
C6—C7 1.582 (2) C16—H16A 0.9800
C7—O2 1.4303 (19) C16—H16B 0.9800
C7—C8 1.525 (2) C16—H16C 0.9800
C7—H7 1.0000 C17—O7 1.2006 (19)
C8—C9 1.325 (2) C17—O6 1.3393 (19)
C8—H8 0.9500 C18—O6 1.441 (2)
C9—C10 1.521 (2) C18—H18A 0.9800
C9—H9 0.9500 C18—H18B 0.9800
C10—O2 1.4382 (19) C18—H18C 0.9800
C10—C11 1.510 (2)
C15—C1—C6 116.28 (13) C9—C10—C1 106.00 (13)
C15—C1—C10 115.76 (13) N1—C11—C10 110.50 (12)
C6—C1—C10 102.03 (12) N1—C11—H11A 109.5
C15—C1—C2 110.64 (13) C10—C11—H11A 109.5
C6—C1—C2 100.86 (12) N1—C11—H11B 109.5
C10—C1—C2 109.99 (12) C10—C11—H11B 109.5
O1—C2—C12 110.57 (12) H11A—C11—H11B 108.1
O1—C2—C3 101.16 (12) N1—C12—C2 109.50 (13)
C12—C2—C3 121.25 (13) N1—C12—H12A 109.8
O1—C2—C1 101.14 (11) C2—C12—H12A 109.8
C12—C2—C1 112.92 (13) N1—C12—H12B 109.8
C3—C2—C1 107.37 (13) C2—C12—H12B 109.8
C4—C3—C2 105.15 (14) H12A—C12—H12B 108.2
C4—C3—H3 127.4 O3—C13—N1 125.15 (16)
C2—C3—H3 127.4 O3—C13—C14 116.83 (15)
C3—C4—C5 106.05 (14) N1—C13—C14 117.88 (14)
C3—C4—H4 127.0 F3—C14—F2 106.54 (15)
C5—C4—H4 127.0 F3—C14—F1 106.87 (16)
O1—C5—C4 100.37 (12) F2—C14—F1 107.23 (14)
O1—C5—C6 101.94 (12) F3—C14—C13 109.82 (14)
C4—C5—C6 108.05 (13) F2—C14—C13 113.97 (15)
O1—C5—H5 114.9 F1—C14—C13 112.02 (15)
C4—C5—H5 114.9 O5—C15—O4 123.51 (15)
C6—C5—H5 114.9 O5—C15—C1 124.53 (15)
C17—C6—C1 120.34 (13) O4—C15—C1 111.90 (14)
C17—C6—C5 112.90 (13) O4—C16—H16A 109.5
C1—C6—C5 100.09 (12) O4—C16—H16B 109.5
C17—C6—C7 108.88 (13) H16A—C16—H16B 109.5
C1—C6—C7 98.94 (12) O4—C16—H16C 109.5
C5—C6—C7 115.09 (13) H16A—C16—H16C 109.5
O2—C7—C8 100.74 (12) H16B—C16—H16C 109.5
O2—C7—C6 101.77 (12) O7—C17—O6 123.57 (15)
C8—C7—C6 108.18 (13) O7—C17—C6 125.81 (15)
O2—C7—H7 114.8 O6—C17—C6 110.43 (13)
C8—C7—H7 114.8 O6—C18—H18A 109.5
C6—C7—H7 114.8 O6—C18—H18B 109.5
C9—C8—C7 106.02 (15) H18A—C18—H18B 109.5
C9—C8—H8 127.0 O6—C18—H18C 109.5
C7—C8—H8 127.0 H18A—C18—H18C 109.5
C8—C9—C10 105.27 (14) H18B—C18—H18C 109.5
C8—C9—H9 127.4 C13—N1—C12 124.77 (14)
C10—C9—H9 127.4 C13—N1—C11 118.78 (13)
O2—C10—C11 109.26 (13) C12—N1—C11 114.62 (13)
O2—C10—C9 100.58 (13) C2—O1—C5 96.60 (11)
C11—C10—C9 121.69 (14) C7—O2—C10 96.93 (11)
O2—C10—C1 101.56 (11) C15—O4—C16 114.29 (13)
C11—C10—C1 115.03 (13) C17—O6—C18 116.74 (13)
C15—C1—C2—O1 158.98 (12) C6—C1—C10—C9 73.08 (14)
C6—C1—C2—O1 35.33 (13) C2—C1—C10—C9 179.49 (12)
C10—C1—C2—O1 −71.87 (14) O2—C10—C11—N1 −65.07 (16)
C15—C1—C2—C12 −82.85 (16) C9—C10—C11—N1 178.56 (14)
C6—C1—C2—C12 153.50 (12) C1—C10—C11—N1 48.35 (17)
C10—C1—C2—C12 46.30 (16) O1—C2—C12—N1 57.13 (17)
