Skip to main content
Data in Brief logoLink to Data in Brief
. 2018 Nov 16;21:1970–2014. doi: 10.1016/j.dib.2018.11.062

Petrological and geochemical (major-, trace-, and rare earth element) data of the Triassic El Tranquilo Group, Deseado Massif, Patagonia, Argentina

Uwe Jenchen 1
PMCID: PMC6258889  PMID: 30510985

Abstract

From samples of the Middle to Late Triassic El Tranquilo Group (El Tranquilo anticline, Deseado Massif, Patagonia) petrographic (qualitative and modal) analyses and geochemical analyses (major, trace elements, and rare earth elements (REEs)) of 80 samples were carried out. The data presented here contain a broad overview of photomicrography, recalculated modal point-count data, geochemical raw data, and simple statistics of selected geochemical parameters. The data presented in this article are interpreted and discussed in the research article entitled “Petrography and geochemistry of the Triassic El Tranquilo Group, Deseado Massif, Patagonia, Argentina: Implications for provenance and tectonic setting” (Jenchen, 2018).


Specifications table

Subject area Earth Sciences
More specific subject area Petrology, Geochemistry
Type of data Microscopy images, tables, figures and graphs
How data was acquired Major and trace element concentrations were determined on these sample tablets (Major elements as oxides in weight %, trace elements in ppm) using a sequentially operating, wavelength-dispersive X-ray fluorescence spectrometer (SIEMENS SRS 303 AS) on a volatile-free base. Rare Earth Elements was conducted by atomic emission spectroscopy, using inductively coupled plasma excitation at an ICP-AES (Jobin YVON Model 38 plus;Table 10, Table 11, Table 12, Table 13, Table 14, Table 15). 35 samples were analyzed and pulverized and by ICP-ES (oxides, Ba, Ni, Sc), and ICP-MS (trace and rare-earth elements) at ACME Laboratories, Vancouver, Canada.
Data format Raw (photos), Analyzed, processed and filtered
Experimental factors Thin sections were prepared, point-counted and photographed. 34 samples were crushed, pulverized, LOI (loss on ignition, the pre-annealed material was mixed with lithium tetraborate (Li2B4O7) in the ratio 2:1, melted at 1,400 ° C in a graphite crucible and poured into platinum pouring bowls.
Experimental features Petrological and geochemical analysis of the rocks of The El Tranquilo Anticline
Data source location El Tranquilo Anticline, Deseado Massif, Patagonia, Argentina
Data accessibility Data available within this article
Related research article Jenchen, U (2018).Petrography and geochemistry of the Triassic El Tranquilo Group, Deseado Massif, Patagonia, Argentina: Implications for provenance and tectonic setting. Journal of South American Earth Sciences, 88: 530-550. –https://doi.org/10.1016/j.jsames.2018.09.007[1]

Value of the data

  • Determine to the lithological and geochemical characteristics of the working area.

  • Tectonic activity, weathering, and provenance of the El Tranquilo Group.

  • Data collection available for researches working in the Western Margin of Gondwana, and adjacent areas.

  • Data collection available for sedimentologists, working with geochemical data.

  • A most complete geochemical dataset for El Tranquilo Group.

1. Data

This article provides photomicrographies from sedimentary and igneous rocks, recalculated petrographic modal, analyses and geochemical analyses (major, trace elements, and rare earth elements (REEs)) of 80 samples. The sample location is given with the geographical coordinates of each sample and with its position in the stratigraphic column. The geochemical are presented as raw data, and simple statistic of selected geochemical parameters. Additional contains CIA, Ti/Nb-ratios, SiO2/K2O-ratios values of geochemical standards used for comparison in Fig. 10, Fig. 16 (recalculated data from [8]).

Fig. 10.

Fig. 10

Geochemical sediment classification of El Tranquilo sediments and igneous rocks: Na2O+CaO*/Al2O3/K2O after [11] modified by [1].

Fig. 16.

Fig. 16

Geochemical sediment classification of El Tranquilo sediments and igneous rocks: SiO2/K2O–Ti/Nb after [1].

2. Experimental design, materials and methods

Field work was carried out from −January 21 to February 4, 1991. Cartographic basis for the field work comprised Servicio Geológico Nacional topographical maps at a scale of 1:100,000; in 2016, the sample sites were located in Google Earth Pro (2016) sample sites were located in Google Earth Pro (2016) with a precision of +10 m. A detailed description of sampling and sample processing is given in [1] (Fig. 1 and Table 1).

Fig. 1.

Fig. 1

Position and simplified geological map with and sample location (right) displayed on a Google Earth image [2]; stratigraphic column and locations of the samples used for this data collection (modified after [1]; left).

Table 1.

Sample list and sample locations.

Sample Lithology m Formation UTM-E UTM-N Latitude (°N) Longitude (°E)
ET-19 T 2 Cañadón Largo 19-F-525.994 4.677.721 −48,05326 °N −68,65118 °E
ET-20 Cgl 19 Cañadón Largo 19-F-525.937 4.677.700 −48,05342 °N −68,65194 °E
ET-21 T 40 Cañadón Largo 19-F-525.867 4.677.643 −48,05397 °N −68,65286 °E
ET-22 U 37 Cañadón Largo 19-F-525.875 4.677.653 −48,05388 °N −68,65277 °E
ET-23 U 75 Cañadón Largo 19-F-525.791 4.677.484 −48,05540 °N −68,65388 °E
ET-24 S 105.5 Cañadón Largo 19-F-525.729 4.677.384 −48,05000 °N −69,20000 °E
ET-25 U 98 Cañadón Largo 19-F-525.742 4.677.411 −48,05606 °N −68,65454 °E
ET-26 tS 109 Cañadón Largo 19-F-525.709 4.677.339 −48,65498 °N −68,65498 °E
ET-27 U 111.3 Cañadón Largo 19-F-525.698 4.677.323 −48,05686 °N −68,65512 °E
ET-28 sT 119 Cañadón Largo 19-F-525.696 4.677.304 −48,05703 °N −68,65515 °E
ET-29 S 113.5 Cañadón Largo 19-F-525.700 4.677.290 −48,05715 °N −68,65509 °E
ET-29 T 113.5 Cañadón Largo 19-F-525.700 4.677.290 −48,05715 °N −68,65509 °E
ET-31 U 132,5 Cañadón Largo 19-F-525.722 4.677.260 −48,05742 °N −68,65480 °E
ET-32 U 145.5 Cañadón Largo 19-F-525.724 4.677.200 −48,05796 °N −68,65477 °E
ET-33 T 156 Cañadón Largo 19-F-525.700 4.677.183 −48,05812 °N −68,65509 °E
ET-34 S-Carb 160 Cañadón Largo 19-F-525.688 4.677.170 −48,05817 °N −68,65525 °E
ET-35 T 180.3 Cañadón Largo 19-F-525.649 4.677.136 −48,05854 °N −68,65577 °E
ET-38 Tuf Volcanics 19-F-526.430 4.677.570 −48,05460 °N −68,64531 °E
ET-41 B −12.5 Cerro León 19-F-526.543 4.677.734 −48,05312 °N −68,64381 °E
ET-42 B −10 Cerro León 19-F-526.527 4.677.696 −48,05347 °N −68,64402 °E
ET-43 B −7.5 Cerro León 19-F-526.496 4.677.647 −48,05391 °N −68,64443 °E
ET-44 Br Cañadón Largo 19-F-526.278 4.677.634 −48,05403 °N −68,64736 °E
ET-45 U Cañadón Largo 19-F-526.320 4.677.610 −48,05425 °N −68,64679 °E
ET-47 GS Cañadón Largo 19-F-526.362 4.677.585 −48,05447 °N −68,64623 °E
ET-53 T Cañadón Largo 19-F-525.811 4.677.527 −48,05502 °N −68,65362 °E
ET-57 T Cañadón Largo 19-F-525.716 4.677.239 −48,05761 °N −68,65488 °E
ET-59 T Cañadón Largo 19-F-525.708 4.677.223 −48,05775 °N −68,65498 °E
ET-60 B −5 Cerro León 19-F-526.290 4.677.757 −48,05293 °N −68,64721 °E
ET-62 FS 1.5 Cañadón Largo 19-F-526.190 4.677.660 −48,05380 °N −68,64854 °E
ET-63 T 190.3 Cañadón Largo 19-F-525.628 4.677.101 −48,05886 °N −68,65605 °E
ET-64 V 190.5 Volcanics 19-F-525.615 4.677.083 −48,05902 °N −68,65622 °E
ET-66 U 198 Cañadón Largo 19-F-525.613 4.677.078 −48,05906 °N −68,65625 °E
ET-67 V Cañadón Largo 19-F-525.613 4.677.070 −48,05914 °N −68,65625 °E
ET-68 U Cañadón Largo 19-F-526.346 4.675.969 −48,06902 °N −68,64634 °E
ET-70 U 188 Cañadón Largo 19-F-526.933 4.676.222 −48,06671 °N −68,63848 °E
ET-71 S 189 Cañadón Largo 19-F-526.944 4.676.210 −48,06678 °N −68,63833 °E
ET-72 S 192.5 Cañadón Largo 19-F-526.954 4.676.200 −48,06691 °N −68,63820 °E
ET-74 T 201.8 Cañadón Largo 19-F-526.938 4.676.167 −48,06720 °N −68,63841 °E
ET-76 FS 218 Cañadón Largo 19-F-526.852 4.676.162 −48,06725 °N −68,63956 °E
ET-78 Mg 231.5 Cañadón Largo 19-F-526.820 4.676.164 −48,06724 °N −68,63999 °E
ET-79 MS 245 Cañadón Largo 19-F-526.739 4.676.154 −48,06733 °N −68,64108 °E
ET-81 T 255.9 Cañadón Largo 19-F-526.702 4.676.144 −48,06742 °N −68,64158 °E
ET-84 FS 264 Cañadón Largo 19-F-526.674 4.676.144 −48,06742 °N −68,64195 °E
ET-88 S 301.5 Cañadón Largo 19-F-526.536 4.676.121 −48,06764 °N −68,64380 °E
ET-91 V 190 Roca Blanca 19-F-526.963 4.676.190 −48,06700 °N −68,63808 °E
ET-92 Cgl-cl 205 Cañadón Largo 19-F-526.928 4.676.160 −48,06723 °N −68,63854 °E
ET-93 S-Carb 210 Cañadón Largo 19-F-526.868 4.676.160 −48,06722 °N −68,63935 °E
ET-94 S 259.5 Cañadón Largo 19-F-526.653 4.676.140 −48,06746 °N −68,64223 °E
ET-96 sT 335.5 Cañadón Largo 19-F-526.786 4.676.145 −48,06741 °N −68,64045 °E
ET-98 FC 352 Cañadón Largo 19-F-526.720 4.676.151 −48,06736 °N −68,64133 °E
ET-99 V 355 Roca Blanca 19-F-526.710 4.676.152 −48,06735 °N −68,64147 °E
ET-101 tS 361.5 Cañadón Largo 19-F-526.688 4.676.142 −48,06744 °N −68,64175 °E
ET-102 T 401 Cañadón Largo 19-F-526.276 4.675.844 −48,07014 °N −68,64728 °E
ET-104 U 427.5 Cañadón Largo 19-F-526.058 4.675.795 −48,07059 °N −68,65020 °E
ET-107 T 438.5 Cañadón Largo 19-F-525.997 4.675.778 −48,07074 °N −68,65102 °E
ET-109 B 682 Cerro León 19-F-526.574 4.674.504 −48,08218 °N −68,64319 °E
ET-110 T 678 Las Mercedes basalt 19-F-526.573 4.674.495 −48,08226 °N −68,64320 °E
ET-111 T 678.5 Las Mercedes basalt 19-F-526.573 4.674.489 −48,08232 °N −68,64320 °E
ET-113 B 680 Las Mercedes basalt 19-F-526.762 4.675.039 −48,07736 °N −68,64070 °E
ET-115 sT 676.5 Cañadón Largo 19-F-526.773 4.675.048 −48,07728 °N −68,64055 °E
ET-116 MS 665 Cañadón Largo 19-F-526.765 4.675.048 −48,07728 °N −68,64066 °E
ET-117 MS 662.5 Cañadón Largo 19-F-526.774 4.675.061 −48,07716 °N −68,64054 °E
ET-118 S-Carb 650 Cañadón Largo 19-F-526.754 4.675.050 −48,07718 °N −68,64081 °E
ET-119 FS 646 Cañadón Largo 19-F-526.752 4.675.071 −48,07707 °N −68,64084 °E
ET-121 U 580 Cañadón Largo 19-F-526.245 4.674.951 −48,07817 °N −68,64764 °E
ET-122 S-Cgl 570 Cañadón Largo 19-F-526.209 4.674.960 −48,07801 °N −68,64812 °E
ET-125 sT 554 Cañadón Largo 19-F-526.190 4.674.973 −48,07798 °N −68,64838 °E
ET-126 U 555 Cañadón Largo 19-F-526.196 4.674.980 −48,07789 °N −68,64830 °E
ET-127 U 542.8 Cañadón Largo 19-F-526.184 4.674.990 −48,07783 °N −68,648458 °E
ET-132 FS Roca Blanca 19-F-526.416 4.674.848 −48,07909 °N −68,64533 °E
ET-134 B 404 Cañadón Largo 19-F-525.844 4.675.784 −48,07070 °N −68,65307 °E
ET-135 V 405 Cañadón Largo 19-F-525.836 4.675.782 −48,07071 °N −68,65318 °E
ET-140 B 417 Cañadón Largo 19-F-525.780 4.675.775 −48,07078 °N −68,65393 °E
ET-141 V 417.5 Cañadón Largo 19-F-525.773 4.675.769 −48,07083 °N −68,65402 °E
ET-143 S 458 Cañadón Largo 19-F-525.584 4.675.420 −48,07395 °N −68,65654 °E
ET-145 U 465 Cañadón Largo 19-F-525.627 4.675.357 −48,07455 °N −68,65596 °E
ET-147 S Laguna Colorada 19-F-526.158 4.674.856 −48,07903 °N −68,64880 °E
ET-149 S-Tuf Laguna Colorada 19-F-526.022 4.678.410 −48,07942 °N −68,65062 °E
ET-150 tS Cañadón Largo 19-F-526.091 4.674.805 −48,07949 °N −68,64970 °E
ET-151 Tuf Roca Blanca 19-F-526.126 4.674.789 −48,07964 °N −68,64922 °E
ET-153 GS 524 Cañadón Largo 19-F-525.807 4.675.135 −48,07654 °N −68,65353 °E
ET-157 U Laguna Colorada 19-F-525.996 4.674.944 −48,07825 °N −68,65098 °E
ET-160 U 750 Laguna Colorada 19-F-530.885 4.677.103 −48,05860 °N −68,58550 °E
ET-161 S 780 Laguna Colorada 19-F-530.929 4.677.052 −48,05906 °N −68,58490 °E
ET-163 GS 805 Laguna Colorada 19-F-530.988 4.677.010 −48,05936 °N −68,58411 °E
ET-164 MS 816 Laguna Colorada 19-F-531.053 4.676.988 −48,05963 °N −68,58323 °E
ET-167 MS 835 Laguna Colorada 19-F-561.179 4.676.907 −48,06035 °N −68,58154 °E
ET-168 U 845 Laguna Colorada 19-F-531.255 4.676.863 −48,06075 °N −68,58051 °E
ET-172 GS 881.2 Laguna Colorada 19-F-531.213 4.677.154 −48,05813 °N −68,58110 °E
ET-174 T 856 Laguna Colorada 19-F-531.276 4.677.148 −44,05818 °N −68,58025 °E
ET-175 Later 885 Laguna Colorada 19-F-531.542 4.676.950 −48,05991 °N −68,57667 °E
ET-176 Mg 867.5 Laguna Colorada 19-F-531.557 4.676.946 −48,05998 °N −68,57647 °E
ET-178 T 869 Laguna Colorada 19-F-531.623 4.676.908 −48,06032 °N −68,57558 °E
ET-179 S 881.2 Laguna Colorada 19-F-531.642 4.676.888 −48,06050 °N −68,57532 °E
ET-180 MS 880 Roca Blanca 19-F-531.752 4.676.853 −48,06081 °N −68,57384 °E
ET-181 FC 885 Roca Blanca 19-F-532.852 4.675.913 −48,06921 °N −68,55901 °E
ET-183 sT Cañadón Largo 19-F-529.766 4.674.053 −48,08610 °N −68,60030 °E
ET-185 Tuf Roca Blanca 19-F-523.512 4.670.728 −48,11627 °N −68,68410 °E

