After spinal cord injury (SCI), axons fail to regenerate in the adult mammalian central nervous system (CNS) leading to permanent paralysis.[1] At the site of injury, glial reaction occurs resulting in the formation of glial scar. Glial reaction results in recruitment of microglia, oligodendrocytes precursors, meningeal cells, astrocytes, and stem cells, besides containing oligodendrocytes and myelin debris. Most of these cells release molecules, inhibitory to axon regeneration, resulting in failure of regeneration. Even remyelination may be unsuccessful in such an environment.[2] Glial scar also contains chondroitin sulfate proteoglycan (CSPG), which along with inflammation, is recovery inhibiting factor.[3]
Treatment strategy targeting CSPG using chondroitinase ABC (ChABC) enzyme offers the opportunity to improve the outcome of SCI. ChABC is obtained from Proteus vulgaris and it acts by degrading the glycosaminoglycan side chains of CSPGs.[4] Degradation of CSPG with the use of ChABC removes a regeneration inhibition from the glial scar. The plasticity in the CNS is increased with the removal of perineural nets. The mechanism of action of ChABC is unique and does not overlap with mechanisms of other available treatment options for SCI, thus making ChABC an attractive option for the treatment of SCI in combination with other strategies.[5]
Treatment with ChABC has shown promising results in animal models of SCI. In a study in male Wistar rats using combination of low-level laser therapy (LLLT) as anti-inflammatory agent and ChABC as CSPG digesting factor after inducing SCI by “clip compression,” combination of LLLT and ChABC showed more effect on reduction of cavity size, improvement of myelination and number of axons around the cavity and decreasing the expression of glycogen synthase kinase-3 β, CSPG and aquaporin 4 expression compared to LLLT and ChABC alone, resulting in more functional recovery in combination group.[3] In another experiment, ChABC treatment reinstated postsynaptic activity below the lesion as evident to electrical stimulation of corticospinal neurons and promoted functional recovery of locomotor and proprioceptive behaviors in rats.[1] ChABC has also shown to promote functional recovery in acute SCI in rats when used in combination with rehabilitation, even after 4 weeks of spinal injury.[6]
In a recently concluded study with dog models of naturally occurring severe chronic spinal cord injuries, intraspinal injections of ChABC have shown favorable results and authors have recommended to start human trials.[7]
Although no human trials have been conducted till date, the results in animal studies are promising and points toward the potential benefit of ChABC in SCI.
References
- 1.Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002;416:636–40. doi: 10.1038/416636a. [DOI] [PubMed] [Google Scholar]
- 2.Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull. 1999;49:377–91. doi: 10.1016/s0361-9230(99)00072-6. [DOI] [PubMed] [Google Scholar]
- 3.Janzadeh A, Sarveazad A, Yousefifard M, Dameni S, Samani FS, Mokhtarian K, et al. Combine effect of chondroitinase ABC and low level laser (660nm) on spinal cord injury model in adult male rats. Neuropeptides. 2017;65:90–9. doi: 10.1016/j.npep.2017.06.002. [DOI] [PubMed] [Google Scholar]
- 4.Raspa A, Bolla E, Cuscona C, Gelain F. Feasible stabilization of chondroitinase abc enables reduced astrogliosis in a chronic model of spinal cord injury. CNS Neurosci Ther 2018. [Epub ahead of print] [Last accessed 28 Sep 2018]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29855151 . [DOI] [PMC free article] [PubMed]
- 5.Zhao RR, Fawcett JW. Combination treatment with chondroitinase ABC in spinal cord injury – Breaking the barrier. Neurosci Bull. 2013;29:477–83. doi: 10.1007/s12264-013-1359-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Wang D, Ichiyama RM, Zhao R, Andrews MR, Fawcett JW. Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. J Neurosci. 2011;31:9332–44. doi: 10.1523/JNEUROSCI.0983-11.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Hu HZ, Granger N, Pai SB, Bellamkonda RV, Jeffery ND. Therapeutic efficacy of microtube-embedded chondroitinase ABC in a canine clinical model of spinal cord injury. Brain. 2018;141:1017–27. doi: 10.1093/brain/awy007. [DOI] [PubMed] [Google Scholar]