C15—C1—C2—C3 53.42 (16) C3—C2—C12—N1 175.15 (14)
C6—C1—C2—C3 −70.24 (14) C1—C2—C12—N1 −55.37 (17)
C10—C1—C2—C3 −177.43 (13) O3—C13—C14—F3 0.8 (2)
O1—C2—C3—C4 −32.33 (16) N1—C13—C14—F3 −175.17 (15)
C12—C2—C3—C4 −154.93 (15) O3—C13—C14—F2 −118.68 (18)
C1—C2—C3—C4 73.22 (16) N1—C13—C14—F2 65.4 (2)
C2—C3—C4—C5 −0.44 (17) O3—C13—C14—F1 119.35 (18)
C3—C4—C5—O1 32.93 (16) N1—C13—C14—F1 −56.6 (2)
C3—C4—C5—C6 −73.38 (16) C6—C1—C15—O5 35.8 (2)
C15—C1—C6—C17 4.8 (2) C10—C1—C15—O5 155.57 (16)
C10—C1—C6—C17 −122.10 (14) C2—C1—C15—O5 −78.4 (2)
C2—C1—C6—C17 124.52 (14) C6—C1—C15—O4 −146.90 (14)
C15—C1—C6—C5 −119.37 (14) C10—C1—C15—O4 −27.14 (19)
C10—C1—C6—C5 113.70 (12) C2—C1—C15—O4 98.85 (15)
C2—C1—C6—C5 0.31 (13) C1—C6—C17—O7 58.2 (2)
C15—C1—C6—C7 122.99 (14) C5—C6—C17—O7 176.13 (15)
C10—C1—C6—C7 −3.95 (14) C7—C6—C17—O7 −54.7 (2)
C2—C1—C6—C7 −117.33 (12) C1—C6—C17—O6 −126.65 (15)
O1—C5—C6—C17 −165.16 (12) C5—C6—C17—O6 −8.77 (18)
C4—C5—C6—C17 −59.95 (17) C7—C6—C17—O6 120.36 (14)
O1—C5—C6—C1 −35.94 (13) O3—C13—N1—C12 167.96 (17)
C4—C5—C6—C1 69.27 (14) C14—C13—N1—C12 −16.5 (2)
O1—C5—C6—C7 68.99 (15) O3—C13—N1—C11 4.3 (3)
C4—C5—C6—C7 174.20 (13) C14—C13—N1—C11 179.81 (14)
C17—C6—C7—O2 165.38 (12) C2—C12—N1—C13 −101.78 (18)
C1—C6—C7—O2 38.92 (14) C2—C12—N1—C11 62.52 (17)
C5—C6—C7—O2 −66.71 (16) C10—C11—N1—C13 106.74 (16)
C17—C6—C7—C8 59.79 (16) C10—C11—N1—C12 −58.57 (17)
C1—C6—C7—C8 −66.68 (15) C12—C2—O1—C5 −178.88 (12)
C5—C6—C7—C8 −172.31 (13) C3—C2—O1—C5 51.41 (13)
O2—C7—C8—C9 −31.04 (16) C1—C2—O1—C5 −59.02 (12)
C6—C7—C8—C9 75.27 (16) C4—C5—O1—C2 −51.23 (13)
C7—C8—C9—C10 −1.76 (17) C6—C5—O1—C2 59.90 (13)
C8—C9—C10—O2 33.85 (16) C8—C7—O2—C10 50.57 (13)
C8—C9—C10—C11 154.49 (15) C6—C7—O2—C10 −60.77 (13)
C8—C9—C10—C1 −71.55 (16) C11—C10—O2—C7 179.05 (12)
C15—C1—C10—O2 −158.88 (13) C9—C10—O2—C7 −51.80 (13)
C6—C1—C10—O2 −31.61 (14) C1—C10—O2—C7 57.12 (13)
C2—C1—C10—O2 74.81 (14) O5—C15—O4—C16 −0.7 (2)
C15—C1—C10—C11 83.27 (17) C1—C15—O4—C16 −178.05 (14)
C6—C1—C10—C11 −149.45 (13) O7—C17—O6—C18 2.2 (2)
C2—C1—C10—C11 −43.04 (17) C6—C17—O6—C18 −173.02 (14)
C15—C1—C10—C9 −54.19 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···O3i 0.95 2.44 3.116 (2) 128
C5—H5···O2ii 1.00 2.60 3.1960 (19) 118
C7—H7···O1ii 1.00 2.54 3.2091 (19) 124
C11—H11B···O4 0.99 2.57 3.093 (2) 113
C12—H12A···O7iii 0.99 2.52 3.328 (2) 138
C12—H12B···O5iii 0.99 2.34 3.030 (2) 127
C12—H12B···F1 0.99 2.40 3.043 (2) 122
C12—H12B···F2 0.99 2.33 2.962 (2) 121
C16—H16A···F3iv 0.98 2.62 3.475 (2) 146