Abbreviations: B=basalt, Br=breccia, Cgl=conglomerate, Cgl-cl=conglomerate clast, FC=fine grained conglomerate, FS=fine grained sandstone, GS=coarse grained sandstone, Later=laterite, Mg=marl, MS=medium grained sandstone, S=sandstone, S-Carb=carbonate sandstone, S-Cgl= conglomeratic sandstone, sT=sandy claystone, S-Tuf=tuffitic sandstone, T=claystone, tS=muddy sandstone, Tuf=tuff, U=Silt, V=volcanics.

Thin sections, documented in the Table 2, Table 3, Table 4, Table 5, Table 6, Table 7 are photographed using a LEICA DM2700P polarization microscope with a LEICA MC170HD Camera and a HC FL PLAN 2.5×0.07 Lens; each with parallel and crossed Nicols. Modal analyses were carried out on 37 samples, counting 300–500 points using the Gazzi–Dickinson technique to minimize the compositional dependence on grain size [17] (see Table 9, based on [3], [4], [5], [6]; see also Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6). The 95 confidence intervals for Student׳s t-test [18] were plotted in optically distinct shades (Table 8, Table 9).

Table 2.

Photmicrographies of thin sections from Section I (Cañadón Largo Formation).

graphic file with name fx1.gif
graphic file with name fx2.gif

Table 3.

Photmicrographies of thin sections from Section II (Cañadón Largo Formation).

graphic file with name fx3.gif
graphic file with name fx4.gif
graphic file with name fx5.gif

Table 4.

Photmicrographies of thin sections from Section III (Cañadón Largo Formation).

graphic file with name fx6.gif
graphic file with name fx7.gif

Table 5.

Photmicrographies of thin sections from Section IV (Laguna Colorada Formation).

graphic file with name fx8.gif
graphic file with name fx9.gif

Table 6.

Photmicrographies of thin sections from Section V (Roca Blanca Formation).

graphic file with name fx10.gif
graphic file with name fx11.gif

Table 7.

Photmicrographies of thin sections of acidic volcanic rocks.

graphic file with name fx12.gif

Table 9.

Recalculated modal point-count data for analyzed sandstones.

Sample [3]
[3]
[4]
[5], [6]
[5]
P/F Lv/L
Q F L+Qc Ls Lv Lm Qm P K Q F L Qm F Lt
Lower Cañadón Largo Formation (Section I)
ET-44 26 39 35 32 49 20 35 63 1 26 39 35 21 39 40 0.97 0.48
ET-44 26 39 35 32 49 20 35 63 1 26 39 35 21 39 40 0.97 0.48
ET-20 48 23 30 31 66 3 41 27 32 50 24 26 16 23 61 0.45 0.65
ET-24 51 43 6 57 43 0 26 29 45 52 44 4 15 43 42 0.39 0.42
ET-29 42 49 9 45 45 9 30 23 47 43 51 6 21 49 30 0.33 0.45
ET-34 51 43 6 57 43 0 26 29 45 52 44 4 15 43 42 0.39 0.42
ET-63 41 39 20 36 50 14 33 30 37 42 40 19 19 39 42 0.44 0.49
Mean (AM) 43.2 39.3 17.7 43.0 49.3 7.7 31.8 33.5 34.5 44.2 40.3 15.7 17.8 39.3 42.8 0.50 0.49
Confidence (95%) 33.2 30.1 4.3 30.5 40.2 0.9 25.8 18.1 16.3 33.7 30.8 1.9 14.8 30.1 32.3 0.25 0.39
Confidence (+95%) 53.1 48.6 31.0 55.5 58.4 16.2 37.9 48.9 52.7 54.6 49.8 29.4 20.8 48.6 53.4 0.74 0.58



Middle Cañadón Largo Formation (Section II)
ET-68 15 41 44 37 59 4 26 73 2 15 41 44 14 41 45 0.97 0.58
ET-71 30 43 27 50 49 1 39 60 0 31 43 26 28 43 30 0.99 0.48
ET-70 48 36 16 41 59 0 38 17 45 48 36 16 22 36 42 0.27 0.58
ET-72 22 49 29 22 68 10 18 34 48 22 51 27 11 49 40 0.4 0.68
ET-79 53 40 7 33 67 0 42 28 30 56 42 2 28 40 32 0.48 0.65
ET-88 70 25 5 20 40 40 66 12 22 71 25 4 48 25 27 0.36 0.39
ET-92 11 32 58 18 80 1 16 38 46 11 33 56 6 32 62 0.45 0.8
ET-93 28 33 39 17 79 4 25 42 33 29 35 35 11 33 56 0.55 0.78
ET-94 57 33 10 14 79 7 50 29 21 59 33 8 32 33 35 0.57 0.78
ET-98 32 27 41 3 94 3 49 7 43 32 28 40 27 27 46 0.14 0.94
ET-104 54 35 12 60 40 0 45 10 44 56 36 8 29 35 36 0.18 0.39
Mean (AM) 38.2 35.8 26.2 28.6 64.9 6.4 37.6 31.8 30.4 39.1 36.6 24.2 23.3 35.8 41.0 0.49 0.64
Confidence (95%) 25.3 31.1 14.3 17.2 53.2 1.4 27.4 17.8 18.7 25.7 31.7 12.0 15.1 31.1 33.7 0.30 0.52
Confidence (+95%) 51.1 40.5 38.0 40.1 76.6 14.2 47.8 45.9 42.0 52.4 41.5 36.3 31.4 40.5 48.3 0.68 0.76



Upper Cañadón Largo formation (Section III)
ET-118 31 36 32 50 47 3 44 55 0 31 36 32 29 36 35 0.99 0.46
ET-122 26 32 42 43 53 4 43 56 1 26 33 41 25 32 43 0.98 0.53
ET-143 50 23 26 0 100 0 56 10 33 53 24 23 29 23 47 0.23 0.99
ET-116 40 34 26 32 68 0 34 14 52 42 35 24 17 34 49 0.21 0.68
ET-117 44 40 16 71 29 0 33 25 42 44 40 16 20 40 40 0.37 0.28
ET-121 46 38 16 4 96 0 37 13 49 46 38 16 22 38 39 0.21 0.95
ET-153 47 43 11 6 87 6 37 12 51 47 43 10 25 43 32 0.18 0.87
Mean (AM) 40.6 35.1 24.1 29.4 68.6 1.9 40.6 26.4 32.6 41.3 35.6 23.1 23.9 35.1 40.7 0.45 0.68
Confidence (95%) 32.3 29.1 14.2 4.4 43.7 0.4 33.2 7.5 11.4 32.5 29.9 13.3 19.7 29.1 35.0 0.11 0.43
Confidence (+95%) 48.8 41.1 34.1 54.5 93.5 4.1 47.9 45.3 53.7 50.1 41.2 32.9 28.0 41.1 46.4 0.79 0.93



Laguna Colorada Fm.
ET-163 43 11 46 0 95 5 60 16 24 49 13 38 17 11 72 0.39 0.94
ET-172 51 27 22 11 89 0 41 11 48 52 27 21 18 27 55 0.18 0.88
ET-179 39 22 39 0 0 100 40 18 42 41 23 36 14 22 64 0.3 0
ET-160 35 30 35 31 61 7 35 11 55 36 30 34 16 30 55 0.16 0.61
ET-167 27 25 49 38 37 26 48 49 3 28 26 46 22 25 53 0.93 0.36
ET-174 57 36 7 0 100 0 45 12 43 57 36 6 30 36 34 0.21 0.99
Mean (AM) 42.0 25.2 33.0 13.3 63.7 23.0 44.8 19.5 35.8 43.8 25.8 30.2 19.5 25.2 55.5 0.36 0.63
Confidence (95%) 30.6 16.3 16.3 4.6 22.4 17.8 35.7 4.0 15.8 32.5 17.8 15.1 13.4 16.3 42.1 0.06 0.22
Confidence (+95%) 53.4 34.0 49.7 31.3 104.9 63.8 53.9 35.0 55.9 55.2 33.9 45.2 25.6 34.0 68.9 0.67 1.04



Rincón Blanco Fm.
ET-149 32 21 47 28 69 3 41 18 41 35 23 42 15 21 65 0.3 0.68
ET-132 49 29 21 14 86 0 51 16 33 50 30 21 31 29 39 0.31 0.85
ET-147 28 19 53 27 69 4 49 14 38 33 23 43 18 19 62 0.26 0.68
ET-180 52 38 9 5 81 14 34 28 38 53 38 9 20 38 42 0.42 0.8
ET-185 32 23 45 88 6 6 53 43 4 32 23 45 26 23 52 0.91 0.06
Mean (AM) 38.6 26.0 35.0 32.4 62.2 5.4 45.6 23.8 30.8 40.6 27.4 32.0 22.0 26.0 52.0 0.44 0.61
Confidence (95%) 24.9 16.5 11.4 8.0 22.1 1.1 35.8 8.9 11.9 28.1 19.1 12.0 14.0 16.5 37.6 0.11 0.22
Confidence (+95%) 52.3 35.5 58.6 72.8 102.3 11.9 55.4 38.7 49.7 53.1 35.7 52.0 30.0 35.5 66.4 0.77 1.01

Fig. 2.

Fig. 2

Petrographic modal analysis of El Tranquilo Group sandstones: Q–F–L after [3].

Fig. 3.

Fig. 3

Petrographic modal analysis of El Tranquilo Group sandstones: Qm–P–K after [4].

Fig. 4.

Fig. 4

Petrographic modal analysis of El Tranquilo Group sandstones: Q–F–L after [6].

Fig. 5.

Fig. 5

Petrographic modal analysis of El Tranquilo Group sandstones: Qm–F–Lt after [6].

Fig. 6.

Fig. 6

Petrographic modal analysis of El Tranquilo Group sandstones: Q–F–L diagram after [6].

Table 8.

Photmicrographies of thin sections of basic igneous rocks.

graphic file with name fx13.gif

Sixty samples of El Tranquilo Group sedimentary rocks in four stratigraphic sections (Sections I: 24 samples, Section II: 18 samples, Section III: 10 samples, and section IV), eight samples, underwent geochemical analysis, along with 17 samples of co-occurring volcanic rocks and three samples of the overlying Roca Blanca Formation. A detailed description of geochemical processing and analytic methods is given in [1]. The raw and processed data are listed in the Table 10, Table 11, Table 12, Table 13, Table 14, Table 15. The distributions of the elements in the random samples were described using the arithmetic mean and confidence limits (95% and 99%, respectively) supplied by Student׳s t-test [18] (Table 16, Table 17) (Table 18).

Table 10.

Geochemical parameters of samples from Section I (CaO* = recalculated CaO free of CaO in Carbonates).

Sample ET-19 ET-20* ET-21 ET-22 ET-23 ET-24* ET-25 ET-26 ET-27 ET-28 ET-29* ET-29* ET-31 ET-33 ET-34* ET-35 ET-45 ET-47 ET-53 ET-57 ET-59 ET-62 ET-63* ET-66
SiO2 70.4 65.05 74.45 72.23 71.37 72.86 70.14 74.97 72.92 65.58 71.05 71.58 75.51 72.27 71.09 76.21 78.05 78.23 76.7 75.75 77.94 74.91 74.06 75.31
TiO2 0.59 0.39 0.42 0.45 0.51 0.36 0.6 0.37 0.52 0.79 0.55 0.45 0.35 0.3 0.39 0.42 0.49 0.26 0.49 0.42 0.25 0.34 0.25 0.5
Al2O3 13.9 12.09 12.45 14.12 13.78 13.25 13.99 12.55 13.2 16.56 14.63 13.49 12.16 13.67 12.53 11.9 11.23 11.3 11.16 12.04 10.3 13.37 11.3 11.4
Fe2O3 5.38 2.22 2.72 3.01 3.89 1.54 2.65 2.09 3.3 5.31 2.17 3.31 2.67 4.83 2.57 1.7 1.11 1.76 2.95 2.64 2.3 1.53 1.72 2.18
MnO n.d.6 0.16 n.d.3 n.d.3 n.d.2 n.d.5 n.d.7 n.d.3 n.d.2 n.d.6 n.d.3 n.d.4 n.d.5 n.d.5 n.d.6 n.d.4 n.d.2 n.d.3 n.d.4 n.d.4 n.d.2 n.d.3 n.d.4 n.d.5
MgO 2.24 0.65 0.62 0.84 0.67 0.44 0.98 0.57 0.37 1.65 0.61 0.82 0.73 0.8 0.59 0.54 0.46 0.64 0.91 1.03 0.73 0.6 0.5 0.71
CaO 0.43 6.24 0.36 0.47 0.3 1.58 1.49 0.17 0.22 0.44 0.56 0.44 0.24 0.54 2.63 1 0.19 0.3 0.4 0.26 0.3 0.24 3.66 0.31
CaO* n.d.7 4.97 n.d. n.d. n.d. 0.99 0.35 n.d. n.d. n.d.6 n.d.5 n.d. n.d. 0.15 1.69 0.61 n.d. n.d. n.d. n.d. n.d.4 n.d. 2.99 n.d.
Na2O 1.1 2.79 1.17 2.48 1.55 3.42 1.82 0.73 2.57 1.9 3.3 2.42 1.73 1.08 3.89 2.35 0.4 1.58 2.05 1.92 0.98 3.01 2.76 1.84
K2O 2.48 3.4 5.37 4.65 5.38 3.3 4.7 6.39 5.01 4.34 3.95 3.65 4.63 2.25 2.78 2.06 6 4.4 3.26 4.13 4.07 4.5 1.91 5.92
P2O5 n.d.6 n.d.9 n.d.7 0.12 0.11 n.d.4 0.13 n.d.3 n.d.7 0.15 0.1 n.d.8 n.d.5 n.d.4 n.d.8 n.d.6 n.d.8 n.d.5 0.13 n.d.7 n.d.4 n.d.7 n.d.5 0.13
LOI 3.44 6.7 2.38 1.62 2.43 3 3.5 2.09 1.79 3.26 2.7 3.5 1.89 4.29 3.2 3.8 1.98 1.47 1.92 1.7 3.12 1.39 3.6 1.61
CO2 0.46 4.47 n.d. n.d. n.d. 1.08 0.53 n.d. n.d. 0.27 n.d.9 n.d. n.d. 0.35 1.74 0.84 n.d. n.d. n.d. n.d. 0.13 n.d. 2.79 n.d.
CaCO3* 0.12 8.87 n.d. n.d. n.d. 1.77 0.62 n.d. n.d. 0.11 n.d.9 n.d. n.d. 0.27 3.02 1.09 n.d. n.d. n.d. n.d. n.d.7 n.d. 5.34 n.d.
Cr 19 27 14 23 17 0 31 13 14 49 20 20 10 9 20 7 18 10 13 29 8 11 13 16
Ni 0 8 3 11 0 4 13 0 0 14 5 10 1 0 13 0 1 14 0 11 0 0 10 0
Co 7 4 10 10 10 2 16 9 14 12 3 5 8 7 5 3 11 9 9 9 7 19 4 14
Sc 15 6 11 6 8 4 11 6 12 17 5 8 9 9 6 10 4 4 6 10 7 5 4 7
V 58 48 46 49 51 23 47 46 81 89 30 56 37 31 79 31 45 32 40 58 26 38 26 45
Pb 42 12 45 30 48 13 68 56 83 52 15 28 52 39 15 37 46 14 36 38 31 49 13 55
Zn 77 31 73 70 61 47 71 23 45 111 82 97 61 24 61 27 22 34 57 42 15 29 24 58
Rb 144 111 209 185 213 119 180 257 199 198 144 145 186 145 89 118 290 187 143 173 194 136 77 214
Ba 420 1428 896 1056 1177 671 1265 1743 1275 997 1049 962 1264 746 10053 1517 878 925 1230 1115 1065 1083 370 2284
Sr 139 302 127 186 121 179 200 115 181 148 203 155 134 210 248 374 217 364 171 180 129 180 283 146
Ga 22 13 17 16 19 15 18 16 17 22 15 15 16 21 10 14 15 9 16 16 15 13 10 15
Ta 1.06 0.5 1.41 2.37 1.14 0.8 2.05 1.33 1.4 0.85 1 0.8 1.51 0.94 0.5 0.97 1.85 1.89 1.79 1.31 1.16 1.7 0.6 1.63
Nb 13.2 7.9 11.3 15.8 14.1 13.5 17.7 10.3 15.1 17.9 16.9 12.2 9.7 14.6 8.9 11.8 11.2 12.8 13.4 10.3 6.9 10.1 6.3 12.9
Hf 8.47 3.6 9.55 4.78 10.1 4.9 11.35 9.18 14.05 10.1 15.3 4.9 9 9.58 4.8 12.65 9.68 4.11 10.5 9.27 8.87 10.9 2.9 11.55
Zr 92 138 108 92 145 184 191 116 246 170 587 168 109 131 193 192 97 139 135 106 90 156 101 174
Y 19 14 21 29 33 21 40 21 23 35 30 21 21 25 15 25 33 17 28 18 17 20 16 28
Th 10.25 10.5 16.6 15.3 20.45 15.6 24.75 20.25 22.6 20.35 33.4 18.3 14.55 14.55 13.7 8.99 20.25 13.55 12.55 13.7 12.95 15.1 8 23
U 2.08 1.8 2.49 2.94 3.82 2.3 2.61 2.61 2.94 3.78 4.3 4.2 2.04 2.41 2.5 3.05 3.45 2.76 2.38 3.42 2.83 3.15 1.9 4.17
La n.d. 37.4 n.d. 46.43 n.d. 60.8 n.d. n.d. n.d. n.d. 87.3 35.1 n.d. n.d. 43.3 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 32.6 n.d.
Ce n.d. 76.2 n.d. 92.72 n.d. 121.3 n.d. n.d. n.d. n.d. 175.9 64.9 n.d. n.d. 82.7 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 58.9 n.d.
Pr n.d. 8.29 n.d. 10.15 n.d. 12.74 n.d. n.d. n.d. n.d. 18.78 7.38 n.d. n.d. 8.62 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 6.59 n.d.
Nd n.d. 29.9 n.d. 39.31 n.d. 44.1 n.d. n.d. n.d. n.d. 71.9 24.7 n.d. n.d. 31.1 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 23.3 n.d.
Sm n.d. 4.76 n.d. 9.47 n.d. 7.7 n.d. n.d. n.d. n.d. 11.28 4.81 n.d. n.d. 4.96 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 3.76 n.d.
Eu n.d. 0.81 n.d. 2.44 n.d. 1.3 n.d. n.d. n.d. n.d. 1.81 1.04 n.d. n.d. 0.98 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 1 n.d.
Gd n.d. 3.98 n.d. 10.64 n.d. 5.66 n.d. n.d. n.d. n.d. 9.05 4.28 n.d. n.d. 3.83 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 3.42 n.d.
Tb n.d. 0.54 n.d. 1.41 n.d. 0.76 n.d. n.d. n.d. n.d. 1.18 0.69 n.d. n.d. 0.53 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.52 n.d.
Dy n.d. 2.52 n.d. 8.35 n.d. 4.39 n.d. n.d. n.d. n.d. 6.3 4.27 n.d. n.d. 2.87 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 2.86 n.d.
Ho n.d. 0.45 n.d. n.d. n.d. 0.74 n.d. n.d. n.d. n.d. 1.01 0.85 n.d. n.d. 0.55 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.54 n.d.
Er n.d. 1.36 n.d. 4.65 n.d. 1.79 n.d. n.d. n.d. n.d. 2.97 2.4 n.d. n.d. 1.67 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 1.66 n.d.
Tm n.d. 0.24 n.d. n.d. n.d. 0.28 n.d. n.d. n.d. n.d. 0.44 0.38 n.d. n.d. 0.26 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.19 n.d.
Yb n.d. 1.43 n.d. 4.85 n.d. 1.6 n.d. n.d. n.d. n.d. 2.73 2.49 n.d. n.d. 1.75 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 1.59 n.d.
Lu n.d. 0.2 n.d. 0.84 n.d. 0.29 n.d. n.d. n.d. n.d. 0.44 0.38 n.d. n.d. 0.27 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.21 n.d.
Chem.Lit Psam. CaO++ Psam. Rest++ Psam. Psam. Psam. Psam. Psam. Pelite Rest++ Psam. Psam. Psam. Psam. Psam. Psam. Psam. Psam. Psam. Psam. Psam. Psam. Psam.
Zr/Ti 155.93 355.38 257.14 204.44 284.31 513.05 318.33 313.51 473.07 215.18 1068.54 374.44 311.42 436.66 496.66 457.14 197.95 534.61 275.51 252.38 360 458.82 404 348
Nb/Y 0.69 0.56 0.53 0.54 0.42 0.63 0.44 0.49 0.65 0.51 0.54 0.56 0.46 0.58 0.57 0.47 0.33 0.75 0.47 0.57 0.4 0.5 0.39 0.46
Th/Sc 0.68 1.75 1.5 2.55 2.55 3.9 2.25 3.37 1.88 1.19 6.68 2.28 1.61 1.61 2.28 0.89 5.06 3.38 2.09 1.37 1.85 3.02 2 3.28
Ti/Nb 268 296 223 171 217 160 203 215 206 265 195 221 216 123 263 213 262 122 219 244 217 202 238 232
CIA 73.5 53.8 60.2 59.2 61.3 56.6 58.6 60. 57.1 66.9 58.4 61.2 59.8 73.9 53.4 64.1 60.5 59.2 60.3 60.2 61.7 56.9 59.4 54
PIA 82.8 55.7 73.2 66 73.6 59.4 65 79.7 63.4 77.3 62.8 67.4 69.3 82.4 54.5 68.5 84.9 68.3 66.6 68.5 74.7 61.8 62 60.1
CIW 85.6 64.3 83.6 75.1 82.8 66.7 74.5 89.7 74.7 82.6 70.4 74.5 79.3 85.1 61.2 72.8 93 78.8 74.5 77.5 83.8 71.8 66.7 77.5
Eu/Eu* n.d. 0.57 n.d. 0.74 n.d. 0.6 n.d. n.d. n.d. n.d. 0.55 0.7 n.d. n.d. 0.69 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.85 n.d.
REE n.d. 17.67 n.d. 6.47 n.d. 25.68 n.d. n.d. n.d. n.d. 21.61 9.53 n.d. n.d. 16.72 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 13.85 n.d.
LREE n.d. 4.95 n.d. 3.09 n.d. 4.97 n.d. n.d. n.d. n.d. 4.87 4.59 n.d. n.d. 5.49 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 5.46 n.d.
HREE n.d. 2.26 n.d. 1.78 n.d. 2.87 n.d. n.d. n.d. n.d. 2.69 1.39 n.d. n.d. 1.77 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 1.74 n.d.
S-REE n.d. 168.08 n.d. 231.26 n.d. 263.45 n.d. n.d. n.d. n.d. 391.09 153.67 n.d. n.d. 183.39 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 137.14 n.d.

Note: Oxides and LOI in %, other elements in ppm. X is mean value for each group of sandstones; SD is standard derivation for that mean. Abbreviations: n.d.: not detected; CaCO* = maximum CaO in Carbonates recalculated from CO2; Chem.Lit: Chemical lithology [7] (s. Fig. 7); CaO++: CaO enriched samples; Psam.: Psammite classified samples; Rest++: enriched in SiO2 and Al2O3; Rest--: impoverished in SiO2 and Al2O3;. Eu/Eu* = EuN/(SmNxGdN)0.5 Samples are not LOI-free recalculated. Samples marked with (*) analyzed by ACME Laboratories, Canada.

Table 11.

Geochemical parameters of samples from Section II (CaO* = recalculated CaO free of CaO in Carbonates).

Sample ET-70* ET-72* ET-74* ET-76 ET-78 ET-79* ET-81 ET-84 ET-88* ET-92* ET-93* ET-94* ET-96 ET-98* ET-101 ET-102 ET-104 ET-107
SiO2 73.18 48.3 54.56 71 74.78 60.9 75.34 70.44 52.33 64.07 47.97 68.94 79.38 71.61 74.9 68.04 64.56 67.99
TiO2 0.33 0.34 0.41 0.55 0.53 1.01 0.47 0.58 0.31 0.6 0.46 0.51 0.37 0.54 0.53 0.41 0.62 0.33
Al2O3 13.27 10.72 13.18 14.06 13.15 16.01 11.67 13.8 12.41 15 11.68 14.7 11.3 13.33 12.44 15.15 13 8.91
Fe2O3 2.51 2.29 3.05 4.48 2.34 8.04 3.53 2.89 2.11 3.96 3.37 4.19 1.86 4.03 4.14 3.48 7.98 12.94
MnO 0.04 0.61 0.02 0.03 0.02 0.08 0.04 0.05 0.39 0.11 0.45 0.06 0.01 0.06 0.03 0.03 0.08 0.09
MgO 0.75 0.52 0.95 1.13 0.91 2.22 1.06 1.41 0.67 1.26 0.82 0.93 0.75 1.26 1.52 1.63 2.27 4.51
CaO 0.3 16.31 0.89 0.51 0.32 1 0.28 1.95 12.8 3.03 14.98 0.7 0.27 0.69 0.18 0.12 2.38 0.33
CaO* n.d. 15.86 n.d. 0.08 n.d. 0.11 n.d. 0.56 12.69 1.65 13.9 0.08 n.d. 0.06 n.d. 0.05 0.7 0.11
Na2O 1.45 1.82 0.69 1.58 1.7 3.5 1.11 1.89 1.19 3.11 2.04 3.28 1.12 2.26 1.19 0.8 2.24 0.21
K2O 5.35 3.64 3 3.37 3.61 2.05 3.62 3.07 5.15 2.98 3.8 3.72 2.34 1.61 2.15 5.7 1.32 0.18
P2O5 0.02 0.07 0.02 0.12 0.16 0.18 0.14 0.18 0.09 0.13 0.1 0.09 0.1 0.15 0.06 0.06 0.11 0.11
LOI 2.6 15.1 23.1 3.24 2.52 4.7 2.72 3.84 12.3 5.5 14 2.7 2.54 4.2 2.93 4.8 5.2 4.63
CO2 n.d. 13 n.d. 0.25 n.d. 0.35 n.d. 0.88 10.86 2.05 11.74 0.19 n.d. 0.16 n.d. 1.89 1.28 1.71
CaCO3* n.d. 28.31 n.d. 0.14 n.d. 0.2 n.d. 1 22.65 2.94 24.81 0.14 n.d. 0.11 n.d. 0.09 1.25 0.2
Cr 13 20 27 29 26 54 19 22 0 34 27 34 11 34 16 9 47 32
Ni 11 8 3 17 14 13 0 0 5 11 9 13 3 15 1 5 22 3
Co 10 8 2 12 10 18 9 11 5 13 12 9 5 10 6 12 17 12
Sc 7 6 11 13 15 17 8 11 5 13 8 9 14 7 11 10 10 10
V 40 57 78 72 72 197 48 55 30 108 82 147 62 86 50 39 82 73
Pb 18 8 22 54 36 6 53 40 10 14 8 14 32 17 33 52 13 15
Zn 56 35 38 86 46 87 45 47 34 52 46 88 18 67 54 97 74 71
Rb 229 126 139 159 159 79 163 136 181 119 126 128 129 76 103 153 51 9
Ba 1497 1765 510 904 1434 777 796 590 1110 898 1822 823 591 1079 393 512 806 134
Sr 135 348 139 136 134 225 86 352 206 301 372 187 92 325 88 79 400 65
Ga 17 12 13 21 16 21 22 21 13 18 13 17 18 15 19 20 15 18
Ta 0.7 0.6 0.5 1.19 1.84 0.9 1.94 0.78 0.6 0.6 0.4 1 1.36 0.7 0.89 0.87 0.5 0.82
Nb 9.1 6 7 13.1 15.6 12.8 15 16.7 7.4 8.5 6.8 9.7 9.2 9.9 12 10.2 8.2 8.1
Hf 2.6 3.3 4.3 9.37 4.55 9.4 9.81 13.65 3.5 5 3.5 5.9 9.49 4.6 11.75 8.37 4.6 6.8
Zr 74 112 157 138 138 374 117 245 126 190 121 223 98 179 170 117 167 77
Y 12 17 29 24 20 28 25 31 12 16 20 18 20 22 22 26 18 14
Th 13.3 8.9 10.9 15.5 15.65 16.9 17 19.35 9.2 13.4 10.4 17.3 10.45 13.6 12.05 17.95 8.2 3.79
U 2.6 1.3 3.2 3.2 2.39 2.3 3.95 4.41 1.8 2.3 1.8 3 2.3 3.6 2.94 3.62 1.9 2.13
La 20.5 27.5 40.5 n.d. n.d. 59.7 n.d. n.d. 27 40.6 39 53.7 n.d. 65 n.d. n.d. 32.7 n.d.
Ce 40.8 50.9 84.7 n.d. n.d. 121.2 n.d. n.d. 52.4 77.9 72.6 97.3 n.d. 128.9 n.d. n.d. 65.4 n.d.
Pr 4.45 5.87 9.37 n.d. n.d. 13.22 n.d. n.d. 5.6 8.33 7.74 10.12 n.d. 13.24 n.d. n.d. 7.13 n.d.
Nd 15.7 22.1 35.2 n.d. n.d. 48.1 n.d. n.d. 19.5 28.9 29.7 37.2 n.d. 47 n.d. n.d. 27 n.d.
Sm 2.58 4.1 6.82 n.d. n.d. 8.56 n.d. n.d. 3.31 5.13 4.41 5.64 n.d. 7.74 n.d. n.d. 5.07 n.d.
Eu 0.64 0.89 1.23 n.d. n.d. 1.55 n.d. n.d. 0.81 1.17 0.94 1.13 n.d. 1.54 n.d. n.d. 1.06 n.d.
Gd 2.14 3.35 5.76 n.d. n.d. 6.93 n.d. n.d. 2.73 3.94 4.07 4.4 n.d. 6.14 n.d. n.d. 4.14 n.d.
Tb 0.38 0.55 0.8 n.d. n.d. 1.03 n.d. n.d. 0.39 0.57 0.6 0.61 n.d. 0.88 n.d. n.d. 0.61 n.d.
Dy 2.37 3.07 4.82 n.d. n.d. 5.33 n.d. n.d. 2.13 3.27 3.5 3.55 n.d. 4.68 n.d. n.d. 3.39 n.d.
Ho 0.47 0.62 0.91 n.d. n.d. 1 n.d. n.d. 0.42 0.61 0.72 0.69 n.d. 0.82 n.d. n.d. 0.67 n.d.
Er 1.52 1.71 2.85 n.d. n.d. 2.69 n.d. n.d. 1.2 1.89 1.93 1.82 n.d. 2.32 n.d. n.d. 1.96 n.d.
Tm 0.24 0.26 0.44 n.d. n.d. 0.41 n.d. n.d. 0.18 0.3 0.3 0.29 n.d. 0.33 n.d. n.d. 0.29 n.d.
Yb 1.52 1.65 2.82 n.d. n.d. 2.52 n.d. n.d. 1.14 2.13 2.16 1.91 n.d. 2.32 n.d. n.d. 1.96 n.d.
Lu 0.25 0.24 0.46 n.d. n.d. 0.38 n.d. n.d. 0.17 0.32 0.32 0.27 n.d. 0.31 n.d. n.d. 0.32 n.d.
Chem.Lit Psam. CaO++ Rest-- Rest++ Psam. Pelite Psam. Psam. CaO++ Pelite CaO++ Rest++ Psam. Psam. Psam. Rest++ Rest-- Rest--
Zr/Ti 224.84 329.7 384.87 250.9 260.37 370.69 248.93 422.41 407.74 317.66 264.56 438.43 264.86 332.4 320.75 285.36 269.51 233.33
Nb/Y 0.71 0.34 0.23 0.54 0.78 0.44 0.6 0.53 0.57 0.5 0.32 0.53 0.46 0.43 0.54 0.39 0.45 0.57
Th/Sc 1.9 1.48 0.99 1.19 1.04 0.99 2.12 1.75 1.84 1.03 1.3 1.92 0.74 1.94 1.09 1.79 0.82 0.37
Ti/Nb 217 340 351 252 204 473 188 208 251 423 406 315 241 327 265 241 453 244
CIA 60.4 58.5 68.8 67.5 65.5 63.5 66.3 61.7 62.2 58.6 55.9 58.7 70.9 68 73.5 66.9 62.1 92.7
PIA 72.1 64.9 78.5 76.9 75.3 66.4 79.3 66.6 77.7 61.6 59.7 62.8 80.6 71.9 82.4 87.2 64 94.5
CIW 82.1 74.5 82.9 81.8 81.3 69.6 85.2 72.4 86.4 67.1 69.6 69.9 84.2 74.6 85.2 92 66.7 94.6
Eu/Eu* 0.83 0.73 0.6 n.d. n.d. 0.62 n.d. n.d. 0.82 0.8 0.68 0.69 n.d. 0.68 n.d. n.d. 0.71 n.d.
REE 9.11 11.26 9.7 n.d. n.d. 16.01 n.d. n.d. 16 12.88 12.2 19 n.d. 18.93 n.d. n.d. 11.27 n.d.
LREE 5 4.22 3.74 n.d. n.d. 4.39 n.d. n.d. 5.13 4.98 5.57 5.99 n.d. 5.29 n.d. n.d. 4.06 n.d.
HREE 1.14 1.65 1.66 n.d. n.d. 2.23 n.d. n.d. 1.94 1.5 1.53 1.87 n.d. 2.14 n.d. n.d. 1.71 n.d.
Σ REE 93.56 122.81 196.68 n.d. n.d. 272.62 n.d. n.d. 116.98 175.06 167.99 218.63 n.d. 281.22 n.d. n.d. 151.7 n.d.

Note: Oxides and LOI in %, other elements in ppm. X is mean value for each group of sandstones; SD is standard derivation for that mean. Abbreviations: n.d.: not detected; CaCO* = maximum CaO in Carbonates recalculated from CO2; Chem.Lit: Chemical lithology [7] (s. Fig. 7); CaO++: CaO enriched samples; Psam.: Psammite classified samples; Rest++: enriched in SiO2 and Al2O3; Rest--: impoverished in SiO2 and Al2O3;. Eu/Eu* = EuN/(SmNxGdN)0.5 Samples are not LOI-free recalculated. Samples marked with (*) analyzed by ACME Laboratories, Canada.

Table 12.

Geochemical parameters of samples from Section III (CaO* = recalculated CaO free of CaO in Carbonates).

Sample ET-115 ET-116* ET-117* ET-119 ET-121* ET-125 ET-126* ET-127 ET-145 ET-153*
SiO2 67.5 45.72 66.56 70.71 78.21 68.01 67.55 71.39 66.14 68.8
TiO2 0.61 0.29 0.74 0.57 0.19 0.63 0.55 0.48 0.78 1.3
Al2O3 14.66 9.39 14.75 13.89 12.78 14.87 15.61 14.61 14.48 11.29
Fe2O3 4.44 2.69 5.95 4.89 0.58 6.64 5.27 4.6 7.78 2.68
MnO 0.05 0.3 0.06 0.05 0 0.05 0.03 0.03 0.09 0.08
MgO 1.12 0.5 0.93 1.2 0.43 1.25 1.26 1.1 1.75 1.16
CaO 1.78 19.1 0.87 0.52 0.34 0.44 0.38 0.25 0.93 3.58
CaO* 1.18 18.92 0.02 n.d. n.d. 0.22 0.01 0.02 0.17 2.11
Na2O 1.39 1.95 2.99 0.99 0.35 1.38 1.27 1.43 1.53 2.07
K2O 3.88 2.79 2.73 3.96 3.4 2.83 3.66 2.98 2.86 3.34
P2O5 0.08 0.15 0.21 0.34 0.03 0.16 0.05 0.06 0.27 0.2
LOI 4.65 17 3.9 2.88 3.6 3.82 4.2 3.12 3.46 5.2
CO2 1.73 16.19 0.04 n.d. n.d. 0.86 0.05 0.13 0.48 2.4
CaCO3* 2.11 33.77 0.04 n.d. n.d. 0.39 0.02 0.04 0.3 3.77
Cr 29 20 41 23 0 23 34 16 46 41
Ni 1 7 14 3 0 4 13 0 17 10
Co 17 4 15 14 0 13 7 12 25 5
Sc 10 5 10 10 1 14 11 12 14 9
V 64 37 105 59 20 56 79 47 85 56
Pb 62 7 11 43 4 40 26 47 39 17
Zn 74 33 103 80 2 122 85 78 115 59
Rb 167 88 112 166 144 125 156 180 116 116
Ba 924 716 642 1011 540 476 987 536 800 1430
Sr 202 493 198 113 59 88 86 92 128 316
Ga 20 8 19 21 12 22 19 22 22 12
Ta 0.87 0.5 1.1 1.2 0.6 0.98 1 1.13 1.04 1.8
Nb 13.9 6.2 15.7 13.4 10.4 13.1 11.6 14.4 16.9 26.8
Hf 11.15 3.1 14.4 9.28 3.4 9.38 4.1 9.63 10.95 10.6
Zr 220 104 596 135 101 147 143 136 218 419
Y 26 10 27 27 7 25 22 28 30 22
Th 17.1 7.2 22.2 16.05 21.1 12.85 15.7 18.15 14.05 32.9
U 4.47 1.7 5 2.49 2.1 2.77 5.3 3.76 2.86 3.8
La n.d. 23.6 72.5 n.d. 28.9 n.d. 42.5 7.15 n.d. 129.5
Ce n.d. 46.6 150 n.d. 52 n.d. 85.9 11.74 n.d. 243.1
Pr n.d. 5.08 16.03 n.d. 4.52 n.d. 9.64 n.d. n.d. 24.01
Nd n.d. 15.9 57.5 n.d. 13.6 n.d. 37.3 8.87 n.d. 79.1
Sm n.d. 2.78 9.79 n.d. 1.71 n.d. 6.72 1.36 n.d. 11.28
Eu n.d. 0.59 1.56 n.d. 0.37 n.d. 1.37 0.21 n.d. 1.67
Gd n.d. 2.41 7.05 n.d. 1.5 n.d. 5.39 1.9 n.d. 7.69
Tb n.d. 0.37 1.04 n.d. 0.25 n.d. 0.79 0.69 n.d. 0.98
Dy n.d. 1.86 5.33 n.d. 1.27 n.d. 4.31 1.71 n.d. 4.8
Ho n.d. 0.3 1 n.d. 0.3 n.d. 0.82 n.d. n.d. 0.76
Er n.d. 0.93 2.84 n.d. 0.88 n.d. 2.56 0.66 n.d. 2.35
Tm n.d. 0.15 0.45 n.d. 0.17 n.d. 0.36 n.d. n.d. 0.36
Yb n.d. 1.03 3.03 n.d. 1.29 n.d. 2.5 1.04 n.d. 2.24
Lu n.d. 0.17 0.47 n.d. 0.19 n.d. 0.38 0.14 n.d. 0.38
Chem.Lit Pelite CaO++ Pelite Psam. Psam. Rest++ Pelite Rest++ Pelite Psam.
Zr/Ti 360.65 360 806.08 236.84 532.1 233.33 260.54 283.33 279.48 322.46
Nb/Y 0.53 0.59 0.56 0.49 1.36 0.52 0.52 0.51 0.56 1.19
Th/Sc 1.71 1.44 2.21 1.6 21.1 0.91 1.42 1.51 1 3.65
Ti/Nb 263 280 283 255 110 288 284 200 277 291
CIA 66.4 60.1 62.2 69.4 72.7 73.4 70.2 71.3 69.3 54.9
PIA 76.5 66.5 66.2 83.9 89 83.5 81.4 81.2 77.4 57.6
CIW 82 74.5 71.1 88.3 91.9 86.5 85.5 84.7 81.4 66.7
Eu/Eu* n.d. 0.7 0.57 n.d. 0.71 n.d. 0.7 0.4 n.d. 0.55
REE n.d. 15.48 16.17 n.d. 15.14 n.d. 11.49 4.65 n.d. 39.07
LREE n.d. 5.34 4.66 n.d. 10.64 n.d. 3.98 3.31 n.d. 7.23
HREE n.d. 1.9 1.89 n.d. 0.94 n.d. 1.75 1.48 n.d. 2.78
Σ REE n.d. 101.77 328.59 n.d. 106.95 n.d. 200.54 35.47 n.d. 508.22

Note: Oxides and LOI in %, other elements in ppm. X is mean value for each group of sandstones; SD is standard derivation for that mean. Abbreviations: n.d.: not detected; CaCO* = maximum CaO in Carbonates recalculated from CO2; Chem.Lit: Chemical lithology [7] (s. Fig. 7); CaO++: CaO enriched samples; Psam.: Psammite classified samples; Rest++: enriched in SiO2 and Al2O3; Rest--: impoverished in SiO2 and Al2O3;. Eu/Eu* = EuN/(SmNxGdN)0.5 Samples are not LOI-free recalculated. Samples marked with (*) analyzed by ACME Laboratories, Canada.

Table 13.

Geochemical parameters of samples from Section IV (CaO* = recalculated CaO free of CaO in Carbonates).

Sample ET-160* ET-161 ET-164 ET-167* ET-168 ET-174* ET-176 ET-178
SiO2 75.23 75.46 73.09 45.08 50.01 73.36 15.82 70.72
TiO2 0.37 0.48 0.57 0.27 0.22 0.36 0.11 0.55
Al2O3 12.74 12.82 12.96 8.38 5.81 13.67 3.81 11.72
Fe2O3 0.63 1.03 3.66 1.8 2.31 1.65 1.99 5.1
MnO n.d. 0.02 0.06 0.46 0.61 0.02 0.61 0.06
MgO 0.23 0.34 1.14 0.6 2.71 0.8 0.35 2.61
CaO 0.15 0.16 0.82 21.06 21.02 0.85 49.88 1.11
CaO* n.d. n.d. n.d. 18.94 17.74 0.08 41.59 0.39
Na2O 0.28 0.35 1.43 2.68 0.37 3.88 n.d. 0.68
K2O 8.34 8.04 3.9 0.94 0.64 2.06 1.1 3.01
P2O5 0.02 0.08 0.15 0.1 0.03 0.04 n.d. 0.15
LOI 1.8 1.22 2.23 18.5 18.68 3.1 34.47 4.24
CO2 n.d. n.d. n.d. 15.45 16.42 0.15 32.96 1.3
CaCO3* n.d. n.d. n.d. 33.8 31.66 0.14 74.23 0.7
Cr n.d. 22 16 13 12 20 12 38
Ni 1 11 0 7 8 10 14 13
Co 0 6 10 4 40 2 14 13
Sc 5 5 11 5 13 5 9 9
V 36 54 70 47 48 42 58 55
Pb 4 35 38 10 19 18 37 45
Zn 3 42 61 15 27 26 31 59
Rb 316 339 168 45 55 78 92 185
Ba 1473 1682 851 387 287 335 559 312
Sr 95 80 147 308 449 371 843 71
Ga 11 14 20 6 12 12 10 22
Ta 0.6 1.69 0.87 0.3 0.97 0.8 0.4 1.63
Nb 12.3 11.4 12.4 4.6 8.7 9.1 5.8 26.4
Hf 3.7 3.94 12.25 2.5 8.75 8.5 4.88 13.05
Zr 128 158 192 100 162 322 209 186
Y 19 30 25 31 56 18 93 39
Th 12.8 12.85 13.25 5.4 7.47 15.5 6.96 25.7
U 3.4 4.42 2.91 1.3 1.97 2.1 1.23 3.74
La 36.9 n.d. 31.9 31.5 52.46 48.9 51.73 n.d.
Ce 61.3 n.d. 66.18 46.9 78.59 88.9 129.2 n.d.
Pr 6.36 n.d. 9.25 6.89 n.d. 9.56 16.91 n.d.
Nd 21 n.d. 36.75 27.9 37.22 33.5 64.66 n.d.
Sm 3.63 n.d. 8.21 6.14 10.65 5.51 12.25 n.d.
Eu 0.61 n.d. 1.84 1.33 1.4 0.89 3.17 n.d.
Gd 3.31 n.d. 8.58 5.72 10.3 4.71 9.99 n.d.
Tb 0.48 n.d. 1.31 0.86 1.13 0.61 1.31 n.d.
Dy 2.89 n.d. 6.86 4.54 7.01 3.19 6.06 n.d.
Ho 0.67 n.d. n.d. 0.91 n.d. 0.63 n.d. n.d.
Er 1.88 n.d. 3.72 2.32 1.14 1.7 2.3 n.d.
Tm 0.34 n.d. n.d. 0.33 n.d. 0.28 n.d. n.d.
Yb 2.25 n.d. 3.81 2.2 3.03 1.9 2.42 n.d.
Lu 0.37 n.d. 0.48 0.31 0.35 0.3 0.32 n.d.
Chem.Lit Psam. Psam. Psam. CaO++ CaO++ Psam. CaO++ Psam.
Zr/Ti 346.48 329.16 336.84 372.59 736.36 895.27 1900 338.18
Nb/Y 0.64 0.38 0.49 0.14 0.15 0.48 0.06 0.67
Th/Sc 2.56 2.57 1.2 1.08 0.57 3.1 0.77 2.85
Ti/Nb 180 252 276 352 152 237 114 125
CIA 56.7 57.7 62.6 48 44.7 57.9 19 68.6
PIA 84.2 85.4 71.3 47.8 44 59.8 14.8 80.1
CIW 94.8 94.8 78.7 51 47.2 64 20.2 84.8
Eu/Eu* 0.54 n.d. 0.67 0.69 0.41 0.53 0.88 n.d.
REE 11.08 n.d. 5.66 9.68 11.7 17.39 14.44 n.d.
LREE 6.4 n.d. 2.45 3.23 3.1 5.59 2.66 n.d.
HREE 1.19 n.d. 1.83 2.11 2.76 2.01 3.35 n.d.
Σ REE 141.99 n.d. 178.89 137.85 203.28 200.58 300.32 n.d.

Note: Oxides and LOI in %, other elements in ppm. X is mean value for each group of sandstones; SD is standard derivation for that mean. Abbreviations: n.d.: not detected; CaCO* = maximum CaO in Carbonates recalculated from CO2; Chem.Lit: Chemical lithology [7] (s. Fig. 7); CaO++: CaO enriched samples; Psam.: Psammite classified samples; Rest++: enriched in SiO2 and Al2O3; Rest--: impoverished in SiO2 and Al2O3;. Eu/Eu* = EuN/(SmNxGdN)0.5 Samples are not LOI-free recalculated.

Table 14.

Geochemical parameters of samples from Section V (CaO* = recalculated CaO free of CaO in Carbonates).

Sample ET-180* ET-181 ET-185*
SiO2 74.69 76.5 71.01
TiO2 0.28 0.3 0.3
Al2O3 13.35 11.1 13.26
Fe2O3 1.78 2.47 1.64
MnO 0.01 0.02 0.05
MgO 0.25 0.34 0.53
CaO 0.18 0.23 1.86
CaO* 0.01 n.d. 1.06
Na2O 4.88 1.63 1.55
K2O 3.01 5.83 5.08
P2O5 0.05 0.16 0.06
LOI 1.4 1.38 4.5
CO2 0.02 n.d. 1.16
CaCO3* 0.02 n.d. 1.89
Cr 20 14 0
Ni 6 9 7
Co 8 11 2
Sc 4 4 4
V 35 105 27
Pb 12 123 21
Zn 30 13 26
Rb 88 230 153
Ba 775 1401 1113
Sr 200 104 153
Ga 12 11 14
Ta 0.4 2.33 1
Nb 8.5 15.2 12.8
Hf 4 5.47 5.1
Zr 141 200 197
Y 16 22 21
Th 9 15.25 13.6
U 2.3 4.95 2.3
La 30.2 n.d. 48.2
Ce 58.9 n.d. 89.8
Pr 6.48 n.d. 9.92
Nd 24.4 n.d. 35.1
Sm 4.27 n.d. 5.33
Eu 0.77 n.d. 0.97
Gd 3.56 n.d. 4.95
Tb 0.51 n.d. 0.65
Dy 3.28 n.d. 3.72
Ho 0.65 n.d. 0.72
Er 1.83 n.d. 2.03
Tm 0.26 n.d. 0.35
Yb 1.8 n.d. 2.31
Lu 0.28 n.d. 0.35
Chem.Lit Psam. Psam. Psam.
Zr/Ti 506.78 666.66 659.33
Nb/Y 0.52 0.69 0.58
Th/Sc 2.25 3.81 3.4
Ti/Nb 197 118 141
CIA 53.8 55 58.6
PIA 55.1 63.5 66.7
CIW 61.9 80.1 77.4
Eu/Eu* 0.6 n.d. 0.58
REE 11.34 n.d. 14.1
LREE 4.45 n.d. 5.69
HREE 1.6 n.d. 1.74
Σ REE 137.19 n.d. 204.4

Note: Oxides and LOI in %, other elements in ppm. X is mean value for each group of sandstones; SD is standard derivation for that mean. Abbreviations: n.d.: not detected; CaCO* = maximum CaO in Carbonates recalculated from CO2; Chem.Lit: Chemical lithology [7] (s. Fig. 7); CaO++: CaO enriched samples; Psam.: Psammite classified samples; Rest++: enriched in SiO2 and Al2O3; Rest--: impoverished in SiO2 and Al2O3;. Eu/Eu* = EuN/(SmNxGdN)0.5 Samples are not LOI-free recalculated.

Table 15.

Geochemical parameters of samples from El Tranquilo igneous rocks (CaO* = recalculated CaO free of CaO in Carbonates).

Sample ET-38 ET-41 ET-42 ET-43* ET-60 ET-64 ET-67 ET-91* ET-99 ET-109 ET-113* ET-134* ET-135* ET-140 ET-141* ET-151 ET-175*
SiO2 80.92 51.8 57.11 52.19 50.48 69.74 72.82 69.22 73.91 51.01 52.75 50.12 48.21 52.72 45.79 74.89 15.99
TiO2 0.25 1.25 1.89 1.46 1.45 0.56 0.58 0.34 0.48 1.01 0.75 0.7 0.79 0.76 0.79 0.34 0.27
Al2O3 12.1 16.21 13.38 16.9 16.5 14.45 13.4 14.14 12.81 16.08 15.15 14.56 16.06 14.87 16.15 10.95 9.61
Fe2O3 0.62 9.82 10.27 9.97 9.58 2.58 3.73 2.52 4.66 8.53 9.99 9.66 9.16 9.79 9.23 1.81 67.38
MnO 0.01 0.14 0.17 0.14 0.23 0.03 0.04 0.05 0.02 0.14 0.18 0.17 0.14 0.15 0.14 0.06 0.48
MgO 0.34 5.47 2.77 3.74 4.19 0.59 0.91 1.03 1.68 5.95 5.41 5.13 3.24 4.29 3.44 0.82 0.06
CaO 0.02 8.98 5.25 8.24 8.76 1.13 0.55 2.36 0.37 3.97 9.16 9.65 7.27 9.07 8.4 3.07 0.34
CaO* n.d. n.d. n.d. 0.05 1.46 0.15 n.d. 1.15 0.02 1.78 1.18 2.97 4.66 2.7 5.13 0.96 0.02
Na2O n.d. 2.56 3 3.19 2.09 3.84 2.05 2.59 1.17 3.51 1.66 1.2 2.65 0.9 2.36 2.21 0.11
K2O 2.77 1.77 2.91 1.77 1.53 3.81 3.4 2.25 1.76 2.69 1.43 1.23 1.96 1.33 2 1.89 0.52
P2O5 0.05 0.42 1.03 0.39 0.52 0.12 0.15 0.06 0.11 0.38 0.1 0.08 0.11 0.1 0.11 0.1 0.15
LOI 3 1.59 2.25 1.7 4.82 3.2 2.4 5.3 3.12 7.12 3.1 7.2 10.2 6.35 11.3 3.98 4.8
CO2 n.d. n.d. n.d. 0.06 1.91 0.21 n.d. 1.45 0.13 4.32 1.69 4.05 5.92 3.51 6.32 1.03 0.02
CaCO3* n.d. n.d. n.d. 0.09 2.61 0.27 n.d. 2.05 0.04 3.18 2.11 5.3 8.32 4.82 9.16 1.71 0.04
Cr 11 121 5 34 141 16 30 13 19 161 136 136 136 153 143 19 27
Ni 6 56 0 27 73 0 14 7 13 50 18 55 66 74 67 11 28
Co 9 42 35 23 45 16 18 5 19 32 38 35 36 50 41 19 24
Sc 10 30 26 29 28 10 9 7 11 23 36 34 38 43 38 7 25
V 24 220 198 312 250 67 91 43 67 179 198 192 210 225 207 46 786
Pb 37 10 55 6 47 68 56 20 26 42 4 7 8 8 9 32 76
Zn 13 85 122 45 98 59 50 45 49 58 47 58 80 76 81 55 55
Rb 154 43 67 44 34 100 128 100 75 90 42 41 68 46 73 84 24
Ba 246 683 982 664 658 671 1564 757 872 1105 753 1010 325 1290 282 407 218
Sr 41 572 424 606 573 247 411 209 188 451 175 269 318 264 394 250 85
Ga 14 19 20 19 20 16 16 14 14 17 18 14 19 16 19 12 14
Ta 1.79 1.15 1.51 0.3 1.64 1.49 1.3 0.4 1.22 1.25 0.5 0.4 0.7 0.17 0.6 1.44 0.2
Nb 16.6 13.2 24.4 10.4 14.8 10.4 14.7 9.1 12.2 15.5 6.3 5 5.9 7.6 6.2 12.9 6.2
Hf 8.34 4.77 14.5 5.3 6.43 10.6 5.15 4.4 6.03 6.88 4.3 3.5 4.5 3.8 4.3 5.24 3.4
Zr 240 211 376 221 253 172 206 145 176 127 155 138 154 152 162 160 185
Y 35 32 60 29 38 24 14 23 19 24 28 28 25 32 25 17 14
Th 15.45 5.32 6.28 3.4 4.22 10.58 14.9 12.4 12.3 6.11 5.5 6.6 6.8 8.68 6.8 13.95 7.6
U 1.88 1.26 1.76 0.8 1.45 3.59 3.89 2.5 2.36 2.29 1.8 1.6 2 1.04 1.9 1.51 12.9
La n.d. n.d. 79.31 30.4 n.d. n.d. n.d. 41.1 n.d. 34.32 18.5 19.4 17.4 n.d. 20.6 n.d. 8.8
Ce n.d. n.d. 115.1 68.8 n.d. n.d. n.d. 81.6 n.d. 42.37 42.8 38.6 39.7 n.d. 43.9 n.d. 78.5
Pr n.d. n.d. 15.46 8.52 n.d. n.d. n.d. 8.57 n.d. 1.17 4.94 4.5 4.52 n.d. 5.18 n.d. 2.81
Nd n.d. n.d. 50.13 36.4 n.d. n.d. n.d. 31.5 n.d. 64.01 20.5 19.2 19 n.d. 21 n.d. 12.5
Sm n.d. n.d. 8.22 7.11 n.d. n.d. n.d. 5.49 n.d. 2.18 4.31 3.92 4.29 n.d. 4.68 n.d. 3.59
Eu n.d. n.d. 1.89 1.83 n.d. n.d. n.d. 1.03 n.d. 1.24 1.18 1.09 1.13 n.d. 1.14 n.d. 0.88
Gd n.d. n.d. 6.09 6.66 n.d. n.d. n.d. 4.88 n.d. 1.69 4.71 4.11 4.12 n.d. 4.8 n.d. 4.1
Tb n.d. n.d. 0.54 0.95 n.d. n.d. n.d. 0.73 n.d. n.d. 0.81 0.73 0.74 n.d. 0.8 n.d. 0.75
Dy n.d. n.d. 2.84 5.1 n.d. n.d. n.d. 3.83 n.d. 0.01 5.39 4.71 5.1 n.d. 5.26 n.d. 4.06
Ho n.d. n.d. n.d. 1.12 n.d. n.d. n.d. 0.81 n.d. n.d. 1.02 0.96 1.07 n.d. 1.07 n.d. 0.79
Er n.d. n.d. 0.99 3.05 n.d. n.d. n.d. 2.3 n.d. 0.12 3.02 2.76 3.01 n.d. 3.13 n.d. 2.2
Tm n.d. n.d. n.d. 0.44 n.d. n.d. n.d. 0.33 n.d. n.d. 0.49 0.43 0.46 n.d. 0.46 n.d. 0.37
Yb n.d. n.d. 0.91 2.95 n.d. n.d. n.d. 2.25 n.d. n.d. 3.18 2.81 3.18 n.d. 2.94 n.d. 2.53
Lu n.d. n.d. 0.12 0.5 n.d. n.d. n.d. 0.37 n.d. 0.03 0.5 0.45 0.44 n.d. 0.43 n.d. 0.4
Chem.Lit Psam. CaO++ CaO++ CaO++ CaO++ Rest++ Psam. Rest++ Psam. Pelite CaO++ CaO++ CaO++ CaO++ CaO++ Psam. Rest--
Zr/Ti 960 168.8 198.94 151.5 174.48 307.14 355.17 426.76 366.66 125.74 207.33 197.14 195.94 200 206.07 470.58 686.29
Nb/Y 0.47 0.41 0.4 0.35 0.38 0.43 1.05 0.39 0.64 0.64 0.22 0.17 0.22 0.23 0.24 0.75 0.41
Th/Sc 1.54 0.17 0.24 0.11 0.15 1.05 1.65 1.77 1.11 0.26 0.15 0.19 0.17 0.2 0.17 1.99 0.3
Ti/Nb 90 568 464 842 587 323 237 224 236 391 714 839 803 600 764 158 261
CIA 80.1 42.9 46.5 44.3 48.9 54.7 63.4 61.7 75.2 57.6 44.9 48.8 59.4 51 57.9 54.1 90.6
PIA 100 42.1 45.5 43.7 48.8 56.8 70.6 64.9 82.4 59.6 44.4 48.7 61.1 51.1 59.3 55.1 95.4
CIW 100 45.2 52.2 46.7 51.4 64.8 76.8 69.1 84.6 64.3 47.1 51.1 64.4 53.7 62.7 60.2 95.7
Eu/Eu* n.d. n.d. 0.82 0.81 n.d. n.d. n.d. 0.61 n.d. 1.97 0.8 0.83 0.82 n.d. 0.74 n.d. 0.7
REE n.d. n.d. 58.89 6.96 n.d. n.d. n.d. 12.34 n.d. n.d. 3.93 4.67 3.7 n.d. 4.73 n.d. 2.35
LREE n.d. n.d. 6.07 2.69 n.d. n.d. n.d. 4.71 n.d. 9.91 2.7 3.12 2.55 n.d. 2.77 n.d. 1.54
HREE n.d. n.d. 5.42 1.83 n.d. n.d. n.d. 1.76 n.d. n.d. 1.2 1.19 1.05 n.d. 1.32 n.d. 1.31
Σ REE n.d. n.d 281.6 173.83 n.d. n.d. n.d 184.79 0 147.14 111.35 103.67 104.16 n.d. 115.39 n.d. 122.28

Note: Oxides and LOI in %, other elements in ppm. X is mean value for each group of sandstones; SD is standard derivation for that mean. Abbreviations: n.d.: not detected; CaCO* = maximum CaO in Carbonates recalculated from CO2; Chem.Lit: Chemical lithology [7] (s. Fig. 7); CaO++: CaO enriched samples; Psam.: Psammite classified samples; Rest++: enriched in SiO2 and Al2O3; Rest--: impoverished in SiO2 and Al2O3;. Eu/Eu* = EuN/(SmNxGdN)0.5 Samples are not LOI-free recalculated.

Table 16.

Simple statistics of the selected geochemical parameters of the El Tranquilo Group, Cañadón Largo Formation, and Laguna Colorada Formation.

SiO2/AL2O3 K2O/Na2O CIA Ti/Nb SiO2/K2O Th/Sc Zr/Sc
El Tranquilo group Mean 5.26 3.35 61 288 23.38 2.01 21.91
95% 4.99 2.11 59 254 19.32 1.5 18.03
+95% 5.53 4.59 63 322 25.44 2.52 25.8
99% 4.9 1.7 58 243 18.30 1.33 16.76
+99% 5.62 5 64 333 26.45 2.68 27.06
Cañadón Largo Fm. Mean 5.43 2.7 63 252 21.25 2.31 22.87
95% 5.16 1.99 62 232 18.87 1.5 17.22
+95% 5.69 3.41 65 273 23.63 3.11 28.53
99% 5.07 1.76 61 225 18.05 1.23 15.33
+99% 5.78 3.64 66 280 24.42 3.38 30.42
Laguna Colorada Fm. (Section IV) Mean 5.87 8.93 52 211 29.59 1.84 26.95
-95% 4.82 -2.32 39 142 9.74 0.98 13.43
+95% 6.91 20.17 65 280 49.45 2.7 40.47
99% 4.31 -8.11 33 109 0.21 0.57 6.94
+99% 7.42 25.96 71 313 58.98 3.11 46.96

Table 17.

Simple statistics of selected Trace and rare earth elements (REEs) of the El Tranquilo Group, Cañadón Largo Formation, and Laguna Colorada Formation.

Rb (ppm) Ba (ppm) Sr (ppm) La (ppm) Ce (ppm) Pr (ppm) Nd (ppm) Sm (ppm) Eu (ppm) Gd (ppm) Tb (ppm) Dy (ppm) Ho (ppm) Er (ppm) Tm (ppm) Yb (ppm) Lu (ppm) Eu/Eu* LaN/YbN LaN/SmN GdN/YbN Σ REE (ppm)
El Tranquilo anticline Mean 134 1030 224 41.02 79.93 8.80 33.19 5.75 1.20 4.99 0.73 3.96 0.73 2.07 0.32 2.22 0.33 0.72 14.07 4.70 1.91 184.58
95% 148 1261 255 47.98 92.95 10.27 38.23 6.60 1.37 5.70 0.82 4.47 0.81 2.34 0.36 2.47 0.37 0.79 17.17 5.26 2.16 211.82
+95% 153 1336 265 50.33 97.35 10.76 39.93 6.88 1.42 5.94 0.85 4.64 0.84 2.43 0.37 2.56 0.39 0.81 18.22 5.45 2.24 221.01
99% 120 798 194 34.06 66.91 7.34 28.15 4.91 1.03 4.28 0.65 3.44 0.66 1.80 0.29 1.96 0.29 0.64 10.97 4.14 1.67 157.34
+99% 115 723 184 31.71 62.51 6.85 26.45 4.62 0.98 4.04 0.62 3.27 0.63 1.70 0.28 1.88 0.27 0.62 9.92 3.95 1.59 148.14
Cañadón Largo Fm. Mean 147 1153 194 45.79 89.31 9.86 34.22 5.81 1.14 4.80 0.70 3.78 0.68 2.03 0.30 2.07 0.32 0.67 15.21 5.08 1.85 200.30
95% 162 1522 222 56.91 111.06 12.02 41.89 7.06 1.35 5.80 0.83 4.49 0.78 2.40 0.34 2.44 0.39 0.72 18.28 5.74 2.06 246.05
+95% 166 1645 232 60.91 118.88 12.80 44.64 7.50 1.43 6.16 0.87 4.74 0.81 2.53 0.36 2.57 0.41 0.74 19.38 5.97 2.13 262.48
99% 133 784 167 34.68 67.55 7.70 26.54 4.57 0.92 3.80 0.58 3.07 0.58 1.65 0.26 1.71 0.26 0.63 12.14 4.43 1.65 154.55
+99% 129 661 157 30.68 59.74 6.92 23.79 4.13 0.84 3.44 0.54 2.82 0.54 1.52 0.24 1.58 0.23 0.61 11.04 4.20 1.57 138.12
Laguna Colorada Fm. (Section IV) Mean 159 736 295 42.23 78.51 9.79 36.84 7.73 1.54 7.10 0.95 5.09 0.74 2.18 0.32 2.60 0.36 0.62 11.66 3.91 2.21 193.82
95% 255 1199 516 52.62 108.65 15.03 52.52 11.16 2.49 10.17 1.32 7.00 1.11 3.09 0.40 3.34 0.42 0.79 15.88 5.65 3.00 255.94
+95% 302 1421 622 58.52 125.79 18.48 61.43 13.11 3.03 11.92 1.54 8.08 1.60 3.61 0.50 3.75 0.46 0.89 18.28 6.64 3.45 291.26
99% 63 273 74 31.85 48.37 4.55 21.16 4.30 0.59 4.03 0.58 3.18 0.36 1.26 0.24 1.87 0.29 0.45 7.44 2.16 1.42 131.70
+99% 17 51 -31 25.94 31.23 1.11 12.24 2.35 0.05 2.29 0.36 2.10 -0.13 0.74 0.13 1.45 0.25 0.35 5.04 1.17 0.97 96.38
Roca Blanca Fm. (Section V) Mean 153 1123 158 36.58 70.15 7.66 27.95 4.40 0.90 3.84 0.54 3.08 0.59 1.63 0.27 1.71 0.27 0.68 14.87 5.25 1.87 159.56
95% 206 1609 190 49.79 92.42 10.11 35.77 5.50 1.04 5.04 0.66 3.92 0.78 2.23 0.37 2.46 0.37 0.85 19.32 6.73 2.32 208.66
+95% 230 1822 203 60.83 111.02 12.16 42.30 6.42 1.16 6.04 0.76 4.62 0.94 2.74 0.45 3.10 0.46 0.99 23.03 7.97 2.69 249.69
99% 99 637 127 23.36 47.88 5.21 20.13 3.30 0.76 2.65 0.42 2.24 0.40 1.03 0.17 0.95 0.16 0.51 10.43 3.76 1.43 110.45
+99% 75 425 113 12.32 29.28 3.16 13.60 2.38 0.64 1.65 0.31 1.53 0.25 0.52 0.09 0.31 0.07 0.37 6.72 2.52 1.05 69.42

Table 18.

CIA, Ti/Nb ratios, and SiO2/K2O ratio values of geochemical standards [8] used for comparison in Fig. 10, Fig. 16.

Standard Rock type CIA Ti/Nb SiO2/K2O Standard Rock type CIA Ti/Nb SiO2/K2O
SARM40 Carbonatite 0.5 30 102 MK-1 Granodiorite 48.2 352 16
JH-1 Hornblendite 16.1 93 NIM-S Syenite 48.6 66 4
WMG-1 Gabbro 23.7 410 SKD-1 Quartz-Diorite 48.6 430 20
WBG-1 Gabbro 24.6 54 T-1 Tonalite 48.6 50
MRG-1 Gabbro 24.8 1130 217 JG-3 Granodiorite 48.8 514 25
BE-N Basalt 25 149 27 GS-N Granite 48.9 194 14
BR Basalt 25.6 159 27 MO-9 Anorthosite-Gabbro 48.9 839 107
SARM48 Granite 30.1 3 15 GOG-1 Gabbro 49 898
MO-3 Gabbro 31.5 184 JR-3 Rhyolite 49.1 16
SY-3 Syenite 31.7 6 14 MK-4 Granite 49.1 124 17
SY-2 Syenite 32.3 31 13 MO-13 Olivine-Basalt 49.2 766 52
SDG-1a Gabbro 34.9 1281 15 MK-2 Granodiorite 49.3 252 20
SDG-2 Gabbro 35.4 1228 15 G-B Granite 49.3 23
BHVO-1 Basalt 35.6 855 96 QLO-1 Quartz-Latite 49.4 363 18
BIR-1 Basalt 36.3 9592 1769 DVD Hornblende Dacite 49.4 420 26
MO-7 Orthoklase-Gabbro 36.4 1694 54 GR Granite 49.5 14
GSR-3 Basalt 36.9 208 19 BM Basalt 49.6 247
JP-1 Peridotite 37 14130 NIM-G Granite 49.9 10 15
MY-3 Hornblendite 37.5 99 JG-2 Granite 50 16 16
TDB-1 Diabase 37.8 55 GA Granite 50.2 190 17
W-1 Diabase 38.4 648 82 SG-1a albitized Granite 50.2 1 17
GV Gabbro 38.4 190 JR-1 Rhyolite 50.4 39 17
JB-1 Basalt 38.7 233 36 DVT biotitic Trachyrhyolite 50.5 7 16
SARM50 Dolerite 38.8 516 84 RGM-1 Rhyolite 50.6 180 17
JB-1a Basalt 38.9 289 36 JG-1 Granodiorite 50.6 124 18
W-2 Diabase 39.2 804 83 GSR-1 Granite 50.7 43 14
NIM-N Norite 39.8 600 210 G-2 Granite 50.7 240 15
NBS688 Basalt 40.1 1228 254 JG-1a Granodiorite 50.7 125 18
JB-2 Basalt 40.3 8918 126 PCC-1 Peridotite 50.7 60 5958
MB-H metabasic Rock 40.8 928 18 GH Granite 50.9 6 15
BCR-1 Basalt 40.8 959 32 G-1 Granite 51 72 13
MO-12 Andesite-Basalt 41.7 689 44 JR-2 Rhyolite 51.1 28 17
MO-2 Basalt 41.8 50 GSP-1 Granodiorite 51.7 140 12
JB-3 Basalt 41.9 3779 65 GM Granite 51.7 71 15
GL-O Glauconite 42 113 6 DVR albitized Rhyodacite 51.7 213 18
JGb-1 Gabbro 42.3 3469 181 MK-3 Granite 51.8 126 12
MO-5 Gabbro 42.4 4411 47 SG-2 Alaskite Granite 52 276 10
MO-14 Olivine-Basalt 42.7 883 101 DTS-1 Dunite 55.4 14 40409
MO-1 Diabase 43.5 885 28 MA-N Granite 56.1 0 20
MO-8 Gabbro 43.5 1863 112 2B Granitoid 57.5 1 25
MO-4 Gabbro 43.6 23 DVG greisenized Granit 57.9 1 21
DNC-1 Dolerite 43.6 959 205 GSR-2 Andesite 62.2 458 32
NIM-P Pyroxenite 43.8 567 SDC-1 Mica Shist 63 336 20
MB Monzonite 44.9 12 M I Chlorite-Muscovite-Shist 65.1 28
JA-2 Andesite 44.9 410 31 JSl-1 Slate 65.4 20
NS-1 Nepheline Syenite 45 32 8 JSl-2 Slate 66.7 20
DVB bipyroxene basaltic Andesite 45 605 27 MY-1 Peridotite 66.9 1035
SNS-2 Nepheline Syenite 45.2 22 9 MO-15 porphyric Andesite-Basalt 68 775 26
WPR-1 Peridotite 45.3 370 ASK-2 Shist 69.1 917 10
MDO-G Trachyte 45.7 112 13 SBO-1 Shist 69.2 331 15
ISH-G Trachyte 46 87 8 MY-2 Dunite 75.1 1402
JGb-2 Gabbro 46 778 DZE-2 ultrabasic Rock 77.7 3775
JA-1 Andesite 46.1 3068 82 GnA Greisen 78.2 1 27
JA-3 Andesite 46.2 1359 44 SARM47 Serpentinite 79.2 1814
SG-3 Granite 46.3 92 16 NIM-D Dunite 79.7 3896
STM-1 Syenite 46.4 3 13 SSL-2 Shist 80.1 378 17
DVA Hornblende Hyaloandesite 46.7 1049 68 SDU-1 Dunite 93.4 3957
AGV-1 Andesite 47.3 420 20 DZE-1 ultrabasic Rock 96.1 3434
DR-N Diorite 47.5 934 31 SW Serpentinite 96.9
AC-E Granite 47.8 6 15 SARM44 Sillimanite Schist 99.1 114 193

For the analysis of 45 samples, the material was crushed and dried to a constant weight at 105 °C. The loss on ignition (LOI) was determined after annealing for 1.5 h at 1,050 °C, than, the material was mixed with one part lithium tetraborate (Li2B4O7) and melted at 1,400 °C in a graphite crucible and poured into platinum pouring bowls. Major and trace element concentrations were determined using a sequentially operating, wavelength-dispersive X-ray fluorescence spectrometer (SIEMENS SRS 303 AS, in the 1990s at the Geological Institute of Ludwig Maximilians University of Munich, Germany) on a volatile-free base (major element concentrations as oxides in weight %, and trace element concentrations in ppm). In this method the measured values for Fe2O3 are total iron values. Rare earth elements (REEs) were analyzed using atomic emission spectroscopy, with inductively coupled plasma excitation on an ICP-AES (Jobin YVON Model 38 plus). Thirty-five samples were analyzed and pulverized by ICP-ES (for oxides of Ba, Ni, and Sc), and by ICP-MS (for trace elements and REEs) at ACME Laboratories, Vancouver, Canada. This samples are marked with an asterisk (*) in the Table 10, Table 11, Table 12, Table 13, Table 14, Table 15.

All the geochemical data were plotted separately for the different sections into the following diagrams SiO2/Al2O3 after [9] (Fig. 7); K2O/Na2O [10], modified by [1] (Fig. 8); K2O/Na2O–SiO2/Al2O3 [1] (Fig. 9); Na2O + CaO* vs. Al2O3 vs. K2O, after [11], [19] modified by [1] (Fig. 10); Na2O+K2O+CaO vs. FeO+MgO vs. Al2O3 [12] (Fig. 11); K/Th [13] (Fig. 12); Th/Sc–Zr/Sc ratio [14] (Fig. 13); Th/Sc–Cr [1] (Fig. 14); Ti/Nb [15] (Fig. 15); Ti/Nb–SiO2/K2O [1] (Fig. 16); Nb/Y–Zr/TiO2 [16] (Fig. 17).

Fig. 7.

Fig. 7

Geochemical sediment classification of El Tranquilo sediments and igneous rocks: SiO2–Al2O3 after [9] (modified).

Fig. 8.

Fig. 8

Geochemical sediment classification of El Tranquilo sediments and igneous rocks: K2O–Na2O after [10] (modified).

Fig. 9.

Fig. 9

Geochemical sediment classification of El Tranquilo sediments and igneous rocks: K2O/Na2O–SiO2/Al2O3 after [1].

Fig. 11.

Fig. 11

Geochemical sediment classification of El Tranquilo sediments and igneous rocks: FeO+MgO/Na2O+K2O+CaO*/Al2O3 after [12].

Fig. 12.

Fig. 12

Geochemical sediment classification of El Tranquilo sediments and igneous rocks: K/Th after [13].

Fig. 13.

Fig. 13

Geochemical sediment classification of El Tranquilo sediments and igneous rocks: Zr/Sc–Th/Sc diagram after [14] modified by [1].

Fig. 14.

Fig. 14

Geochemical sediment classification of El Tranquilo sediments and igneous rocks: Th/Sc–Cr after [1].

Fig. 15.

Fig. 15

Geochemical sediment classification of El Tranquilo sediments and igneous rocks: Ti–Nb after [15].

Fig. 17.

Fig. 17

Geochemical sediment classification of El Tranquilo sediments and igneous rocks: Nb/Y–Zr/TiO2 after [16].

Acknowledgements

The author is indebted to many colleagues and institutions: to Hubert Miller, Werner Loske, Klaus Weber–Diefenbach, and the staff of the Institute of General and Applied Geology of the Munich University in Germany, who made this data compilation feasible and carried out the geochemical analyses. The grant from the Deutsche Forschungsgemeinschaft (German Science Foundation: Az.IIC6-Ro179/12-1 and Az.IIC6-Ro179/16-1) are gratefully acknowledged. For the second part of the analyses did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Footnotes

Transparency document

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.11.062.

Transparency document. Supplementary material

Supplementary material.

mmc1.pdf (150KB, pdf)

.

References

  • 1.Jenchen U. Petrography and geochemistry of the Triassic El Tranquilo Group, Deseado Massif, Patagonia, Argentina: implications for provenance and tectonic setting. J. South Am. Earth Sci. 2018;88:530–550. [Google Scholar]
  • 2.Google Earth Pro, 〈https://www.google.com/earth/download/gep/agree.html〉, 2018.
  • 3.R.L. Folk, Petrology of sedimentary rocks, Hemphill’s, Austin, TX., 182 p, 1973.
  • 4.Dickinson W.R., Suczek C.R. Plate tectonics and sandstone composition. AAPG Bull. 1979;63(12):2164–2182. [Google Scholar]
  • 5.Dickinson W.R., Beard L.S., Brakenridge G.R., Erjavec J.L., Ferguson R.C., Inman K.F., Knepp R.A., Lindberg F.A., Ryberg R.T. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. GSA Bull. 1983;94(2):222–235. [Google Scholar]
  • 6.Marsaglia K.M., Pavia J.A., Maloney S.J. Eocene–Albian sandstones and grainstones recovered during ODP Leg 210: implications for passive margin (rift-to-drift) sandstone provenance models. In: Tucholke B.E., Sibuet J.C., Klaus A., editors. Proceedings of the Ocean Drilling Program, Scientific Results. Vol. 210. Ocean Drilling Program; College Station, TX: 2007. pp. 1–47. [Google Scholar]
  • 7.Jenchen U. Fazies und Geochemie in kontinentalen Trias-Becken im westlichen Argentinien und in Patagonien (30°-50°) Mu¨nst. Forsch. Geol. Paläont. 2001;91:441. [Google Scholar]
  • 8.Govindaraju K. Compilation of working values and description for 383 geostandards. Geostand. Newsl. 1994;18:1–158. [Google Scholar]
  • 9.Jenchen U., Rosenfeld U. Geochemical investigations as a tool to sedimentary analyses demonstrated in Argentinean continental Triassic sediments – Methods and aspects. Neues Jahrb. für Geol. und Paläontologie Abh. 2007;246(1):37–61. [Google Scholar]
  • 10.Pettijohn F.J. Chemical composition of sandstones: excluding carbonate and volcanic sands: data of geochemistry. U. S. Geol. Surv. , Prof. Pap. 1963;440(S):1–21. [Google Scholar]
  • 11.Fedo C.M., Nesbitt H.W., Young G.M. Unraveling the effects of potassium metasomatism in sedimentary rocks and Paleosols, with implications for paleoweathering conditions and provenance. Geology. 1995;23(10):921–924. [Google Scholar]
  • 12.Englund J.O., Jørgensen, P P. A chemical classification system for argillaceous sediments and factors affecting their composition. Geol. Foren. Stockholm Forhandlingar. 1973;95(1):87–97. [Google Scholar]
  • 13.Schlumberger, Log Interpretation Charts. p. 207; Schlumberger, New York, USA, 1985.
  • 14.McLennan S.M., Hemming S., McDaniel D.K., Hanson G.N. Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson J., Basu A., editors. Processes Controlling the Composition of Clastic Sediments. Vol. 284. GSA Special Paper; 1993. pp. 21–40. [Google Scholar]
  • 15.Augustsson C., Jenchen U. Provenance of northeast Mexican sedimentary rocks during Pangea formation and the “hidden” volcanic source. GAEA heidelbergensis. 2011;18:36. [Google Scholar]
  • 16.Winchester J.A., Floyd P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977;20:325–343. [Google Scholar]
  • 17.Ingersoll R.V., Fullard T.F., Ford R.L., Grimm J.P., Pickle J.D., Sares S.W. The effect of grain size on detrital modes; a test of the Gazzi-Dickinson point-counting method. J. Sediment. Res. 1984;54(1):103–116. [Google Scholar]
  • 18.D. Marsal, Statistische Methoden für Erdwissenschaftler. 152 p.; Stuttgart (Schweizerbart), 1967.
  • 19.Nesbitt H.W., Young G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature. 1982;299:715–717. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary material.

mmc1.pdf (150KB, pdf)

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES