Skip to main content
. 2018 Nov 20;3(6):e00221-18. doi: 10.1128/mSystems.00221-18

TABLE 1.

Thermodynamics of biochemical reactions involved in conversion of xylose to butyrate, hexanoate, and octanoatea

Equation no. Equation Associated
MAG(s)
ΔG per mol substrateb
(kJ mol−1)
YATP (mol ATP mol−1
substrate)b ,c
ΔG0' available
per ATP
produced
(kJ mol−1 ATP)
Terminal
enzyme
PH2 = 10–6 atm PH2 = 1 atm PH2 = 6.8 atm
Xylose simple
fermentation
    1 3 C5H10O5 → 5 C3H5O3- + 5 H+ LAC1, LAC2,
LAC4, LAC5
−174 −174 −174 1.67 −104 to −104
    2 3 C5H10O5 → 3 C3H5O3- + 3 C2H3O2-
+ 6 H+
LAC1, LAC2,
LAC4, LAC5
−214 −214 −214 2.00 −107 to −107
Xylose elongation
    3 3 C5H10O5 → 3 C4H7O2- + 3 CO2
+ 3 H2O + 3 H+
LCO1 −264 −264 −264 3.00 −88 to −88 CoAT
    4 3 C5H10O5 → 1 C6H11O2- +3 C2H3O2-
+ 3 CO2 + 4 H+ + 2 H2
LCO1 −272 −248 −245 2.83 −87 to −96 CoAT
    5 3 C5H10O5 → 1 C8H15O2- + 2 C2H3O2-
+ 3 CO2 + 3 H2O + 3 H+
LCO1 −265 −265 −265 3.00 −88 to −88 CoAT
    6 2 C5H10O5 → 1 C4H7O2- + 2 C2H3O2-
+ 2 CO2 + 3 H++ 2 H2
LCO1 −276 −240 −235 2.25 −105 to −123 TE
    7 3 C5H10O5 → 1 C6H11O2- + 3 C2H3O2-
+ 3 CO2 + 1 H2O + 4 H+ + 2 H2
LCO1 −272 −248 −245 2.50 −98 to −109 TE
    8 4 C5H10O5 → 1 C8H15O2- + 4 C2H3O2-
+ 4 CO2 + 2 H2O + 5 H++ 2 H2
LCO1 −270 −253 −250 2.63 −95 to −103 TE
Xylose and
C2/C4/C6d
elongation
    9 1 C5H10O5 + 2 C2H3O2- + 2 H2
2 C4H5O2- + 1 CO2 + 3 H2O
LCO1 −240 −311 −320 3.50 −69 to −92 CoAT
    10 1 C5H10O5 + 1 C2H3O2- + 2 H2
1 C6H11O2- + 1 CO2 + 3 H2O
LCO1 −240 −311 −320 3.50 −69 to −92 CoAT
    11 1 C5H10O5 + 1 C4H7O2- + 2 H2
1 C8H15O2- + 1 CO2 + 3 H2O
LCO1 −264 −264 −264 3.50 −75 to −75 CoAT
    12 1 C5H10O5 + 1 C4H7O2- → 1 C6H11O2-
+ 1 C2H3O2- + 1 CO2 + 1 H2O + 1 H+
LCO1 −243 −314 −324 3.00 −81 to −108 CoAT
    13 1 C5H10O5 + 1 C6H11O2- → 1 C8H15O2-
+ 1 C2H3O2- + 1 CO2 + 1 H2O + 1 H+
LCO1 −267 −267 −267 3.00 −89 to −89 CoAT
    14 1 C5H10O5 + 2 C2H3O2- + 2 H2
2 C4H5O2- + 1 CO2 + 3 H2O
LCO1 −240 −311 −320 1.50 −160 to −214 TE
    15 1 C5H10O5 + 1 C2H3O2- + 2 H2
1 C6H11O2- + 1 CO2 + 3 H2O
LCO1 −240 −311 −320 2.50 −96 to −128 TE
    16 1 C5H10O5 + 1 C4H7O2- + 2 H2
1 C8H15O2- + 1 CO2 + 3 H2O
LCO1 −264 −264 −264 2.50 −105 to −105 TE
    17 1 C5H10O5 + 1 C4H7O2- → 1 C6H11O2-
+ 1 C2H3O2- + 1 CO2 + 1 H2O + 1 H+
LCO1 −243 −314 −324 2.00 −122 to −162 TE
    18 1 C5H10O5 + 1 C6H11O2- → 1 C8H15O2-
+ 1 C2H3O2- + 1 CO2 + 1 H2O + 1 H+
LCO1 −267 −267 −267 2.00 −133 to −133 TE
a

Free energies of formation for all chemical compounds were obtained from Kbase (www.kbase.us). The ATP yield (YATP) was determined on the basis of biochemical models presented in Data Set S7 and is indicated as moles of ATP produced per mole of xylose consumed. The terminal enzyme of reverse β-oxidation, i.e., either a CoA transferase (CoAT) or thioesterase (TE), is also indicated.

b

ΔG values and expected ATP yields are normalized to moles of xylose, moles of lactate, or moles of glycerol.

c

The pathway reconstructions shown in Data Set S7 were used to determine the expected ATP yields.

d

These scenarios considered coutilization of xylose and acetate (C2), butyrate (C4), or hexanoate (C6).