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1/2, y−1/2, −z+3/2; (iv) −x+3/2, y+1/2, −z+3/2.

Funding Statement

This work was funded by Baku State University grant . Ministry of Education and Science of the Russian Federation grant RFMEFI61917X0007.

References

  1. Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840–4850. [DOI] [PubMed]
  2. Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). Chem. Commun. 54, 2850–2853. [DOI] [PubMed]
  3. Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018c). Private communication (refcode 1570123). CCDC, Cambridge, England. [DOI] [PubMed]
  4. Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018d). Private communication (refcode 1570124). CCDC, Cambridge, England. [DOI] [PubMed]
  5. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  10. Hazra, S., Martins, N. M. R., Mahmudov, K. T., Zubkov, F. I., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2018). J. Organomet. Chem. 867, 193–200.
  11. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  12. Legon, A. C. (2017). Phys. Chem. Chem. Phys. 19, 14884–14896. [DOI] [PubMed]
  13. Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018). New J. Chem. 42, 4959–4971.
  14. Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Dalton Trans. 46, 10121–10138. [DOI] [PubMed]
  15. Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Coord. Chem. Rev. 345, 54–72.
  16. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  17. Mikherdov, A. S., Kinzhalov, M. A., Novikov, A. S., Boyarskiy, V. P., Boyarskaya, I. A., Dar’in, D. V., Starova, G. L. & Kukushkin, V. Yu. (2016). J. Am. Chem. Soc. 138, 14129–14137. [DOI] [PubMed]
  18. Scheiner, S. (2013). Acc. Chem. Res. 46, 280–288. [DOI] [PubMed]
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  21. Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.
  22. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  23. Vandyshev, D. Yu., Shikhaliev, K. S., Potapov, A. Yu., Krysin, M. Yu., Zubkov, F. I. & Sapronova, L. V. (2017). Beilstein J. Org. Chem. 13, 2561–2568. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018014305/wm5463sup1.cif

e-74-01599-sup1.cif (360.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018014305/wm5463Isup2.hkl

e-74-01599-Isup2.hkl (191.9KB, hkl)

CCDC reference: 1872524

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES