Skip to main content
Non-coding RNA Research logoLink to Non-coding RNA Research
. 2018 Aug 30;3(4):161–173. doi: 10.1016/j.ncrna.2018.08.001

Relations between approved platinum drugs and non-coding RNAs in mesothelioma

Bernhard Biersack 1
PMCID: PMC6260483  PMID: 30809599

Abstract

Malignant mesothelioma diseases feature an increasing risk due to their severe forms and their association with asbestos exposure. Platinum(II) complexes such as cisplatin and carboplatin are clinically approved for the therapy of mesothelioma often in combination with antimetabolites such as pemetrexed or gemcitabine. It was observed that pathogenic properties of mesothelioma cells and the response of mesothelioma tumors towards platinum-based drugs are strongly influenced by non-coding RNAs, in particular, by small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). These non-coding RNAs controlled drug sensitivity and the development of tumor resistance towards platinum drugs. An overview of the interactions between platinum drugs and non-coding RNAs is given and the influence of non-coding RNAs on platinum drug efficacy in mesothelioma is discussed. Suitable non-coding RNA-modulating agents with potentially beneficial effects on cisplatin treatment of mesothelioma diseases are mentioned. The understanding of mesothelioma diseases concerning the interactions of non-coding RNAs and platinum drugs will optimize existing therapy schemes and pave the way to new treatment options in future.

Keywords: MicroRNA, Long non-coding RNA, Mesothelioma, Cisplatin, Carboplatin, Anticancer drugs

Abbreviations: ABC, ATP-binding cassette; AKBA, 3-acetyl-11-keto-β-boswellic acid; AKI, acute kidney injury; Bcl-2, B-cell lymphoma 2; CAF, cancer-associated fibroblast; CBDCA, cyclobutane-1,1-dicarboxylate; DADS, diallyl sulfide; DHA, docosahexaenoic acid; DIM, 3,3′-diindolylmethane; DMPM, diffuse malignant peritoneal mesothelioma; EGCG, epigallocatechin-3-gallate; EMT, epithelial-mesenchymal transition; HOTAIR, HOX transcript antisense RNA; RA, retinoic acid; I3C, indole-3-carbinol; MALAT1, metastasis-associated lung adenocarcinoma transcript 1; MPM, malignant pleural mesothelioma; MRP1, multidrug resistance protein 1; NaB, sodium butyrate; NSCLC, non-small cell lung cancer; PEG, polyethylene glycole; PEITC, phenethylisothiocyanate; PDCD4, programmed cell death 4; PTEN, phosphatase and tensin homolog; SAHA, suberoylanilide hydroxamic acid; SFN, sulforaphane; TNBC, triple-negative breast cancer; TSA, trichostatin A

1. Introduction

Mesothelioma features an aggressive tumor disease with high mortality rates (median survival of ca. 1 year after diagnosis) and ca. 40.000 deaths per year worldwide [1]. Malignant pleural mesothelioma (MPM) derives from the pleura tissue covering the lungs and comprises ca. 80% of all diagnosed mesotheliomas [2]. Further rare mesothelioma diseases are represented by peritoneal mesothelioma, pericardial mesothelioma, and tunica vaginalis mesothelioma [2]. MPM itself can be subdivided into three different histological forms, the most common epitheloid mesothelioma (50–70%, similar to carcinomas), sarcomatoid mesothelioma (10–20%, similar to sarcomas) and biphasic mesothelioma (30%, which displays a mixture of epitheloid and sarcomatoid cell forms) [3]. Sarcomatoid and biphasic forms are more aggressive and less sensitive to chemotherapy than epitheloid mesotheliomas and showed worse prognosis than epitheloid mesotheliomas [4]. In advanced stages of MPM associated with distinctly worse prognoses metastases can occur in lung, lymph nodes, muscles, chest wall, peritoneum, pericardium, bones, liver, and brain [5]. A group of carcinogenic silicate fibers commonly known as asbestos was identified as the most frequent reason for the development of mesothelioma [6]. The number of mesothelioma patients will probably rise in future mainly among male persons exposed to asbestos during their daily work and ca. 125 million people worldwide are exposed to asbestos every year [7]. The remarkably long time between asbestos exposure and the development of MPM (between 25 and 70 years after exposure) is unique and, thus, the vast majority of MPM patients is 60 years old and older [8,9]. Other reasons for the development of mesothelioma diseases comprise the exposure to the carcinogenic silicate fiber erionite (a non-asbestos fiber), exposure to zeolite and fiberglass, SV40 virus infection, tuberculosis, radiation, and genetic disposition, while the reason for the high occurrence of peritoneal mesothelioma among young Chinese women from the Eastern Chinese province Zhejiang is still uncovered [10,11].

The carcinogenic effects of asbestos fibers casually accompanied by other factors such as SV40 virus infection and genetic disposition (BAP1 mutation or inactivation) induce inflammation processes including the expression of catalytically active 5-LOX, enhanced Akt, Notch, VEGFR and EGFR signaling, and other immunological factors [12,13]. Cell necrosis caused by asbestos releases HMGB1 to the extracellular space, which triggers an inflammation response in macrophages and mesothelial cells leading to enhanced mesothelial cell transformation [13]. Aside altered protein expression, the levels of non-coding RNAs are often changed as well. Differences in miRNA expression were observed from mesothelioma cells when compared with benign samples and certain circulating miRNAs were identified in mesothelioma patients [13,14]. Meanwhile, miRNAs were identified as prognostic factors, as potential therapeutic targets and as therapeutic agents [14]. In particular, several miRNAs were identified which induce oncogenes (let-7, miR-9, miR-7-1, miR-15, miR-16, miR-34b/c, miR-203), inhibit apoptosis (miR-1, miR-17-92) and/or activate signaling pathways (miR-29c, miR-31, miR-34b/c, miR-126, miR-200) [15].

Indeed, there are only very few treatment options for mesothelioma patients at the moment. Surgery and radiation therapy is often difficult and no good option because of the problematic location of the primary tumors near vital organs [16,17]. Systemic platinum-based chemotherapy is often applied instead. Initially, cisplatin was solely applied frequently as first-line treatment but meanwhile a combination of cisplatin and pemetrexed initially tested by Vogelzang et al. is given in most cases as a distinctly more efficient first-line therapy of MPM [16,18]. In case that cisplatin is too toxic (in particular, too nephrotoxic) or the patient has pertinent pre-existing illnesses, cisplatin can be practically replaced by the much less toxic platinum complex carboplatin [19]. More recently, the combination of cisplatin or carboplatin, and pemetrexed with the VEGFR-inhibitor bevacizumab was claimed as a superior first-line therapy of MPM than the currently applied platinum plus pemetrexed therapy [20,21].

Non-coding RNAs such as microRNAs (miRNAs, highly conserved small RNAs of 22–23 nucleotides) are suitable tools to investigate the modes of drug resistance and activity in order to design improved therapy options for mesothelioma treatment [22,23]. Particularly short survivors of MPM displayed higher expression of miR-21–5p, miR-221–3p, and the miR-17-92 cluster (miR-17–5p, miR-20a-5p) associated with drug resistance and regulation of Hippo signaling, PI3K/Akt signaling and focal adhesion when compared with long survivors [23]. The biology of especially drug-resistant cancer stem-like cells is regulated by non-coding RNAs [24]. It was shown that the anticancer activity of platinum complexes was strongly regulated by miRNAs [25]. There are tumor suppressor miRNAs and oncogenic miRNAs (so-called oncomirs), and the mature miRNAs can regulate various genes by inhibition of the translation of target messenger RNAs (mRNAs) via binding to the 3′-untranslated region (3′UTR) of the target mRNA [[26], [27], [28]]. The clinical phase 1 trial with MPM patients treated with miRNA-16 mimic miRNA loaded minicells called TargomiR showed an acceptable safety profile and moderate clinical response, which may be improved by combination with other chemotherapeutic drugs or immune checkpoint inhibitors [29]. In addition to miRNAs, there are long non-coding RNAs (lncRNAs, defined as RNA molecules of more than 200 nucleotides) present in large numbers in the genome, which are of growing importance for the understanding of cancer diseases [30]. Many lncRNA genes have two exons and ca. 60% of the known lncRNA molecules have a poly-A tail [30]. Most lncRNAs are involved in chromatin remodeling, gene regulation and inhibition of smaller miRNA molecules [30,31]. The connection of various lncRNAs with the Wnt signaling pathway is particular intriguing [32]. This review provides an overview of the interactions of non-coding RNAs with the platinum complexes cisplatin and carboplatin, which are currently approved for mesothelioma therapy. The beneficial potential of various non-coding RNA modulating agents on cisplatin therapy of mesothelioma diseases is discussed.

2. Platinum complexes and their interactions with non-coding RNAs in mesothelioma

2.1. Cisplatin and carboplatin

Cisplatin, cis-(diammine)dichloridoplatinum(II), became the first platinum complex that was approved for anticancer therapy in the USA in 1978 after its biological activity had been discovered in 1969 (Fig. 1) [33,34]. Mechanistically, S— and N-bionucleophiles of proteins and nucleic acids (in particular, the N7-atom of guanine bases) in the cancer target cells replace the chlorido ligands of the square-planar complex cisplatin leading to toxic DNA crosslinks (e.g., 1,2-intrastrand crosslinks) and to the induction of apoptosis very often in a p53-dependent way [[34], [35], [36]]. In order to avoid chlorido ligand exchange in the infusion solution cisplatin is given to cancer patients as intravenous chloride infusions [34]. Cisplatin is one of the most potent cancer therapeutics and it is clinically applied against various tumor diseases including testicular cancer (where it shows a particularly high curing rate), ovarian cancer, cervix carcinoma, breast cancer, prostate carcinoma, endometrial cancer, bladder cancer, lung cancer (both NSCLC and SCLC forms), melanoma, various sarcomas, and head-and-neck cancer [34,37]. However, severe side-effects and the formation of drug resistance limit the application of cisplatin [38,39].

Fig. 1.

Fig. 1

Structures of the clinically approved platinum(II) complexes cisplatin and carboplatin.

The second platinum complex approved for anticancer therapy was carboplatin, cis-diammine(cyclobutane-1,1-dicarboxylate-O,O′)platinum(II), which has shown distinctly lower toxicity and reduced side-effects than cisplatin (Fig. 1) [34]. The O,O′-chelating ligand cyclobutane-1,1-dicarboxylate (CBDCA) of carboplatin replaced the chlorido ligands of cisplatin which reduced the reactivity of carboplatin when compared with cisplatin [34]. However, DNA adducts similar to cisplatin-adducts were also formed by carboplatin and cross-resistance to cisplatin was observed for carboplatin [34]. Further direct interactions of cisplatin and carboplatin with cancer-relevant ribonucleic acids such as non-coding RNAs are conceivable. Meanwhile, carboplatin has replaced cisplatin in the treatment of various tumor diseases (e.g., ovarian cancer, lung cancer, head-and-neck cancer, and cervix carcinomas) because of its better tolerability [34]. In these cases, intravenous infusions of carboplatin are given to the patients [34].

2.2. Cisplatin, non-coding RNAs and mesothelioma

Several miRNAs were identified which regulate mesothelioma cell sensitivity to cisplatin treatment (Fig. 2). The effects are often tumor-dependent. The upregulation of the oncomir miR-31 induced cisplatin resistance in ovarian cancer and NSCLC cells (the latter associated with ABCB1 transporter suppression), while suppression of miR-31 in prostate cancer cells led to cisplatin resistance [[40], [41], [42]]. In MPM cells, the expression of miR-31 induced increased resistance to cisplatin, however, a higher platinum content was identified in the cells with high miR-31 expression which was accompanied by a reduced intra-nuclear platinum content [43]. An indirect up-regulation of the transporter ABCB1 by miR-31 (via OCT1 down-regulation) associated with drug accumulation in lysosomes was discovered although direct ABCB1 upregulation led to cisplatin sensitivity like in NSCLC cells [41,43]. Thus, miR-31 prompts cisplatin resistance in MPM cells via an ABCB1-independent mode [43]. Chemotherapy of cisplatin in combination with pemetrexed (see below) led to differences in the expression of certain miRNAs in MPM tissues when compared with samples from non-neoplastic pleura tissues [44]. MiR-126, miR-143, miR-145 and miR-652 were down-regulated in biopsies or resected MPM tumors when compared to non-neoplastic pleura while the difference of the suppression of these miRNAs was less strong in resected MPM tumor samples after applied cisplatin/pemetrexed chemotherapies [44]. Thus, these miRNAs may feature diagnostic biomarkers for the detection of MPM. In addition, cisplatin/pemetrexed treatment up-regulated let-7c, miR-486–5p and miR-451 distinctly while miR-210 was significantly down-regulated when compared with chemotherapy-naïve biopsies [44]. In the case of miR-210, its expression was correlated with poor prognosis in MPM patients undergoing extrapleural pneumonectomy and cisplatin-resistant laryngeal cancer cells showed up-regulated miR-210 whose targets were NUPR1, HTRA1 and RGS10 associated with drug resistance [45,46]. In contrast to that, let-7c as a component of the miR-99a/let-7c/miR-125b cluster worked as a tumor suppressor in MPM [47]. In NSCLC, let-7c inhibited migration and invasion via ITGB3 and MAP4K3 targeting and the expression of let-7c re-sensitized cisplatin-resistant lung cancer cells (by suppression of ABCC2-transporter and Bcl-xl) and induced EMT reversal while let-7c was down-regulated in other cisplatin-resistant cancer types including resistant ovarian cancers and esophageal squamous cell carcinomas [[48], [49], [50], [51], [52]]. Similarly, miR-486 expression was correlated with increased survival of patients suffering from MPM (miR-486 targets tumorigenic ARHGAP5 in lung cancer) [53]. In NSCLC patients, the suppression of miR-451 (targets PSMB8, MIF, and ERCC1) was linked with bad prognosis and miR-451 expression increased cisplatin activity and suppressed Wnt and Akt signaling in lung cancer cells [[54], [55], [56]].

Fig. 2.

Fig. 2

Cisplatin and non-coding RNAs in mesothelioma.

Further miRNAs may play a crucial role concerning cisplatin activity against MPM. The thoroughly investigated oncomir miR-21 was overexpressed in MPM and repressed its target, the tumor suppressor PDCD4 (programmed cell death 4) in MPM [57]. It is likely that miR-21 also plays a key role for cisplatin resistance in MPM since it was shown to do so in platinum-resistant NSCLC cells and patients by repression of PTEN (phosphatase and tensin homolog) and induction of anti-apoptotic Bcl-2 (B-cell lymphoma 2) [58]. MiR-34s were shown to regulate a variety of cancers and the suppression of miR-34s transformed non-malignant mesothelial cells into oncogenic cells [59]. The relatively bad response of diffuse malignant peritoneal mesothelioma (DMPM) to chemotherapy was correlated with suppression of miR-34a, which has shown antiproliferative effects by suppression of c-MET and AXL in DMPM [60]. Bladder cancer treated with cisplatin showed upregulated levels of miR-34a leading to cancer cell sensitivity to chemotherapy [61]. In lung tumors, restored miR-34a expression increased the survival of KP mice treated with cisplatin and down-regulation of PEBP4 in lung cancer cells by miR-34a led to enhanced cisplatin activity [62,63]. Indeed, miR-34a re-sensitized lung cancer cells to cisplatin treatment independent of their p53 state [64]. Methylation of the tumor suppressor miR-34b/c, a target of the important transcription factor p53 involved in DNA-damage response, suppressed miR-34b/c activity and led to tumorigenesis in MPM [65]. Increased miR-34b/c expression led to antiproliferative effects, cell cycle arrest in the G1 phase and reduced migration of MPM cells while simple p53 overexpression showed no effects [65]. Restoration of miR-34b/c induced modest re-sensitization to cisplatin in lung adenocarcinoma [66]. MiR-223 features another miRNA suppressed in MPM, which played a role concerning cell motility and led to induction of stathmin [67]. In triple-negative breast cancer (TNBC), miR-223 expression enhanced the activity of cisplatin and doxorubicin by regulation of HAX-1 [68]. Members of the miR-200 family (miR-200b, miR-200c, miR-141, miR-429) with many predicted targets of the Wnt signaling pathway were also down-regulated in MPM when compared with lung adenocarcinoma [69]. MiR-200b and miR-200c suppression was associated with cisplatin resistance. MiR-200b expression re-sensitized lung cancer cells to cisplatin treatment and reverted epithelial-mesenchymal transition (EMT) [50]. The induction of anti-apoptotic Bcl-2 and XIAP was a result of miR-200bc/429 cluster suppression in cisplatin-resistant A549/DDP NSCLC cells, and cisplatin–mediated apoptosis induction was correlated with miR-200bc/429 expression [70]. Cisplatin activity in NSCLC cells was restored via miR-200c expression followed by E-cadherin induction and N-cadherin suppression [71]. MiR-214 levels were also low in mesothelioma cells and induced expression of miR-214 exerted anti-proliferative and anti-migratory effects via down-regulation of PIM1 [72]. Enhanced cisplatin activity was observed, for example, from cervix cancer cells showing miR-214 expression while in ovarian cancer and other cancers miR-214 expression was associated with cisplatin resistance [25,73,74]. Survivin-regulating miR-203 was also suppressed in MPM [75]. In NSCLC cells, miR-203 expression inhibited tumor cell growth, induced apoptosis, and increased the activity of cisplatin by suppression of DKK1 [76]. MiR-345 is highly expressed in malignant mesothelioma samples and its expression may contribute to enhanced cisplatin activity by suppression of the ABC-transporter MRP1, which was associated with multidrug resistance [[77], [78], [79]]. In addition to miR-345, miR-7 features another MRP1-targeting miRNA, which is overexpressed in MPM and may contribute to cisplatin sensitivity in MPM as well [78,80]. MiR-148a is highly expressed in malignant mesothelioma and its cisplatin sensitizing effects were identified in renal cancer cells basing on Rab14 targeting [81,82]. In contrast to that, miR-497 was down-regulated in MPM cells and involved in cisplatin activity in NSCLC cells by regulation of Bcl-2 [80,83]. MiR-1 was shown to induce apoptosis in MPM cells and was downregulated in MPM tumor samples when compared with non-malignant samples [84]. SDF-1, a factor associated with cisplatin resistance, was suppressed by miR-1 expression in cancer-associated fibroblasts (CAFs) found in NSCLC [85]. Another tumor suppressor of MPM is represented by miR-145, which is lost in MPM and acts by downregulation of OCT4 and ZEB1 [86]. Cisplatin and paclitaxel upregulated the miR-145 level in bladder cancer cells while miR-145 expression sensitized gallbladder cancer to cisplatin by MRP1 suppression [87,88]. In contrast to that, miR-17–5p expression was high in short survivors of MPM and suppression of miR-17–5p targeting p21 led to increased cisplatin sensitivity of gastric cancer cells [23,89].

MicroRNAs can also be applied to identify severe side-effects of cisplatin during and after cisplatin therapy. For instance, acute kidney injury (AKI) in cisplatin-treated MPM patients was correlated with increased miR-21, miR-200c and miR-423 levels [90]. A list of miRNAs involved in cisplatin resistance and sensitivity of mesothelioma is given in Table 1.

Table 1.

MicroRNA tumor suppressors and oncogenes in mesothelioma proven or strongly assumed to be correlated with cisplatin activity.

miRNA Target(s) Function Expressiona
let-7c ITGB3, MAP4K3 tumor suppressor lower in short survivors
miR-1 PIM1 tumor suppressor lower
miR-7 MRP1 tumor suppressor higher
miR-17-5p p21 oncomir higher in short survivors
miR-21 PDCD4, PTEN oncomir higher
miR-31 OCT1 oncomir higher in short survivors
miR-34a c-MET/Akt tumor suppressor lower
miR-34b/c Bcl-2 tumor suppressor lower
miR-145 OCT4 tumor suppressor lower
miR-148a Rab14 tumor suppressor higher
miR-200b/c Bcl-2, Wnt signaling tumor suppressor lower
miR-203 DKK1 tumor suppressor lower
miR-210 NUPR1, HTRA1, RGS10 oncomir higher in short survivors
miR-223 STMN1, HAX1 tumor suppressor lower
miR-345 MRP1 tumor suppressor higher
miR-429 Bcl-2, Wnt signaling tumor suppressor lower
miR-451 PSMB8, MIF, ERCC1 tumor suppressor lower
miR-486 ARHGAP5 tumor suppressor lower in short survivors
miR-497 Bcl-2 tumor suppressor lower
a

Expression in mesothelioma when compared with non-malignant/benign samples or other tumors.

The expression of lncRNAs in MPM patients was investigated in correlation with induction chemotherapy, which usually means a cisplatin-based therapy [91]. The lncRNAs AK130275, EF177379 (NEAT1) and AF268386 were upregulated in MPM tumors when compared with non-malignant pleura, but reduced levels of AK130275 and AF268386 were identified in patients receiving induction chemotherapy [91]. In addition, patients with high EF177379 expression had prolonged overall survival times in case they haven't received induction chemotherapy because induction chemotherapy lowered the EF177379 levels as well [91]. HOTAIR (HOX transcript antisense RNA) and MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) feature further lncRNAs with strong relevance for mesothelioma [92]. The sarcomatoid mesothelioma subset of the Bueno NGS dataset showed upregulated HOTAIR and MALAT1 expression associated with shorter survival times [92]. In lung adenocarcinoma cells, expression of HOTAIR led to cisplatin resistance by suppression of p21WAF1/CIP1 [93]. Similarly, MALAT1 expression induced cisplatin resistance by induction of MRP1 and MDR1 expression and activation of STAT3 transcription factor [94]. H19 lncRNA was also upregulated in sarcomatoid mesothelioma subgroups and H19 expression was shown to induce cisplatin resistance in lung cancer cells [92,95]. In addition, PVT1-knockdown enhanced cisplatin sensitivity in MPM cells by upregulation of pro-apoptotic LTB (lymphotoxin beta), BCL2L14 (Bcl-2 like protein 14), FASLG (FS ligand) and TNFRSF1B (tumor necrosis factor receptor superfamily member 1B) as well as suppression of anti-apoptotic BCL2L1, BCL2, ICEBERG (Caspase 1 inhibitor), and BIRC8 (Baculoviral IAP repeat-containing protein 8) [96]. Another lncRNA, CASC2, was downregulated in sarcomatoid MPM subgroups and expression of CASC2 in NSCLC cells increased cisplatin activity by suppression of miR-18a and miR-21 as well as induction of PTEN expression [92,97]. A list of long non-coding RNAs that may be involved in cisplatin resistance and sensitivity of mesothelioma is given in Table 2.

Table 2.

Long non-coding RNA (lncRNA) tumor suppressors and oncogenes in mesothelioma proven or strongly assumed to be correlated with cisplatin activity.

lncRNA Target(s) Function
EF177379 (NEAT1) - tumor suppressor
HOTAIR p21WAF1/CIP1 oncogene
MALAT1 MRP1, MDR1 oncogene
H19 oncogene
PVT1 LTB, BLC2L14, FASLG, TNFRSF1B, BCL2L1, BCL2, ICEBERG, BIRC8 oncogene
CASC2 miR-18, miR-21, PTEN tumor suppressor

2.3. Cisplatin and suitable combination drugs from the non-coding RNA point of view

As mentioned above, several miRNAs correlated with cisplatin sensitivity or resistance were identified in mesothelioma. Thus, suitable combination drugs with cisplatin should increase the expression of tumor suppressor miRNAs known to sensitize mesothelioma cells to cisplatin treatment or downregulate oncomirs associated with formation of cisplatin resistance. Most of these drugs are derived from natural sources or at least inspired by nature (Fig. 3).

Fig. 3.

Fig. 3

Non-coding RNA modulating agents with relevance to cisplatin activity.

2.3.1. Phenolic compounds

Various phenolic and polyphenolic natural products are able to regulate miRNAs correlated with cancer diseases. Epigallocatechin-3-gallate (EGCG) is a thoroughly investigated catechin polyphenol of the tea plant (Camellia sinensis) and well known for its positive effects on the cisplatin activity against cancer cells [98,99]. It has to be mentioned that high doses of EGCG (800 mg/day and more) can lead to an increase of serum transaminases as a sign of some sort of hepatotoxicity [100]. In addition, the combination of EGCG with boronic acid-based anticancer drugs such as bortezomib led to drug inactivation due to the reaction of the boronic acid moiety of bortezomib with the gallate scaffolds of EGCG [100,101]. Concerning a modulation of miRNAs with relevance to cisplatin activity, EGCG was shown to increase the expression of let-7c, miR-1, miR-7-1, miR-34a, and miR-34b while EGCG suppressed the oncomirs miR-21 and miR-210 [[102], [103], [104], [105], [106], [107]]. EGCG also enhanced cisplatin activity in lung cancer cells by induction of expression of the tumor suppressor lncRNA NEAT1 by upregulation of CTR1 [108]. Genistein, an isoflavone from soy (Glycine max), downregulated the oncomir miR-21 and so do other flavanoids such as glyceollins, 3,6-dihydroxyflavone (3,6-DHF), and silibinin, while the tumor suppressor miR-34a was upregulated by genistein, glyceollins, 3,6-DHF, and quercetin [[109], [110], [111], [112], [113], [114], [115]]. Genistein and silibinin also induced the expression of the tumor suppressor miR-200c [113,116]. In addition, genistein suppressed oncogenic HOTAIR [117,118]. Curcumin (diferuloylmethane), another natural polyphenol from the rhizome of turmeric (Curcuma longa), upregulated miR-7, miR-34a, miR-145, miR-200b/c, and miR-203, and suppressed oncogenic miR-17–5p and miR-21 [[119], [120], [121], [122], [123], [124], [125], [126]]. Curcumin also inhibited HOTAIR-dependent metastasis formation and suppressed the expression of the oncogenic lncRNAs H19 and PVT1 [[127], [128], [129]]. (Semi-)Synthetic derivatives of curcumin such as CDF and EF24 also suppressed the oncomir miR-21, and CDF additionally suppressed miR-210 [122,[130], [131], [132], [133]]. The natural stilbene resveratrol found in grapes and berries also suppressed miR-21 and induced the expression of the tumor suppressors miR-34a, miR-34c, and miR-200c [[134], [135], [136], [137], [138]]. MiR-200c expression was also induced by pterostilbene, a close analog of resveratrol [133]. Further to this, resveratrol induced the expression of the tumor suppressor lncRNA NEAT1 and suppressed oncogenic MALAT1 in cancer cells [139,140]. The natural trihydroxy-anthraquinone emodin induced miR-34a and miR-429 while it suppressed miR-210 [[141], [142], [143]]. The natural bisphenols magnolol and honokiol induced the expression of miR-34a (honokiol) and miR-200c (magnolol) [144,145]. The polycyclic polyprenylated acylphloroglucinol (PPAP) garcinol features another interesting natural product, which was isolated from plums of the kokum tree (Garcinia indica) and suppressed oncogenic miR-21 while it activated the expression of tumor suppressing miR-200b and miR-200c [146,147]. Tumor suppressor miRNA expression was induced by further polyphenols such as glabridin (miR-148a), caffeic acid (miR-148a) and pomegranate extract (miR-34a) [[148], [149], [150]]. Of particular interest is the approved anticancer drug etoposide, which is a topoisomerase II inhibitor derived from podophyllotoxin and applied for the treatment of breast cancer and lung cancer [151,152]. A p53-dependent upregulation of the tumor suppressor miR-34a was observed from cancer cells upon etoposide treatment [153].

A list of polyphenolic drugs and their effects on non-coding RNAs is given in Table 3.

Table 3.

Polyphenolic drugs with effects on non-coding RNA tumor suppressors (inducing effects) and oncogenes (suppressing effects) in mesothelioma correlated with cisplatin activity.

Drugs Tumor suppressors Oncogenes
EGCG let-7c, miR-1, miR-7, miR-34a, miR-34b/c, NEAT1 miR-21, miR-210
Genistein miR-34a, miR-200c miR-21, HOTAIR
Glyceollins miR-34a miR-21
3,6-DHF miR-34a miR-21
Quercetin miR-34a
Silibinin miR-200c miR-21
Curcumin miR-7, miR-34a, miR-145, miR-200b/c, miR-203 miR-17–5p, miR-21, HOTAIR, H19, PVT1
CDF miR-21, miR-210
Resveratrol miR-34a, miR-34c, miR-200c, NEAT1 miR-21, MALAT1
Pterostilbene miR-200c
Emodin miR-34a, miR-429 miR-210
Magnolol miR-200c
Honokiol miR-34a
Garcinol miR-200b, miR-200c miR-21
Glabridin miR-148a
Caffeic acid miR-148a
Pomegranate extract miR-34a
Etoposide miR-34a

2.3.2. Terpenoids

The approved terpenoid anticancer drug paclitaxel (taxol, ex Taxus brevifolia) stabilizes microtubules and blocks mitosis in cancer cells but it showed no improved activity against MPM as single-compound in a phase II study [154]. However, in combination with carboplatin a 71-years old female peritoneal mesothelioma patient was cured [155]. More recently, nanoparticle albumin-bound paclitaxel in combination with carboplatin exhibited repeated responses in a 76-years old male patient with epitheloid MPM who did not respond to carboplatin/pemetrexed treatment and, thus, this treatment features a suitable therapy for patients who cannot tolerate cisplatin and pemetrexed first-line treatment [156]. It was shown that paclitaxel induced miR-34a expression, which may function as a putative anticancer mode of action of paclitaxel in combination with platinum drugs [157]. Docetaxel, a close analog of paclitaxel, upregulated miR-34a expression in epithelial MPM cells and exhibited excellent cytotoxic properties in fast growing MPM cells [158].

Triterpenes generally feature a very interesting natural product class with strong anticancer potential. The oncomir miR-21 was suppressed by various natural triterpenes such as ursolic acid, cucurbitacin I, and ginsenoside Rh2, the latter compound Rh2 also induced the tumor suppressor miR-148a [[159], [160], [161], [162]]. Another triterpene isolated from Boswellia plants and resins (frankincense is usually prepared from the resin of Boswellia plants) named AKBA (3-acetyl-11-keto-β-boswellic acid) upregulated miR-34a and miR-200 expression [163,164]. In addition, the triterpene enoxolone isolated from licorice induced miR-200c [145].

The vital natural diterpene retinoic acid (RA, vitamin A) upregulated the tumor suppressors let-7c and miR-223 [165,166]. Delta-tocotrienol is closely related to vitamin E and increased the expression of the tumor suppressor miR-34a [167]. In addition, the fungal sesquiterpene lactone antrocin induced let-7c expression, while the PEGylated monoterpene thymoquinone (ex Nigella sativa) upregulated miR-34a [168,169].

A list of terpenoid drugs and their effects on non-coding RNAs is given in Table 4.

Table 4.

Terpenoid drugs with effects on non-coding RNA tumor suppressors (inducing effects) and oncogenes (suppressing effects) in mesothelioma correlated with cisplatin activity.

Drugs Tumor suppressors Oncogenes
Paclitaxel miR-34a
Ursolic acid miR-21
Rh2 miR-148a miR-21
AKBA miR-34a, miR-200
Enoxolone miR-200c miR-210
Retinoic acid let-7c, miR-223
Δ-Tocotrienol miR-34a
Antrocin let-7c
PEG-Thymoquinone miR-34a

2.3.3. Alkaloids

Several alkaloids such as camptothecins (quinoline alkaloids ex Camptotheca acuminata) and Vinca alkaloids (indole alkaloids ex Catharanthus roseus) are currently applied for the treatment of various cancer diseases and their strong influence and dependence on miRNA expression was summarized recently [170]. The semi-synthetic analog vinorelbine is of particular interest for cancer diseases affecting the lung, and vinorelbine (navelbine) is often off-label applied as a second-line treatment of MPM patients who had suffered from a severe relapse [171]. In addition, vinorelbine exhibited promising results as a combination partner of cisplatin for a first-line chemotherapy [172]. Structurally more simple natural indoles are represented by 3,3′-diindolylmethane (DIM) and indole-3-carbinol (I3C, ex Brassica vegetables), which are able to modulate the expression of various relevant non-coding RNAs in tumors [173]. I3C suppressed the oncomirs miR-21 and miR-31 in lung tumors [174]. DIM induced the expression of the tumor suppressors let-7c, miR-34, and miR-200b/c [[175], [176], [177]].

The topoisomerase I inhibitor camptothecin (ex Camptotheca acuminata) and its water-soluble derivatives irinotecan and topotecan represent quinoline alkaloids and are approved for the treatment of various tumor diseases [178]. Interestingly, topotecan upregulated miR-34b expression in cancer cells and, thus, represents a suitable combination partner for cisplatin [179]. The close analog irinotecan was investigated in MPM patients in combination with cisplatin in a phase 2 trial and this combination was well tolerated by the treated MPM patients and exhibited distinct anticancer activity (overall response rate of 40%) [180]. The alkylating tetrahydroisoquinoline trabectedin (Ecteinascidin 743, Yondelis®) was isolated from the Caribbean tunicate Ecteinascidia turbinata and is approved for the treatment of soft tissue sarcoma [181]. Trabectedin exhibited promising results from a phase 2 trial with epithelioid MPM patients and from patients with sarcomatoid/biphasic MPM [182,183]. Concerning miRNAs, trabectedin suppressed miR-21 expression probably by regulation of FUS-CHOP in cancer cells [184]. Indeed, the combination of trabectedin with cisplatin exhibited synergistic effects against MPM cells [185]. In addition, the isoquinoline alkaloid berberine (ex Berberis aristata) enhanced the activity of cisplatin by suppression of oncogenic miR-21 while the isoquinoline palmatine chloride upregulated the tumor suppressors miR-34a and miR-200c [186,187].

A list of alkaloid drugs and their effects on non-coding RNAs is given in Table 5.

Table 5.

Alkaloid drugs with effects on non-coding RNA tumor suppressors (inducing effects) and oncogenes (suppressing effects) in mesothelioma correlated with cisplatin activity.

Drugs Tumor suppressors Oncogenes
I3C miR-21, miR-31
DIM Let-7c, miR-34, miR-200b/c
Topotecan miR-34b
Trabectedin miR-21
Berberine miR-21
Palmatine miR-34a, miR-200c

2.3.4. Miscellaneous natural products

Further natural products that don't belong to the compound classes mentioned above modulated miRNAs in cancers. Concerning mesothelioma-relevant miRNAs with influence on cisplatin activity, vitamin C (ascorbate) induced the expression of the tumor suppressor miR-345 [188]. Docosahexaenoic acid (DHA), a potent component of vitamin F (i.e., polyunsaturated fatty acids) from fish oil, suppressed oncogenic miR-21 [189]. Natural organosulfur compounds such as diallyl disulfide (DADS), sulforaphane (SFN) and phenethylisothiocyanate (PEITC) found in garlic, leek and onions induced the expression of various tumor suppressors including let-7c (by PEITC), miR-34a (by DADS), miR-145 (by SFN), miR-200b (by DADS), and miR-200c (by SFN) [[190], [191], [192], [193], [194], [195]].

A list of miscellaneous natural drugs and their effects on non-coding RNAs is given in Table 6.

Table 6.

Miscellaneous natural drugs with effects on non-coding RNA tumor suppressors (inducing effects) and oncogenes (suppressing effects) in mesothelioma correlated with cisplatin activity.

Drugs Tumor suppressors Oncogenes
Vitamin C miR-345
DHA miR-21
DADS miR-34a, miR-200b
SFN miR-145, miR-200c
PEITC let-7c

2.3.5. HDAC inhibitors

The acetylation state of histone proteins controls gene expression, and the acetylation of histones and of other vital proteins (e.g., tubulin) is regulated by histone deacetylases (HDACs) and histone acetyltransferases (HATs) [196]. In particular, HDAC inhibitors have become more and more important for cancer treatment and some compounds were already approved for the treatment of T cell lymphoma (SAHA/vorinostat, belinostat, romidepsin) and multiple myeloma (panobinostat) [197]. Sodium butyrate (NaB), the salt of the short fatty acid butyric acid, represents the structurally simplest HDAC inhibitor. NaB was shown to induce the expression of the tumor suppressor miR-145 [198]. The natural HDAC inhibitor trichostatin A (TSA) induced miR-1, miR-7, miR-34a, miR-203, and miR-486 [[199], [200], [201]]. The clinically approved HDAC inhibitor suberoylanilide hydroxamic acid (SAHA, vorinostat) upregulated miR-34b expression [202]. In addition, vorinostat suppressed the expression of the lncRNA HOTAIR [203]. However, there were also reports which disclosed negative effects by treatment with HDAC inhibitors. Sodium phenylbutyrate (NaPBA) suppressed miR-34b/c [204]. SAHA suppressed miR-7, miR-200b and miR-345 [202,205]. Panobinostat, another approved HDAC inhibitor, upregulated oncogenic miR-31 [206].

There is only limited data for HAT inhibitors and the effects of the natural phenolic HAT inhibitor garcinol on the expression of non-coding RNAs are given in Table 3.

A list of HDAC inhibitors and their effects on non-coding RNAs is given in Table 7.

Table 7.

HDAC inhibitors with effects on non-coding RNA tumor suppressors (inducing effects) and oncogenes (suppressing effects) in mesothelioma correlated with cisplatin activity.

Drugs Tumor suppressors Oncogenes
NaB miR-145
TSA miR-1, miR-7, miR-34a, miR-203, miR-486
SAHA miR-34b HOTAIR

2.3.6. Cisplatin as sensitizer for other approved anticancer drugs

It was observed that cisplatin treatment led to the induction of tumor suppressor miRNAs (let-7c, miR-34a, miR-145, miR-451) and suppression of oncomirs (miR-210) and, thus, cisplatin can potentiate the efficacy of other chemotherapeutic drugs which depend significantly on the regulation of these miRNAs (Fig. 4) [44,61,87,88].

Fig. 4.

Fig. 4

Possible activity boost of approved anticancer drugs by cisplatin-mediated miRNA modulation.

Pemetrexed is an antimetabolite often applied in combination with cisplatin for the first-line treatment of MPM. Upregulation of the tumor suppressor miR-145 sensitized MPM cells to pemetrexed [86]. As shown before, cisplatin induced miR-145 expression in bladder cancer cells [87,88]. It is conceivable that the relatively high activity of the combination of cisplatin with pemetrexed in MPM patients is in parts due to miR-145 regulation.

As already mentioned above, Vinca alkaloids have shown promising activity against mesothelioma. Vincristine- and vinorelbine-resistant cancer cells revealed upregulated miR-210, which is an oncomir suppressed by cisplatin [207,208]. Thus, miR-210 suppression by cisplatin can be one reason for the distinct activity of the combination of cisplatin with vinorelbine in certain mesothelioma patients [172].

The small molecule tyrosine kinase inhibitor sorafenib showed promising activity from a phase 2 trial with malignant mesothelioma patients who were pre-treated with platinum drugs [209]. Cancer cells resistant to sorafenib exhibited reduced let-7c and miR-34a expression when compared with parental cells and combination of sorafenib with cisplatin, which was able to induce both let-7c and miR-34a, appears a promising therapy option [210].

2.3.7. The role of p53 and miR-34a for cisplatin activity

DNA-damage induced by the reaction of cisplatin with nucleobases of the cellular DNA often leads to p53-activation and apoptosis induction [211]. The tumor suppressor p53 is an instable protein which is activated, i.e., phosphorylated, by Ataxia telangiectasia mutated protein (ATM). Activated p53 stimulates the E3 ubiquitin ligase Mdm2 and leads to overexpression pf PTEN [212]. The transcription activity of p53 is also regulated by acetylation and SIRT1-mediated deacetylation of p53 reduced its transcriptional activity [213]. It was shown that activated p53 was involved in gene transcription of miR-34a as a consequence of DNA damage (Fig. 5) [214,215]. The promoter region of miR-34a has a p53-binding element, however, hyper-methylation of a CpG island in the promoter region silences p53-dependent transcription [213,215]. The transcript of miR-34a is initially a long hairpin RNA molecule (Pri-miR34a) that is processed by DROSHA (a human RNase III) to Pre-miRNA34a, exported from the nucleus to the cytosol where it is processed by DICER (another human RNase III) to a double-stranded 22–23 nucleotide RNA molecule [215]. One strand of mature miR-34a is finally incorporated in RISC (RNA-induced silencing complex) [215]. Most targets of miR-34a include anti-apoptotic proteins (Bcl-2), proteins responsible for G1/S transition (c-MYC, E2F, CDK2, CDK6) and for invasion (c-MET), and signaling pathways (Notch, AR) [214,215]. Inhibition of target genes occurs by binding of the seed-sequence of miR-34a, which is a sequence of 7 nucleotides located at the 5′-end, with the target mRNA via a complementary DNA sequence of the 3′-UTR of this target mRNA [216]. Further interactions can occur between the target mRNA and nucleotides of the middle and 5′-end of miRNA-34a [215]. Upregulation of miR-34a expression often sensitized cancer cells to cisplatin treatment [215]. As a suitable therapeutic option, a liposomal formulation of a miR-34a mimic called MRX34 has entered clinical phase 1 studies [217]. Further strategies to formulate miR-34a include CD44-targeting systems (hyaluronic acid/protamine sulfate interpolyelectrolyte complexes) and other tumor-targeting bifunctional peptides combined with β-cyclodextrin-polyethylimine [218,219]. Given the eminent role of miR-34a concerning the suppression of mesothelioma an application of suitable therapeutic miR-34a formulations alone or in combination with cisplatin or carboplatin seems promising. As already mentioned above, minicells loaded with miR-16 mimic miRNA already underwent a phase 1 trial with MPM patients and revealed promising results [29].

Fig. 5.

Fig. 5

Activation of p53 and miR-34a induction by platinum complexes.

2.4. Carboplatin, non-coding RNAs and mesothelioma

As already mentioned above, cancer treatment with carboplatin represents a less toxic alternative to cisplatin treatment. Carboplatin in combination with pemetrexed revealed similar results (and even slightly improved survival) as the widely applied first-line MPM therapy cisplatin plus pemetrexed, and the carboplatin plus pemetrexed chemotherapy was well tolerated [220]. Due to the very similar modes of action of cisplatin and carboplatin most of the already described non-coding RNAs and non-coding RNA modulating molecules involved in cisplatin activity likely play a significant role for carboplatin efficacy in mesothelioma as well. For instance, upregulation of oncogenic miR-31 induced resistance of MPM cells to carboplatin and cisplatin [43]. Replacement of cisplatin by carboplatin is indicated for certain vulnerable patients in order to avoid nephrotoxicity, which is very common upon cisplatin treatment, however, myelotoxicity/bone marrow suppression may occur during carboplatin therapy [34].

3. Conclusions

Approved anticancer Pt(II) complexes modulated the non-coding RNA profile of mesothelioma. Vice versa, several non-coding RNAs were identified that influenced platinum activity in mesothelioma either positively or negatively. Platinum resistance as well as side-effects by platinum complexes are regulated by non-coding RNAs. An exact knowledge of the interactions between anticancer active approved platinum complexes and non-coding RNAs is of high importance. In addition, the interplay between platinum complexes and the key tumor suppressors p53 and miR-34a is of relevance. A better understanding of the roles of non-coding RNAs for the activity of platinum complexes is expected to lead to improved anticancer therapy regimens of mesothelioma diseases based on platinum compounds such as cisplatin and carboplatin, and to better survival rates and prognoses due to the circumvention of platinum resistance and the improvement of life quality of affected mesothelioma patients.

References

  • 1.Odgerel C.-O., Takahashi K., Sorahan T., Driscoll T., Fitzmaurice C., Yoko-o M., Sawanyawisuth K., Furuya S., Tanaka F., Horie S., van Zandwijk N., Takala J. Estimation of the global burden of mesothelioma deaths from incomplete national mortality data. Occup. Environ. Med. 2017;74:851–858. doi: 10.1136/oemed-2017-104298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Sterman D.H., Albelda S.M. Advances in the diagnosis, evaluation, and management of malignant pleural mesothelioma. Respirology. 2005;10:266–283. doi: 10.1111/j.1440-1843.2005.00714.x. [DOI] [PubMed] [Google Scholar]
  • 3.Husain A.N., Colby T.V., Ordonez N.G., Allen T.C., Attanoos R.L., Beasley M.B., Butnor K.J., Chirieac L.R., Churg A.M., Dacic S., Galateau-Sallé F., Gibbs A., Gown A.M., Krausz T., Litzky L.A., Marchevsky A., Nicholson A.G., Roggli V.L., Sharma A.K., Travis W.D., Walts A.E., Wick M.R. Guidelines for pathologic diagnosis of malignant mesothelioma: 2017 update of the consensus statement from the International Mesothelioma Interest Group. Arch. Pathol. Lab Med. 2018;142:89–108. doi: 10.5858/arpa.2017-0124-RA. [DOI] [PubMed] [Google Scholar]
  • 4.Brims F.J., Meniawy T.M., Duffus I., de Fonseka D., Segal A., Creaney J., Maskell N., Lake R.A., de Klerk N., Nowak A.K. A novel clinical prediction model for prognosis in malignant pleural mesothelioma using decision tree analysis. J. Thorac. Oncol. 2016;11:573–582. doi: 10.1016/j.jtho.2015.12.108. [DOI] [PubMed] [Google Scholar]
  • 5.Collins D.C., Constantinidou A., Sundar R., Chenard-Poirier M., Yap T.A., Banerji U., de Bono J.S., Lopez J.S., Tunariu N. Patterns of metastases in malignant pleural mesothelioma in the modern era: redefining the spread of an old disease. J. Clin. Oncol. 2017;35 8556-8556. [Google Scholar]
  • 6.Baumann F., Ambrosi J.P., Carbone M. Asbestos is not just asbestos: an unrecognised health hazard. Lancet Oncol. 2013;14:576–578. doi: 10.1016/S1470-2045(13)70257-2. [DOI] [PubMed] [Google Scholar]
  • 7.WHO, asbestos Chrysotile. World Health Organization. 2014 ISBN 978 92 4 156481 6. [Google Scholar]
  • 8.Carbone M., Ly B.H., Dodson R.F., Pagano I., Morris P.T., Dogan U.A., Gazdar A.F., Pass H.I., Yang H. Malignant mesothelioma: facts, myths, and hypotheses. J. Cell. Physiol. 2012;227:44–58. doi: 10.1002/jcp.22724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Robinson B.M. Malignant pleural mesothelioma: an epidemiological perspective. Ann. Cardiothorac. Surg. 2012;1:491–496. doi: 10.3978/j.issn.2225-319X.2012.11.04. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Carbone M., Yang H. Mesothelioma: recent highlights. Ann. Transl. Med. 2017;5:238. doi: 10.21037/atm.2017.04.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.García-Gómez M., Menéndez-Navarro A., López R.C. Asbestos-related occupational cancers compensated under the Spanish national insurance system, 1978-2011. Int. J. Occup. Environ. Health. 2015;21:31–39. doi: 10.1179/2049396714Y.0000000087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Romano M., Catalano A., Nutini M., D'Urbano E., Crescenzi C., Claria J., Libner R., Davi G., Procopio A. 5-Lipoxygenase regulates malignant mesothelial cell survival: involvement of vascular endothelial growth factor. FASEB J. 2001;15:2326–2336. doi: 10.1096/fj.01-0150com. [DOI] [PubMed] [Google Scholar]
  • 13.Rossini M., Rizzo P., Bononi I., Clementz A., Ferrari R., Martini F., Tognon M.G. New perspectives on diagnosis and therapy of malignant pleural mesothelioma. Front. Oncol. 2018;8:91. doi: 10.3389/fonc.2018.00091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Truini A., Coco S., Genova C., Mora M., Dal Bello M.G., Vanni I., Alama A., Rijavec E., Barletta G., Biello F., Maggioni C., Grossi F. Prognostic and therapeutic implications of microRNA in malignant pleural mesothelioma. MicroRNA. 2016;5:12–18. doi: 10.2174/2211536605666160128151018. [DOI] [PubMed] [Google Scholar]
  • 15.Truini A., Coco S., Alama A., Genova C., Sini C., Dal Bello M.G., Barletta G., Rijavec E., Buffarato G., Boccardo F., Grossi F. Role of microRNAs in malignant mesothelioma. Cell. Mol. Life Sci. 2014;71:2865–2878. doi: 10.1007/s00018-014-1584-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Zhang W., Wu X., Wu L., Zhang W., Zhao X. Advances in the diagnosis, treatment and prognosis of malignant pleural mesothelioma. Ann. Transl. Med. 2015;3:182. doi: 10.3978/j.issn.2305-5839.2015.07.03. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Kotova S., Wong R.M., Cameron R.B. New and emerging therapeutic options for malignant pleural mesothelioma: review of early clinical trials. Canc. Manag. Res. 2015;7:51–63. doi: 10.2147/CMAR.S72814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Vogelzang N.J., Rusthoven J.J., Symanowski J., Denham C., Kaukel E., Ruffie P., Gatzemeier U., Boyer M., Emri S., Manegold C., Niyikiza C., Paoletti P. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J. Clin. Oncol. 2003;21:2636–2644. doi: 10.1200/JCO.2003.11.136. [DOI] [PubMed] [Google Scholar]
  • 19.Roe O.D., Szulkin A., Anderssen E., Flatberg A., Sandeck H., Amundsen T., Erlandsen S.E., Dobra K., Sundstrom S.H. Molecular resistance fingerprint of pemetrexed and platinum in a long-term survivor of mesothelioma. PLoS One. 2010;7 doi: 10.1371/journal.pone.0040521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Zalcman G., Mazieres J., Margery J., Greillier L., Audigier-Valette C., Moro-Sibilot D., Molinier O., Corre R., Monnet I., Gounant V., Rivière F., Janicot H., Gervais R., Locher C., Milleron B., Tran Q., Lebitasy M.-P., Morin F., Creveuil C., Parienti J.-J., Scherpereel A. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomized, controlled, open-label, phase 3 trial. Lancet. 2016;387:1405–1414. doi: 10.1016/S0140-6736(15)01238-6. [DOI] [PubMed] [Google Scholar]
  • 21.Ceresoli G.L., Zucali P.A., Mencoboni M., Botta M., Grossi F., Cortinovis D., Zilembo N., Ripa C., Tiseo M., Favaretto A.G., Soto-Parra H., De Vincenzo F., Bruzzone A., Lorenzi E., Gianoncelli L., Ercoli B., Giordano L., Santoro A. Phase II study of pemetrexed and carboplatin plus bevacizumab as first-line therapy in malignant pleural mesothelioma. Br. J. Canc. 2013;109:552–558. doi: 10.1038/bjc.2013.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Santoni-Rugiu E., Andersen M., Grauslund M. MicroRNAs as potential biomarkers in malignant pleural mesothelioma. Curr. Biomark. Find. 2016;6:1–21. [Google Scholar]
  • 23.Lin R.C.Y., Kirschner M.B., Cheng Y.Y., van Zandwijk N., Reid G. MicroRNA gene expression signatures in long-surviving malignant pleural mesothelioma patients. Genomics Data. 2016;9:44–49. doi: 10.1016/j.gdata.2016.06.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Sakamoto N., Honma R., Sekino Y., Goto K., Sentani K., Ishikawa A., Oue N., Yasui W. Non-coding RNAs are promising targets for stem cell-based cancer therapy. Non-coding RNA Res. 2017;2:83–87. doi: 10.1016/j.ncrna.2017.05.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Biersack B. Interactions between anticancer active platinum complexes and non-coding RNAs/microRNAs. Non-coding RNA Res. 2017;2:1–17. doi: 10.1016/j.ncrna.2016.10.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Bartels D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. doi: 10.1016/s0092-8674(04)00045-5. [DOI] [PubMed] [Google Scholar]
  • 27.Wu S., Huang S., Ding J., Zhao Y., Liang L., Liu T., Zhan R., He X. Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3‘ untranslated region. Oncogene. 2010;29:2302–2308. doi: 10.1038/onc.2010.34. [DOI] [PubMed] [Google Scholar]
  • 28.Calin G.A., Croce C.M. MicroRNA signatures in human cancers. Nat. Rev. Canc. 2006;6:857–866. doi: 10.1038/nrc1997. [DOI] [PubMed] [Google Scholar]
  • 29.van Zandwijk N., Pavlakis N., Kao S.C., Linton A., Boyer M.J., Clarke S., Huynh Y., Chrzanowaska A., Fulham M.J., Bailey D.L., Cooper W.A., Kritharides L., Ridley L., Pattison S.T., MacDiarmid J., Brahmbhatt H., Reid G. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 2017;18:1296–1297. doi: 10.1016/S1470-2045(17)30621-6. [DOI] [PubMed] [Google Scholar]
  • 30.Fang Y., Fullwood M.J. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Dev. Reprod. Biol. 2016;14:42–54. doi: 10.1016/j.gpb.2015.09.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Gutschner T., Diederichs S., Rna K. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012;9:703–719. doi: 10.4161/rna.20481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Zarkou V., Galaras A., Giakountis A., Hatzis P. Crosstalk mechanisms between the WNT signaling pathway and long non-coding RNAs. Non-coding RNA Res. 2018;3:42–53. doi: 10.1016/j.ncrna.2018.04.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Rosenberg B., VanCamp L., Trosko J.E., Mansour V.H. Platinum compounds: a new class of potent antitumour agents. Nature. 1969;222:385–386. doi: 10.1038/222385a0. [DOI] [PubMed] [Google Scholar]
  • 34.Voigt W., Dietrich A., Schmoll H.-J. Cisplatin und seine Analoga. Pharmazie Unserer Zeit. 2006;35:134–143. doi: 10.1002/pauz.200500162. [DOI] [PubMed] [Google Scholar]
  • 35.Jamieson E.R., Lippard S.J. Structure, recognition, and processing of cisplatin-DNA adducts. Chem. Rev. 1999;99:2467–2498. doi: 10.1021/cr980421n. [DOI] [PubMed] [Google Scholar]
  • 36.Wang D., Lippard S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 2005;4:307–320. doi: 10.1038/nrd1691. [DOI] [PubMed] [Google Scholar]
  • 37.Gronwald J., Byrski T., Lubinski J., Narod S.A. Cisplatin in breast cancer treatment in BRCA1 carriers. Hered. Cancer Clin. Pract. 2012;10:A17. [Google Scholar]
  • 38.Kartalou M., Essigmann J.M. Mechanisms of resistance to cisplatin. Mutat. Res. Fund Mol. Mech. Mutagen. 2001;478:23–43. doi: 10.1016/s0027-5107(01)00141-5. [DOI] [PubMed] [Google Scholar]
  • 39.Oh G.S., Kim H.J., Shen A., Lee S.B., Khadka D., Pandit A., So H.S. Vol. 12. Electrolyte Blood Press; 2014. Cisplatin-induced kidney dysfunction and perspectives on improving treatment strategies; pp. 55–65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Samuel P., Pink R.C., Caley D.P., Currie J.M.S., Brooks S.A., Carter D.R.F. Overexpression of miR-31 or loss of KCNMA1 leads to increased cisplatin resistance in ovarian cancer cells. Tumor Biol. 2016;37:2565–2573. doi: 10.1007/s13277-015-4081-z. [DOI] [PubMed] [Google Scholar]
  • 41.Dong Z., Zhong Z., Yang L., Wang S., Gong Z. MicroRNA-31 inhibits cisplatin-induced apoptosis in non-small cell lung cancer cells by regulating the drug transporter ABCB9. Canc. Lett. 2014;343:249–257. doi: 10.1016/j.canlet.2013.09.034. [DOI] [PubMed] [Google Scholar]
  • 42.Bhatnagar N., Li X., Padi S.K.R., Zhang Q., Tang M., Guo B. Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells. Cell Death Dis. 2010;1:e105. doi: 10.1038/cddis.2010.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Moody H.L., Lind M.J., Maher S.G. MicroRNA-31 regulates chemosensitivity in malignant pleural mesothelioma. Mol. Ther. Nucleic Acids. 2017;8:317–329. doi: 10.1016/j.omtn.2017.07.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Andersen M., Grauslund M., Ravn J., Sorensen J.B., Andersen C.B., Santoni-Rugiu E. Diagnostic potential of miR-126, miR-143, miR-145, and miR-652 in malignant pleural mesothelioma. J. Mol. Diagn. 2014;16:418–430. doi: 10.1016/j.jmoldx.2014.03.002. [DOI] [PubMed] [Google Scholar]
  • 45.Kirschner M.B., Cheng Y.Y., Kao S.C., McCaughan B.C., van Zandwijk N., Reid G. MC13-0031 Tumour miR-210 expression is elevated in malignant pleural mesothelioma patients with shorter survival undergoing extrapleural pneumonectomy. Eur. J. Canc. 2013;49:S20. [Google Scholar]
  • 46.Yin W., Wang P., Wang X., Song W., Cui X., Yu H., Zhu W. Identification of microRNAs and mRNAs associated with multidrug resistance of human laryngeal cancer Hep-2 cells. Braz. J. Med. Biol. Res. 2013;46:546–554. doi: 10.1590/1414-431X20131662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Truini A., Coco S., Nadal E., Genova C., Mora M., Dal Bello M.G., Vanni I., Alama A., Rijavec E., Biello F., Barletta G., Merlo D.F., Valentino A., Ferro P., Ravetti G.L., Stigliani S., Vigani A., Fedeli F., Beer D.G., Roncella S., Grossi F. Downregulation of miR-99a/let-7c/miR-125b miRNA cluster predicts clinical outcome in patients with unresected malignant pleural mesothelioma. Oncotarget. 2017;8:68627–68640. doi: 10.18632/oncotarget.19800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Zhao B., Han H., Chen J., Zhang Z., Li S., Fang F., Zheng Q., Ma Y., Zhang J., Wu N., Yang Y. MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3. Canc. Lett. 2014;342:43–51. doi: 10.1016/j.canlet.2013.08.030. [DOI] [PubMed] [Google Scholar]
  • 49.Zhan M., Qu Q., Wang G., Zhou H. Let-7c sensitizes acquired cisplatin-resistance A549 cells by targeting ABCC2 and Bcl-XL. Pharmazie. 2013;68:955–961. [PubMed] [Google Scholar]
  • 50.Ahmad A., Maitah M.Y., Ginnebaugh K.R., Li Y., Bao B., Gadgeel S.M., Sarkar F.H. Inhibition of hedgehog signaling sensitizes NSCLC cells to standard therapies through modulation of EMT-regulating miRNAs. J. Hematol. Oncol. 2013;6:77. doi: 10.1186/1756-8722-6-77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Kumar S., Kumar A., Shah P.P., Rai S.N., Pangaluru S.K., Kakar S.S. MicroRNA signature of cis-platin resistant vs. cis-platin sensitive ovarian cancer cell lines. J. Ovarian Res. 2011;4:17. doi: 10.1186/1757-2215-4-17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Sugimura K., Miyata H., Tanaka K., Hamano R., Takahashi T., Kurokawa Y., Yamasaki M., Nakajima K., Takiguchi S., Mori M., Doki Y. Let-7 expression is a significant determinant of response to chemotherapy through the regulation of IL-6/STAT3 pathway in esophageal squamous cell carcinoma. Clin. Canc. Res. 2012;18:5144–5153. doi: 10.1158/1078-0432.CCR-12-0701. [DOI] [PubMed] [Google Scholar]
  • 53.Mozzoni P., Ampolli L., Goldoni M., Alinovi R., Tiseo M., Gnetti L., Carbognani P., Rusca M., Mutti A., Percesepe A., Corradi M. MicroRNA expression in malignant pleural mesothelioma and asbestosis: a pilot study. Dis. Markers. 2017;2017 doi: 10.1155/2017/9645940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Goto A., Tanaka M., Yoshida M., Umakoshi M., Nanjo H., Shiraishi K., Saito M., Kohno T., Kuriyama S., Konno H., Imai K., Saito H., Minamiya Y., Maeda D. The low expression of miR-451 predicts a worse prognosis in non-small cell lung cancer. PLoS One. 2017;12 doi: 10.1371/journal.pone.0181270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Yin P., Peng R., Peng H., Yao L., Sun Y., Wen L., Wu T., Zhou J., Zhang Z. MiR-451 suppresses cell proliferation and metastasis in A549 lung cancer cells. Mol. Biotechnol. 2015;57:1–11. doi: 10.1007/s12033-014-9796-3. [DOI] [PubMed] [Google Scholar]
  • 56.Liu K., Tian H., Zhang Y., Zhao H., Ma K. MiR-451 selectively increases sensitivity to cisplatin in ERCC1-high non-small cell lung cancer cells. J. Cell. Biochem. 2018 [Google Scholar]
  • 57.Nicolè L., Cappellesso R., Sanavia T., Guzzardo V., Fassina A. MiR-21 overexpression and programmed cell death 4 down-regulation features malignant pleural mesothelioma. Oncotarget. 2018;9:17300–17308. doi: 10.18632/oncotarget.24644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Gao W., Lu X., Liu L., Xu J., Feng D., Shu Y. MiRNA-21 – a biomarker predictive for platinum-based adjuvant chemotherapy response in patients with non-small cell lung cancer. Canc. Biol. Ther. 2012;13:330–340. doi: 10.4161/cbt.19073. [DOI] [PubMed] [Google Scholar]
  • 59.Tanaka N., Toyooka S., Soh J., Tsukuda K., Shien K., Furukawa M., Muraoka T., Maki Y., Ueno T., Yamamoto H., Asano H., Otsuki T., Miyoshi S. Downregulation of microRNA-34 induces cell proliferation and invasion of human mesothelial cells. Oncol. Rep. 2013;29:2169–2174. doi: 10.3892/or.2013.2351. [DOI] [PubMed] [Google Scholar]
  • 60.El Bizawy R., De Cesare M., Pennati M., Deraco M., Gandellini P., Zuco V., Zaffaroni N. Antitumor activity of miR-34a in peritoneal mesothelioma relies on c-MET an AXL inhibition: persistent activation of ERK and AKT signaling as a possible cytoprotective mechanism. J. Hematol. Oncol. 2017;10:19. doi: 10.1186/s13045-016-0387-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Li H., Yu G., Shi R., Chen X., Xia D. Cisplatin-induced epigenetic activation of miR-34a sensitizes bladder cancer cells to chemotherapy. Mol. Canc. 2014;13:8. doi: 10.1186/1476-4598-13-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Xue W., Dahlmann J.E., Tammela T., Khan O.F., Sood S., Dave A., Cai W., Chirino L.M., Yang G.R., Bronson R., Crowley D.G., Sahay G., Schroeder A., Langer R., Anderson D.G., Jacks T. Small RNA combination therapy for lung cancer. Proc. Natl. Acad. Sci. U.S.A. 2014;111:E3553–E3561. doi: 10.1073/pnas.1412686111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Yu G., Chen G., Huang B., Wu S. Downregulation of PEBP4, a target of miR-34a, sensitizes drug-resistant lung cancer cells. Tumor Biol. 2014;35:10341–10349. doi: 10.1007/s13277-014-2284-3. [DOI] [PubMed] [Google Scholar]
  • 64.Wang X., Dong K., Gao P., Long M., Lin F., Weng Y., Ouyang Y., Ren J., Zhang H. MicroRNA-34a sensitizes lung cancer cell lines to DDP treatment independent of p53 status, Cancer Biother. Radiopharm. 2013;28:45–50. doi: 10.1089/cbr.2012.1218. [DOI] [PubMed] [Google Scholar]
  • 65.Kubo T., Toyooka S., Tsukudam K., Sakaguchi M., Fukazawa T., Soh J., Asano H., Ueno T., Muraoka T., Yamamoto H., Nasu Y., Kishimoto T., Pass H.I., Matsui H., Huh N., Miyoshi S. Epigenetic silencing of microRNA-34b/c plays an important role in the pathogenesis of malignant pleural mesothelioma. Clin. Canc. Res. 2011;17:4965–4974. doi: 10.1158/1078-0432.CCR-10-3040. [DOI] [PubMed] [Google Scholar]
  • 66.Nadal E., Chen G., Gallegos M., Lin L., Ferrer-Torres D., Truini A., Wang Z., Lin J., Reddy R.M., Llatjos R., Escobar I., Moya J., Chang A.C., Cardenal F., Capella G., Beer D.G. Epigenetic inactivation of microRNA-34b/c predicts poor disease-free survival in early stage lung adenocarcinoma. Clin. Canc. Res. 2013;19:6842–6852. doi: 10.1158/1078-0432.CCR-13-0736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Birnie K.A., Yip Y.Y., Ng D.C.H., Kirschner M.B., Reid G., Prêle C.M., Musk A.W., Lee Y.C.G., Thompson P.J., Mutsaers S.E., Badrian B. Loss of miR-223 and JNK signaling contribute to elevated stathmin in malignant pleural mesothelioma. Mol. Canc. Res. 2015;13:1106–1118. doi: 10.1158/1541-7786.MCR-14-0442. [DOI] [PubMed] [Google Scholar]
  • 68.Sun X., Li Y., Zheng M., Zuo W., Zhang W. MicroRNA-223 increases the sensitivity of triple-negative breast cancer stem cells to TRAIL-induced apoptosis by targeting HAX-1. PLoS One. 2016;11 doi: 10.1371/journal.pone.0162754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Gee G.V., Koestler D.C., Christensen B.C., Sugarbaker D.J., Ugolini D., Ivaldi G.P., Resnick M.B., Houseman E.A., Kelsey K.T., Marsit C.J. Downregulated microRNAs in the differential diagnosis of malignant pleural mesothelioma. Int. J. Canc. 2010;127:2859–2869. doi: 10.1002/ijc.25285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Zhu W., Xu H., Zhu D., Zhi H., Wang T., Wang J., Jiang B., Shu Y., Liu P. MiR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP. Cancer Chemother. Pharmacol. (Basel) 2012;69:723–731. doi: 10.1007/s00280-011-1752-3. [DOI] [PubMed] [Google Scholar]
  • 71.Ceppi P., Mudduluru G., Kumarswamy R., Rapa I., Scagliotti G.V., Papotti M., Allgayer H. Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer. Mol. Canc. Res. 2010;8:1207–1216. doi: 10.1158/1541-7786.MCR-10-0052. [DOI] [PubMed] [Google Scholar]
  • 72.Amatya V.J., Mawas A.S., Kushitani K., Mohi El-Din M.M., Takeshima Y. Differential microRNA expression profiling of mesothelioma and expression analysis of miR-1 and miR-214 in mesothelioma. Int. J. Oncol. 2016;48:1599–1607. doi: 10.3892/ijo.2016.3358. [DOI] [PubMed] [Google Scholar]
  • 73.Wang F., Liu M., Li X., Tang H. miR-214 reduces cell survival and enhances cisplatin-induced cytotoxicity via down-regulation of Bcl2l2 in cervical cancer cells. FEBS Lett. 2013;587:488–495. doi: 10.1016/j.febslet.2013.01.016. [DOI] [PubMed] [Google Scholar]
  • 74.Yang H., Kong W., He L., Zhao J.J., O'Donnell J.D., Wang J. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Canc. Res. 2008;68:425–433. doi: 10.1158/0008-5472.CAN-07-2488. [DOI] [PubMed] [Google Scholar]
  • 75.Suraokar M., Coombies K., Tsao A., Wistuba I., Zhang Y., Chow C., Kim D., Diao L., Fujimoto J., Mehran R., Wang J., Behrens C. Abstract B37: investigating the potential of miR-203 as a therapeutic candidate and its role in the pathobiology of malignant pleural mesothelioma (MPM) Clin. Canc. Res. 2012;18(3 Suppl) Abstract nr B37. [Google Scholar]
  • 76.Cheng R., Lu C., Zhang G., Zhang G., Zhao G. Overexpression of miR-203 increases the sensitivity of NSCLC A549/H460 cell lines to cisplatin by targeting Dickkopf-1. Oncol. Rep. 2017;37:2129–2136. doi: 10.3892/or.2017.5505. [DOI] [PubMed] [Google Scholar]
  • 77.Guled M., Lahti L., Lindholm P.M., Salmenkivi K., Bagwan I., Nicholson A.G., Knuutila S. CDKN2A, NF2, and JUN are dysregulated among other genes by miRNAs in malignant mesothelioma – a miRNA microarray analysis. Genes Chromosomes Cancer. 2009;48:615–623. doi: 10.1002/gcc.20669. [DOI] [PubMed] [Google Scholar]
  • 78.Pogribny I.P., Filkowski J.N., Tryndyak V.P., Golubov A., Shpyleva S.I., Kovalchuk O. Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int. J. Canc. 2010;127:1785–1794. doi: 10.1002/ijc.25191. [DOI] [PubMed] [Google Scholar]
  • 79.Shen D.-W., Pouliot L.M., Hall M.D., Gottesman M.M. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol. Rev. 2012;64:706–721. doi: 10.1124/pr.111.005637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Balatti V., Maniero S., Ferracin M., Veronese A., Negrini M., Ferocci G., Martini F., Tognon M.G. MicroRNAs dysregulated in human malignant pleural mesothelioma. J. Thorac. Oncol. 2011;6:844–851. doi: 10.1097/JTO.0b013e31820db125. [DOI] [PubMed] [Google Scholar]
  • 81.Esebua M., Ding Q., Wang M., Layfield L. MiRNA 148a is highly expressed in malignant mesothelioma. Am. J. Clin. Pathol. 2014;142:A222. [Google Scholar]
  • 82.Kim E.-A., Kim T.G., Sung E.-G., Song I.-H., Kim J.-Y., Doh K.-O., Lee T.-J. MiR-148a increases the sensitivity to cisplatin by targeting Rab14 in renal cancer cells. Int. J. Oncol. 2017;50:984–992. doi: 10.3892/ijo.2017.3851. [DOI] [PubMed] [Google Scholar]
  • 83.Zhu W., Zhu D., Lu S., Wang T., Wang J., Jiang B., Shu Y., Liu P. MiR-497 modulates multidrug resistance of human cancer cell lines by targeting BCL2. Med. Oncol. 2012;29:384–391. doi: 10.1007/s12032-010-9797-4. [DOI] [PubMed] [Google Scholar]
  • 84.Xu Y., Zheng M., Merritt R.E., Shrager J.B., Wakelee H.A., Kratzke R.A., Hoang C.D. MiR-1 induces growth arrest and apoptosis in malignant mesothelioma. Chest. 2013;144:1632–1643. doi: 10.1378/chest.12-2770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Li J., Guan J., Long X., Wang Y., Xiang X. MiR-1-mediated paracrine effect of cancer-associated fibroblasts on lung cancer cell proliferation and chemoresistance. Oncol. Rep. 2016;35:3523–3531. doi: 10.3892/or.2016.4714. [DOI] [PubMed] [Google Scholar]
  • 86.Cioce M., Ganci F., Canu V., Sacconi A., Mori F., Canino C., Korita E., Casini B., Cambria G. Alessandrini A., Carosi M.A., Blandino R., Panebianco V., Facciolo F., Visca P., Volinia S., Muti P., Strano S., Croce C.M., Pass H.I., Blandino G. Protumorigenic effects of miR-145 loss in malignant pleural mesothelioma. Oncogene. 2014;33:5319–5331. doi: 10.1038/onc.2013.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Papadopoulos E.I., Scorilas A. Cisplatin and paclitaxel alter the expression pattern of miR-143/145 and miR-183/96/182 clusters in T24 bladder cancer cells. Clin. Transl. Sci. 2015;8:668–675. doi: 10.1111/cts.12323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Zhan M., Zhao X., Wang H., Chen W., Xu S., Wang W., Shen H., Huang S., Wang J. MiR-145 sensitizes gallbladder cancer to cisplatin by regulating multidrug resistance associated protein 1. Tumour Biol. 2016;37:10553–10562. doi: 10.1007/s13277-016-4957-6. [DOI] [PubMed] [Google Scholar]
  • 89.Wang Z., Ji F. Downregulation of microRNA-17-5p inhibits drug resistance of gastric cancer cells partially through targeting p21. Oncol. Lett. 2018;15:4585–4591. doi: 10.3892/ol.2018.7822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Pavkovic M., Robinson-Cohen C., Chua A.S., Nicoara O., Cárdenas-González M., Bijol V., Ramachandran K., Hampson L., Pirmohamed M., Antoine D.J., Frendl G., Himmelfarb J., Waikar S.S., Vaidya V.S. Detection of drug-induced acute kidney injury in humans using urinary KIM-1, miR-21, -200c, and -423. Toxicol. Sci. 2016;152:205–213. doi: 10.1093/toxsci/kfw077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Wright C.M., Kirschner M.B., Cheng Y.Y., O'Byrne K.J., Gray S.G., Schelch K., Hoda M.A., Klebe S., McCaughan B., van Zandwijk N., Reid G. Long non coding RNAs (lncRNAs) are dysregulated in malignant pleural mesothelioma (MPM) PLoS One. 2013;8 doi: 10.1371/journal.pone.0070940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Singh A.S., Heery R., Gray S.G. In silico and in vitro analyses of lncRNAs as potential regulators in the transition from the epitheloid to sarcomatoid histotype of malignant pleural mesothelioma (MPM) Int. J. Mol. Sci. 2018;19:1297. doi: 10.3390/ijms19051297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Liu Z., Sun M., Lu K., Liu J., Zhang M., Wu W., De W., Wang Z., Wang R. The long noncoding RNA HOTAIR contributes to cisplatin resistance of human lung adenocarcinoma cells via downregulation of p21WAF1/CIP1 expression. PLoS One. 2013;8 doi: 10.1371/journal.pone.0077293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Fang Z., Chen W., Yuan Z., Liu X., Jiang H. LncRNA-MALAT1 contributes tot he cisplatin-resistance of lung cancer by upregulating MRP1 and MDR1 via STAT3 activation. Biomed. Pharmacother. 2018;101:536–542. doi: 10.1016/j.biopha.2018.02.130. [DOI] [PubMed] [Google Scholar]
  • 95.Wang Q., Cheng N., Li X., Pan H., Li C., Ren S., Su C., Cai W., Zhao C., Zhang L., Zhou C. Correlation of long non-coding RNA H19 expression with cisplatin-resistance and clinical outcome in lung adenocarcinoma. Oncotarget. 2017;8:2558–2567. doi: 10.18632/oncotarget.13708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Riquelme E., Suraokar M.B., Rodriguez J., Mino B., Lin H.Y., Rice D.C., Tsao A., Wistuba I.I. Frequent coamplification and cooperation between C-MYC and PVT1 oncogenes promote malignant pleural mesothelioma. J. Thorac. Oncol. 2014;9:998–1007. doi: 10.1097/JTO.0000000000000202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Li L., Zhang H., Wang X., Wang J., Wie H. Long non-coding RNA CASC2 enhanced cisplatin-induced viability inhibition of non-small cell lung cancer cells by regulating the PTEN/PI3K/Akt pathway through down-regulation of miR-18a and miR-21. RSC Adv. 2018;8:15923–15932. doi: 10.1039/c8ra00549d. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Hu F., Wei F., Wang Y., Wu B., Fang Y., Xiong B. EGCG synergizes the therapeutic effect of cisplatin and oxaliplatin through autophagic pathway in human colorectal cancer cells. J. Pharmacol. Sci. 2015;128:27–34. doi: 10.1016/j.jphs.2015.04.003. [DOI] [PubMed] [Google Scholar]
  • 99.Mazumder M.E.H., Beale P., Chan C., Yu J.Q., Huq F. Epigallocatechin gallate acts synergistically in combination with cisplatin and designed trans-palladiums in ovarian cancer cells. Anticancer Res. 2012;32:4851–4860. [PubMed] [Google Scholar]
  • 100.Younes M., Aggett P., Aguilar F., Crebelli R., Dusemund B., Filipic M., Frutos M.J., Galtier P., Gott D., Gundert-Remy U., Lambré C., Leblanc J.-C., Lillegard I.T., Moldeus P., Mortensen A., Oskarsson A., Stankovic I., Waalkens-Berendsen I., Woutersen R.A., Andrade R.J., Fortes C., Mosesso P., Restani P., Arcella D., Pizzo F., Smeraldi C., Wright M. Scientific opinion on the safety of green tea catechins. EFSA J. 2018;16:5239. doi: 10.2903/j.efsa.2018.5239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Shah J.J., Kuhn D.J., Orlowski R.Z. Bortezomib and EGCG: no green tea for you? Blood. 2009;113:5695–5696. doi: 10.1182/blood-2009-03-204776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Tsang J.S., Ebert M.S., van Oudenaarden A. Genome-wide dissection of microRNA functions and cotargeting networks using genes et signatures. Mol. Cell. 2010;38:140–153. doi: 10.1016/j.molcel.2010.03.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Zhu K., Wang W. Green tea polyphenol EGCG suppresses osteosarcoma cell growth through upregulating miR-1. Tumour Biol. 2015 doi: 10.1007/s13277-015-4187-3. [DOI] [PubMed] [Google Scholar]
  • 104.Chakrabarti M., Ai W., Banik N.L., Ray S.K. Overexpression of miR-7-1 increases efficacy of green tea polyphenols for induction of apoptosis in human malignant neuroblastoma SH-SY5Y and SK-N-DZ cells. Neurochem. Res. 2013;38:420–432. doi: 10.1007/s11064-012-0936-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Zhou H., Chen J.X., Yang C.S., Yang M.Q., Deng Y., Wang H. Gene regulation mediated by microRNAs in response to green tea polyphenol EGCG in mouse lung cancer. BMC Genom. 2014;15(Suppl. 11):S3. doi: 10.1186/1471-2164-15-S11-S3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Siddiqi I.A., Asim M., Hafeez B.B., Adhami V.M., Tarapore R.S., Mukhtar H. Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer. FASEB J. 2011;25:1198–1207. doi: 10.1096/fj.10-167924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Wang H., Bian S., Yang C.S. Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1α. Carcinogenesis. 2011;32:1881–1889. doi: 10.1093/carcin/bgr218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Jiang P., Wu X., Wang X., Huang W., Feng Q. NEAT1 upregulates EGCG-induced CTR1 to enhance cisplatin sensitivity in lung cancer cells. Oncotarget. 2016;7:43337–43351. doi: 10.18632/oncotarget.9712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Zaman M.S., Sharyari V., Deng G., Thamminana S., Saini S., Majid S., Chang I., Hirata H., Ueno K., Yamamura S., Singh K., Tanaka Y., Tabatabai Z.L., Dahiya R. Up-regulation of microRNA-21 correlates with lower kidney cancer survival. PLoS One. 2012;7 doi: 10.1371/journal.pone.0031060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Rhodes L.V., Tilghman S.L., Boué S.M., Wang S., Khalili H., Muir S.E., Bratton M.R., Zhang Q., Wang G., Burrow M.E., Collins-Burrow B.M. Glyceollins as novel targeted therapeutic for the treatment of triple-negative breast cancer. Oncol. Lett. 2012;3:163–171. doi: 10.3892/ol.2011.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Chang H., Hu Y., Yuan L., Xu H., Zhou Y., Zhu J., Zhang Q., Mi M. MicroRNA-34a and microRNA-21 play roles in the chemopreventive effects of 3,6-dihydroxyflavone on 1-methyl-1-nitrosourea-induced breast carcinogenesis. Breast Cancer Res. 2012;14:R80. doi: 10.1186/bcr3194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Chang X. Peng H., Gu Y., Chen J., Yi L., Xie Q., Zhu J., Zhang Q., Mi M. 3,6-Dihydroxyflavone suppresses breast carcinogenesis by epigenetically regulating miR-34a and miR-21. Canc. Prev. Res. 2015;8:509–517. doi: 10.1158/1940-6207.CAPR-14-0357. [DOI] [PubMed] [Google Scholar]
  • 113.Cufi S., Bonavia R., Vasquez-Martin A., Oliveras-Ferraros C., Corominas-Faja B., Cuyás E., Martin-Castillo B., Barrajón-Catalán E., Sequra-Carretero A., Joven J., Bosch-Barrera J., Micol V., Menendez J.A. Silibinin suppresses EMT-driven erlotinib resistance by reversing the high miR-21/low miR-200c signature in vivo. Sci. Rep. 2013;3:2459. doi: 10.1038/srep02459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Xia J., Duan Q., Ahmad A., Bao B., Banerjee S., Shi Y., Ma J., Geng J., Chen Z., Wahidur Rahman K.M., Miele L., Sarkar F.H., Wang Z. Genistein inhibits cell growth and induces apoptosis through up-regulation of miR-34a in pancreatic cancer cells. Curr. Drug Targets. 2012;13:1750–1756. doi: 10.2174/138945012804545597. [DOI] [PubMed] [Google Scholar]
  • 115.Lou G., Liu Y., Wu S., Xue J., Yang F., Fu H., Zheng M., Chen Z. The p53/miR-34a/SIRT1 positive feedback loop in quercetin-induced apoptosis. Cell. Physiol. Biochem. 2015;35:2192–2202. doi: 10.1159/000374024. [DOI] [PubMed] [Google Scholar]
  • 116.Lynch S.M., O'Neill K.M., McKenna M.M. Regulation of miR-200c and miR-141 by methylation in prostate cancer. Prostate. 2016;76:1146–1159. doi: 10.1002/pros.23201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Chiyomaru T., Yamamura S., Fukuhara S., Yoshino H., Kinoshita T., Majid S., Saini S., Chang I., Tanaka Y., Enokida H., Seki N., Nakagawa M., Dahiya R. Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR. PLoS One. 2013;8 doi: 10.1371/journal.pone.0070372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Chen J., Lin C., Yong W., Ye Y., Huang Z. Calycosin and genistein induce apoptosis by inactivation of HOTAIR/p-Akt signaling pathway in human breast cancer MCF-7 cells. Cell. Physiol. Biochem. 2015;35:722–728. doi: 10.1159/000369732. [DOI] [PubMed] [Google Scholar]
  • 119.Ma J., Fang B., Zeng F., Pang H., Zhang J., Shi Y., Wu X., Cheng L., Ma C., Xia J., Wang Z. Curcumin inhibits cell growth and invasion through up-regulation of miR-7 in pancreatic cancer cells. Toxicol. Lett. 2014;231:82–91. doi: 10.1016/j.toxlet.2014.09.014. [DOI] [PubMed] [Google Scholar]
  • 120.Subramaniam D., Ponnurangam S., Ramamoorthy P., Standing D., Battafarano R.J., Anant S., Sharma P. Curcumin induces cell death in esophageal cancer cells through modulating Notch signaling. PLoS One. 2012;7 doi: 10.1371/journal.pone.0030590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Mirgani M.T., Isacchi B., Sadeghizadeh M., Marra F., Bilia A.R., Mowla S.J., Najafi F., Babaei E. Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells. Int. J. Nanomed. 2014;9:403–417. doi: 10.2147/IJN.S48136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Ali S., Ahmad A., Banerjee S., Padhye S., Dominiak K., Schaffert J.M., Wang Z., Philip P.A., Sarkar F.H. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Canc. Res. 2010;70:3606–3617. doi: 10.1158/0008-5472.CAN-09-4598. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 123.Saini S., Aroroa S., Majid S., Shahryari V., Chen Y., Deng G., Yamamura S., Ueno K., Dahiya R. Curcumin modulates microRNA-203-mediated regulation of the Src-Akt axis in bladder cancer. Canc. Prev. Res. 2011;4:1698–1709. doi: 10.1158/1940-6207.CAPR-11-0267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Gandhy S.U., Kim K., Larsen L., Rosengren R.J., Safe S. Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (sp) transcription factors by targeting microRNAs. BMC Canc. 2012;12:564. doi: 10.1186/1471-2407-12-564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Mudduluru G., George-William J.N., Muppala S., Asangani I.A., Kumarswamy R., Nelson L.D., Allgayer H. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cells. Biosci. Rep. 2011;31:185–197. doi: 10.1042/BSR20100065. [DOI] [PubMed] [Google Scholar]
  • 126.Zhang W., Mai B. MiR-21 suppresses the anticancer activities of curcumin by targeting PTEN gene in human non-small cell lung cancer A549 cells. Clin. Transl. Oncol. 2014;16:708–713. doi: 10.1007/s12094-013-1135-9. [DOI] [PubMed] [Google Scholar]
  • 127.Pei C.-S., Wu H.-Y., Fan F.-T., Wu Y., Shen C.-S., Pan L.-Q. Influence of curcumin on HOTAIR-mediated migration of human renal cell carcinoma cells. Asian Pac. J. Cancer Prev. APJCP. 2014;15:4239–4243. doi: 10.7314/apjcp.2014.15.10.4239. [DOI] [PubMed] [Google Scholar]
  • 128.Kujundzic R.N., Grbesa I., Ivkic M., Katdare M., Gall-Troselj K. Curcumin downregulates H19 gene transcription in tumor cells. J. Cell. Biochem. 2008;104:1781–1792. doi: 10.1002/jcb.21742. [DOI] [PubMed] [Google Scholar]
  • 129.Yoshida K., Toden S., Ravindranathan P., Han H., Goel A. Curcumin sensitizes pancreatic cancer cells to gemcitabine by attenuating PRC2 subunit EZH2, and the lncRNA PVT1 expression. Carcinogenesis. 2017;38:1036–1046. doi: 10.1093/carcin/bgx065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Bao B., Ali S., Kong D., Sarkar S.H., Wang Z., Banerjee S., Aboukameel A., Padhye S., Philip P.A., Sarkar F.H. Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS One. 2011;6 doi: 10.1371/journal.pone.0017850. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 131.Bao B., Ahmad A., Kong D., Ali S., Azmi A.S., Li Y., Banerjee S., Padhye S., Sarkar F.H. Hypoxia induced aggressiveness of prostate cancer cells is linked with deregulated expression of VEGF, IL-6 and miRNAs that are attenuated by CDF. PLoS One. 2012;7 doi: 10.1371/journal.pone.0043726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Bao B., Ali S., Ahmad A., Azmi A.S., Li Y., Banerjee S., Kong D., Sethi S., Aboukameel A., Padhye S.B., Sarkar F.H., Majumdar A.P.N. Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment. PLoS One. 2012;7 doi: 10.1371/journal.pone.0050165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Yang C.H., Yue J., Sims M., Pfeffer L.M. The curcumin analog EF24 targets NF-κB and miRNA-21, and has potent anticancer activity in vitro and in vivo. PLoS One. 2013;8 doi: 10.1371/journal.pone.0071130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Tili E., Michaille J.J., Alder H., Volinia S., Delmas D., Latruffe N., Croce C.M. Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGF-beta signaling pathway in SW480 cells. Biochem. Pharmacol. 2010;80:2057–2065. doi: 10.1016/j.bcp.2010.07.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Liu P., Liang H., Xia Q., Li P., Kong H., Lei P., Wang S., Tu Z. Resveratrol induces apoptosis of pancreatic cancer cells by inhibiting miR-21 regulation of Bcl-2 expression. Clin. Transl. Oncol. 2013;15:741–746. doi: 10.1007/s12094-012-0999-4. [DOI] [PubMed] [Google Scholar]
  • 136.Kumazaki M., Noguchi S., Yasui Y., Iwasaki J., Shinohara H., Yamada N., Akao Y. Anti-cancer effects of naturally occurring compounds through modulation of signal transduction and miRNA expression in human colon cancer cells. J. Nutr. Biochem. 2013;24:1849–1858. doi: 10.1016/j.jnutbio.2013.04.006. [DOI] [PubMed] [Google Scholar]
  • 137.Yang S., Li W., Sun H., Wu B., Ji F., Sun T., Chang H., Shen P., Wang Y., Zhou D. Resveratrol elicits anti-colorectal cancer effect by activating miR-34c-KITLG in vitro and in vivo. BMC Canc. 2015;15:969. doi: 10.1186/s12885-015-1958-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Hagiwara K., Kosaka N., Yoshioka Y., Takahashi R.U., Takeshita F., Ochiya T. Stilbene derivatives promote AGO2-dependent tumour-suppressive micro-RNA activity. Sci. Rep. 2012;2:314. doi: 10.1038/srep00314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Liu Q., Sun S., Yu W., Jiang J., Zhuo F., Qiu G. Altered expression of long non-coding RNAs during genotoxic stress-induced cell death in human glioma cells. J. Neuro Oncol. 2015;122:283–292. doi: 10.1007/s11060-015-1718-0. [DOI] [PubMed] [Google Scholar]
  • 140.Li Q., Liu X., Fu X., Zhang L., Sui H., Zhou L., Sun J., Cai J., Qin J., Ren J., Li Q. Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/β-catenin signal pathway. PLoS One. 2013;11 doi: 10.1371/journal.pone.0078700. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 141.Ma Y.-N., Chen M.-T., Wu Z.-K., Zhao H.-L., Yu H.-C., Yu J., Zhang J.-W. Emodin can induce K562 cells to erythroid differentiation and improve expression of globin genes. Mol. Cell. Biochem. 2013;382:127–136. doi: 10.1007/s11010-013-1726-3. [DOI] [PubMed] [Google Scholar]
  • 142.Ren Z., Tong H., Chen L., Yao Y., Huang S., Zhu F., Liu W. miR-211 and miR-429 are involved in emodin's anti-proliferative effects on lung cancer. Int. J. Clin. Med. 2016;9:2085–2093. [Google Scholar]
  • 143.Lin S.-Z., Xu J.-B., Ji X., Chen H., Xu H.-T., Hu P., Chen L., Guo J.-Q., Chen M.-Y., Lu D., Wang Z.-H., Tong H.-F. Emodin inhibits angiogenesis in pancreatic cancer by regulating the transforming growth factor-β/drosophila mothers against decapentaplegic pathway and angiogenesis-associated micro-RNAs. Mol. Med. Rep. 2015;12:5865–5871. doi: 10.3892/mmr.2015.4158. [DOI] [PubMed] [Google Scholar]
  • 144.Avtanski D.B., Nagalingam A., Kuppusamy P., Bonner M.Y., Arbiser J.L., Saxena N.K., Sharma D. Honokiol abrogates leptin-induced tumor progression by inhibiting Wnt1-MTA1-β-catenin signaling axis in a microRNA-34a dependent manner. Oncotarget. 2015;6:16396–16410. doi: 10.18632/oncotarget.3844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Hagiwara K., Gailhouste L., Yasukawa K., Kosaka N., Ochiya T. A robust screening method for dietary agents that activate tumour-suppressor microRNAs. Sci. Rep. 2015;5:14697. doi: 10.1038/srep14697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Parasramka M.A., Ali S., Banerjee S., Deryavoush T., Sarkar F.H., Gupta S.V. Garcinol sensitizes human pancreatic adenocarcinoma cells to gemcitabine in association with microRNA signatures. Mol. Nutr. Food Res. 2013;57:235–248. doi: 10.1002/mnfr.201200297. [DOI] [PubMed] [Google Scholar]
  • 147.Ahmad A., Sarkar S.H., Bitar B., Ali S., Aboukameel A., Sethi S., Li Y., Bao B., Kong D., Banerjee S., Padhye S.B., Sarkar F.H. Garcinol regulates EMT and Wnt signaling pathways in vitro and in vivo, leading to anticancer activity against breast cancer. Mol. Canc. Therapeut. 2012;11:2193–2201. doi: 10.1158/1535-7163.MCT-12-0232-T. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Jiang F., Mu J., Wang X., Ye X., Su L., Ning S., Li Z. The repressive effect of miR-148a on TGF beta-SMADs signal pathway is involved in the glabridin-induced inhibition of the cancer stem cells-like properties in hepatocellular carcinoma cells. PLoS One. 2014;9 doi: 10.1371/journal.pone.0096698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Li Y., Jiang F., Chen L., Yang Y., Cau S., Ye Y., Wang X., Mu J., Li Z., Li L. Blockade of TGFβ-SMAD2 by demethylation-activated miR-148a is involved in caffeic acid-induced inhibition of cancer stem cell-like properties in vitro and in vivo. FEBS Open Bio. 2015;5:466–475. doi: 10.1016/j.fob.2015.05.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Zhou B., Yi H., Tan J., Wue Y., Liu G. Antiproliferative effects of polyphenols from pomegranate rind (Punica granatum L.) on EJ bladder cancer cells via regulation of p53/miR-34a axis. Phytother Res. 2015;29:415–422. doi: 10.1002/ptr.5267. [DOI] [PubMed] [Google Scholar]
  • 151.Henwood J.M., Brogden R.N. Etoposide. A review of its pharmacodynamics and pharmacokinetic properties, and therapeutic potential in combination chemotherapy of cancer. Drugs. 1990;39:438–490. doi: 10.2165/00003495-199039030-00008. [DOI] [PubMed] [Google Scholar]
  • 152.Hande K.R. Etoposide: four decades of development of a topoisomerase II inhibitor. Eur. J. Canc. 1998;34:1514–1521. doi: 10.1016/s0959-8049(98)00228-7. [DOI] [PubMed] [Google Scholar]
  • 153.Novello C., Pazzaglia I., Conti A., Quattrini I., Pollino S., Perrego P., Picci P., Benassi M.S. p53-dependent activation of microRNA-34a in response to etoposide-induced DNA damage in osteosarcoma cell lines not impaired by dominant negative p53 expression. PLoS One. 2014;9 doi: 10.1371/journal.pone.0114757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.van Meerbeeck J., Debruyne C., van Zandwijk N., Postumus P.E., Pennucci M.C., van Breukelen F., Galdermans D., Groen H., Pinson P., van Glabbeke M., van Marck E., Giaccone G. Paclitaxel for malignant pleural mesothelioma: a phase II study of the EORTC lung cancer cooperative group. Br. J. Canc. 1996;74:961–963. doi: 10.1038/bjc.1996.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.Ogura O., Noguchi T., Nagata K., Noma H., Maemura M., Higashimoto M., Takebayashi Y., Maeda S. A case of malignant peritoneal mesothelioma successfully treated with carboplatin and paclitaxel. Gan To Kagaku Ryoho. 2007;33:1001–1004. [PubMed] [Google Scholar]
  • 156.Kanai O., Nakatani K. Fujitam K., Mio T. Repetitive responses to nanoparticle albumin-bound paclitaxel and carboplatin in malignant pleural mesothelioma. Respirol. Case Rep. 2016;4:28–31. doi: 10.1002/rcr2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Frères P., Josse C., Bovy N., Boukerroucha M., Struman I., Bours V., Jerusalem G. Neoadjuvant chemotherapy in breast cancer patients induces miR-34a and miR-122 expression. J. Cell. Physiol. 2015;230:473–481. doi: 10.1002/jcp.24730. [DOI] [PubMed] [Google Scholar]
  • 158.Ghawanmeh T., Thunberg U., Castro J., Murray F., Laytragoon-Lewin N. MiR-34a expression, cell cycle arrest and cell death of malignant mesothelioma cells upon treatment with radiation, docetaxel or combination treatment. Oncology. 2011;81:330–335. doi: 10.1159/000334237. [DOI] [PubMed] [Google Scholar]
  • 159.Wang J., Li Y., Wang X., Jiang C. Ursolic acid inhibits proliferation and induces apoptosis in human glioblastoma cell lines U251 by suppressing TGF-β1/miR-21/PDCD4 pathway. Basic Clin. Pharmacol. Toxicol. 2012;111:106–112. doi: 10.1111/j.1742-7843.2012.00870.x. [DOI] [PubMed] [Google Scholar]
  • 160.van der Fits L., van Kester M.S., Qin Y., Out-Luiting J.J., Smit F., Zoutman W.H., Willemze R., Tensen C.P., Vermeer M.H. MicroRNA-21 expression in CD4+ T cells is regulated by STAT3 and is pathologically involved in Sézary syndrome. J. Invest. Dermatol. 2011;131:762–768. doi: 10.1038/jid.2010.349. [DOI] [PubMed] [Google Scholar]
  • 161.Wu N., Wu G.C., Hu R., Li M., Feng H. Ginsenoside Rh2 inhibits glioma cell proliferation by targeting microRNA-128. Acta Pharmacol. Sin. 2011;32:345–353. doi: 10.1038/aps.2010.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.An I.-S., An S., Kwon K.J., Kim Y.J., Bae S. Ginsenoside Rh2 mediates changes in the microRNA expression profile of human non-small cell lung cancer A549 cells. Oncol. Rep. 2013;29:523–528. doi: 10.3892/or.2012.2136. [DOI] [PubMed] [Google Scholar]
  • 163.Toden S., Okugawa Y., Buhrmann C., Nattamai D., Anguiano E., Baldwin N., Shakibaei M., Boland C.R., Goel A. Novel evidence for curcumin and boswellic acid-induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer. Canc. Prev. Res. 2015;8:431–443. doi: 10.1158/1940-6207.CAPR-14-0354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Takahashi M., Sung B., Shen Y., Hur K., Link A., Boland C.R., Aggarwal B.B., Goel A. Boswellic acid exerts antitumor effects in colorectal cancer cells by modulating expression of the let-7 and miR-200 microRNA family. Carcinogenesis. 2012;33:2441–2449. doi: 10.1093/carcin/bgs286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Rossi A., D’urso O.F., Gatto G., Poltronieri P., Ferracin M., Remondelli P., Negrini M., Caporaso M.G., Bonatti S., Mallardo M. Non-coding RNAs change their expression profile after retinoid induced differentiation of the pro-myelocytic cell line NB4. BMC Res. 2010;3:24. doi: 10.1186/1756-0500-3-24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Garzon R., Pichiorri F., Palumbo T., Visentini M., Aqeilan R., Cimmino A., Wang H., Sun H., Volinia S., Alder H., Calin G.A., Liu C.G., Andreeff M., Croce C.M. MicroRNA gene expression during retinoid acid-induced differentiation of human acute promyelocytic leukemia. Oncogene. 2007;26:4148–4157. doi: 10.1038/sj.onc.1210186. [DOI] [PubMed] [Google Scholar]
  • 167.Ji X., Wang Z., Geamanu A., Goja A., Sarkar F.H., Gupta S.V. Delta-tocotrienol suppresses Notch-1 pathway by upregulating miR-34a in non-small cell lung cancer cells. Int. J. Canc. 2012;131:2668–2677. doi: 10.1002/ijc.27549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 168.Yeh C.-T., Huang W.-C., Rao Y.K., Ye M., Lee W.H., Wang L.-S., Tzeng D.T.W., Wu C.-H., Shieh Y.-S., Huang C.-Y.F., Chen Y.-J., Hsiao M., Wu A.T.H., Yang Z., Tzeng Y.-M. A sesquiterpene lactone antrocin from Antrodia camphorata negatively modulates JAK2/STAT3 signaling via microRNA let-7c and induces apoptosis in lung cancer cells. Carcinogenesis. 2013;34:2918–2928. doi: 10.1093/carcin/bgt255. [DOI] [PubMed] [Google Scholar]
  • 169.Bhattacharya S., Ahir M., Patra P., Mukherjee S., Ghosh S., Mazumdar M., Chattopadhyay S., Das T., Chattopadhyay D., Adhikary A. PEGylated-thymoquinone-nanoparticle mediated retardation of breast cancer cell migration by deregulation of cytoskeletal actin polymerization through miR-34a. Biomaterials. 2015;51:91–107. doi: 10.1016/j.biomaterials.2015.01.007. [DOI] [PubMed] [Google Scholar]
  • 170.Biersack B. Non-coding RNA/microRNA-modulatory dietary factors and natural products for improved cancer therapy and prevention: alkaloids, organosulfur compounds, aliphatic carboxylic acids and water-soluble vitamins. Non-coding RNA Res. 2016;1:51–63. doi: 10.1016/j.ncrna.2016.09.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 171.Stebbing J., Powles T., McPherson K., Shamash J., Well P., Sheaff M.T., Slater S., Rudd R.M., Fennell D., Steele J.P. The efficacy and safety of weekly vinorelbine in relapsed malignant pleural mesothelioma. Lung Canc. 2009;63:94–97. doi: 10.1016/j.lungcan.2008.04.001. [DOI] [PubMed] [Google Scholar]
  • 172.Sorensen J.B., Frank H., Palshol T. Cisplatin and vinorelbine first-line chemotherapy in non-resectable malignant pleural mesothelioma. Br. J. Canc. 2008;99:44–50. doi: 10.1038/sj.bjc.6604421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173.Anderton M.J., Manson M.M., Verschoyle R.D., Gescher A., Lamb J.H., Farmer P.B., Steward W.P., Williams M.L. Pharmacokinetics and tissue disposition of indole-3-carbinol and its acid condensation products after oral administration to mice. Clin. Canc. Res. 2004;10:5233–5241. doi: 10.1158/1078-0432.CCR-04-0163. [DOI] [PubMed] [Google Scholar]
  • 174.Melkamu T., Zhang X., Tan J., Zeng Y., Kassie F. Alteration of microRNA expression in vinyl carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol. Carcinogenesis. 2010;31:252–258. doi: 10.1093/carcin/bgp208. [DOI] [PubMed] [Google Scholar]
  • 175.Kong D., Heath E., Chen W., Cher M.L., Powell I., Heilbrun L., Li Y., Ali S., Sarkar F.H. Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS One. 2012;7 doi: 10.1371/journal.pone.0033729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176.Kashat M., Azzouz L., Sarkar S.H., Kong D., Li Y., Sarkar F.H. Inactivation of AR and Notch-1 signaling by miR-34a attenuates prostate cancer aggressiveness. Am. J. Transl. Res. 2012;4:432–442. [PMC free article] [PubMed] [Google Scholar]
  • 177.Ahmad A., Ali S., Ahmed A., Ali A.S., Raz A., Sakr W.A., Rahman K.M. 3,3’-Diindolylmethane enhances the effectiveness of herceptin against HER-2/neu-expressing breast cancer cells. PLoS One. 2013;8 doi: 10.1371/journal.pone.0054657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178.Zunino F., Paresi G. Camptothecins in clinical development. Expet Opin. Invest. Drugs. 2004;13:269–284. doi: 10.1517/13543784.13.3.269. [DOI] [PubMed] [Google Scholar]
  • 179.Boren T., Xiong Y., Hakam A., Wenham R., Apte S., Chan G., Kamath S.G., Chen D.-T., Dressman H., Lancaster J.M. MicroRNAs and their target messenger RNAs associated with ovarian cancer response to chemotherapy. Gynecol. Oncol. 2009;113:249–255. doi: 10.1016/j.ygyno.2009.01.014. [DOI] [PubMed] [Google Scholar]
  • 180.Nakano T., Chahinian A.P., Shinjo M., Togawa N., Tonomura A., Miyake M., Ninomiya K., Yamamoto T., Higashino K. Cisplatin in combination with irinotecan in the treatment of patients with malignant pleural mesothelioma. Cancer. 1999;85:2375–2384. [PubMed] [Google Scholar]
  • 181.Le V.H., Inai M., Williams R.M., Kan T. Ecteinascidins. A review of the chemistry, biology and clinical utility of potent tetrahydroisoquinoline antitumor antibiotics. Nat. Prod. Rep. 2015;32:328–347. doi: 10.1039/c4np00051j. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182.Cortinovis D.L., Hollander L.H., Carlucci L., Grosso F., Ceresoli G.L., Pacchetti I., Zucali P.A., D'Incalci M., Tiseo M., Legramandi L., Canova S., Ugo F., Abbate M.I., Taverna G., Cogliati V., Bidoli P. Trabectedin (T) as a second line treatment option for patients with epithelioid malignant pleural mesothelioma (MPM) in progression following pemetrexed/platin-derivates chemotherapy: ATREUS trial. J. Clin. Oncol. 2017;35:8513. [Google Scholar]
  • 183.Cortinovis D.L., Hollander L.H., Floriani I.C., Grosso F., Marinello A., Ceresoli G.L., Pacchetti I., Zucali P.A., D'Incalci M., Canova S., Abbate M.I., Ugo F., Vukcaj S., Bidoli P. Activity and safety of trabectedin in patients with sarcomatoid/biphasic malignant pleural mesothelioma (MPM) J. Clin. Oncol. 2015;33:7561. [Google Scholar]
  • 184.Uboldi S., Calura E., Beltrame L., Nerini I.F., Marchini S., Cavalieri D., Erba E., Chiorino G., Ostano P., D'Angelo D., D'Incalci M., Romualdi C. A systems biology approach to characterize the regulatory networks leading to trabectedin resistance in an in vitro model of myxoid liposarcoma. PLoS One. 2012;7 doi: 10.1371/journal.pone.0035423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 185.Hoda M.A., Pirker C., Dong Y., Schelch K., Heffeter P., Kryeziu K., van Schoonhoven S., Klikovits T., Laszlo V., Rozsas A., Ozsvar J., Klepetko W., Döme B., Grusch M., Hegedüs B., Berger W. Trabectedin is active against malignant pleural mesothelioma cell and xenograft models and synergizes with chemotherapy and Bcl-2 inhibition in vitro. Mol. Canc. Therapeut. 2016;15:2357–2369. doi: 10.1158/1535-7163.MCT-15-0846. [DOI] [PubMed] [Google Scholar]
  • 186.Liu S., Fang Y., Shen H., Xu W., Li H. Berberine sensitizes ovarian cancer cells to cisplatin through miR-21/PDCD4 axis. Acta Biochim. Biophys. Sin. 2013;45:756–762. doi: 10.1093/abbs/gmt075. [DOI] [PubMed] [Google Scholar]
  • 187.Hagiwara K., Gailhouste L., Yasukawa K., Kosaka N., Ochiya T. A robust screening method for dietary agents that activate tumour-suppressor microRNAs. Sci. Rep. 2015;5:14697. doi: 10.1038/srep14697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188.Venturelli S., Sinnberg T.W., Berger A., Noor S., Levesque M.P., Böcker A., Niessner H., Lauer U.M., Bitzer M., Garbe C., Busch C. Epigeneitc impacts of aascorbate on human metastatic melanoma cells. Front. Oncol. 2014;4 doi: 10.3389/fonc.2014.00227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189.Mandal C.C., Gosh-Choudhury T., Dey N., Choudhury G.G., Ghosh-Choudhury N. MiR-21 is targeted by omega-3 polyunsaturated fatty acid to regulate breast tumor CSF-1 expression. Carcinogenesis. 2012;33:1897–1908. doi: 10.1093/carcin/bgs198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Izzotti A., Calin G.A., Steele V.E., Cartiglia C., Longobardi M., Croce C.M., de Flora S. Chemoprevention of cigarette smoke-induced alterations of microRNA expression in rat lungs. Canc. Prev. Res. 2010;3:62–72. doi: 10.1158/1940-6207.CAPR-09-0202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 191.Xiao X., Chen B., Liu X., Liu P., Zheng G., Tang F. Yem H., Xie X. Diallyl sulfide suppresses SRC/Ras/ERK signaling-mediated proliferation and metastasis in human breast cancer by up-regulating miR-34a. PLoS One. 2014;9 doi: 10.1371/journal.pone.0112720. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 192.Wang G., Liu G., Ye Y., Fu Y., Zhang X. Upregulation of miR-34a by diallyl disulfide suppresses invasion and induces apoptosis in SCG-7901 cells through inhibition of the PI3K/Akt signaling pathway. Oncol. Lett. 2016;11:2661–2667. doi: 10.3892/ol.2016.4266. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 193.Slaby O., Sachlova M., Brezkova V., Hezova R., Kovarikova A., Bischofová S., Sevcikova S., Bienertova-Vasku J., Vasku A., Svoboda M., Vyzula R. Identification of microRNAs regulated by isothiocyanates and association of polymorphisms inside their target sites with risk of sporadic colorectal cancer. Nutr. Canc. 2013;65:247–254. doi: 10.1080/01635581.2013.756530. [DOI] [PubMed] [Google Scholar]
  • 194.Tang H., Kong Y., Guo J., Tang Y., Xie X., Yang L., Su Q., Xie X. Diallyl disulfide suppresses proliferation and induces apoptosis in human gastric cancer through Wnt-1 signaling pathway by up-regulation of miR-200b and miR-22. Canc. Lett. 2013;340:72–81. doi: 10.1016/j.canlet.2013.06.027. [DOI] [PubMed] [Google Scholar]
  • 195.Shan Y., Zhang L., Bao Y., Li B., He C., Gao M., Feng X., Xu W., Zhang X., Wang S. Epithelial-mesenchymal transition, a novel target of sulforaphane via COX-2/MMP2/Snail, ZEB1 and miR-200c/ZEB1 pathways in human bladder cancer cells. J. Nutr. Biochem. 2013;24:1062–1069. doi: 10.1016/j.jnutbio.2012.08.004. [DOI] [PubMed] [Google Scholar]
  • 196.Bolden J.E., Peart M.M.J., Johstone R.R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. 2006;5:769–784. doi: 10.1038/nrd2133. [DOI] [PubMed] [Google Scholar]
  • 197.Eckschlager T., Plch J., Stiborova M., Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci. 2017;18:1414. doi: 10.3390/ijms18071414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198.Ferreira A.C., Robaina M.C., Rezende L.M., Severino P., Klumb C.E. Histone deacetylase inhibitor prevents cell growth in Burkitt's lymphoma by regulating PI3K/Akt pathways and leads to upregulation of miR-143, miR-145, and miR-101. Ann. Hematol. 2014;93:983–993. doi: 10.1007/s00277-014-2021-4. [DOI] [PubMed] [Google Scholar]
  • 199.Rhodes L.V., Nitschke A.M., Segar H.C., Martin E.C., Driver J.L., Elliott S., Nam S.Y., Li M., Nephew K.P., Burow M.E., Collins-Burow B.M. The histone deacetylase inhibitor trichostatin A alters microRNA expression profiles in apoptosis-resistant breast cancer cells. Oncol. Rep. 2012;27:10–16. doi: 10.3892/or.2011.1488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 200.Chu C.Y., Chen C.H., Hsia T.C., Hsu M.H., Wei Y.L., Yu M.C., Chen W.S., Hsu K.W., Yeh M.H., Liu L.C., Chen Y.J., Huang W.C. Trichostatin A suppresses EGFR expression through induction of microRNA-7 in an HDAC-independent manner in lapatinib-treated cells, Biomed. Res. Intell. 2014;2014:168949. doi: 10.1155/2014/168949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 201.Rauhala H.E., Jalava S.E., Isotalo J., Bracken H., Lehmusvaara S., Tammela T.L., Oja H., Visakorpi T. MiR-193b is an epigenetically regulated putative tumor suppressor in prostate cancer. Int. J. Canc. 2010;127:1363–1372. doi: 10.1002/ijc.25162. [DOI] [PubMed] [Google Scholar]
  • 202.Schiffgen M., Schmidt D.H., von Rucker A., Muller S.C., Ellinger J. Epigenetic regulation of microRNA expression in renal cell carcinoma. Biochem. Biophys. Res. Commun. 2013;436:79–84. doi: 10.1016/j.bbrc.2013.05.061. [DOI] [PubMed] [Google Scholar]
  • 203.Stickertson J.A.B., Grunnet M., Bardram L., Federspiel B., Friis-Hansen L. MiR-449 and HDAC modulates HOTAIR expression which predicts poor prognosis in resected gastro-esophageal adenocarcinomas and doubles proliferation rate in HFE145 cells. J. Gastric Discord. Ther. 2017;3 [Google Scholar]
  • 204.Mazar J., DeBlasio D., Govindarajan S.S., Zhang S., Perrera R.J. Epigenetic regulation of microRNA-375 and its role in melanoma development in humans. FEBS Lett. 2011;585:2467–2476. doi: 10.1016/j.febslet.2011.06.025. [DOI] [PubMed] [Google Scholar]
  • 205.Lee E.M., Shin S., Cha H.J., Yoon Y., Bae S., Jung J.H., Lee S.M., Lee S.J., Park I.C., Jin Y.W., An S. Suberoylanilide hydroxamic acid (SAHA) changes microRNA expression profiles in A549 human non-small cell lung cancer cells. Int. J. Mol. Med. 2009;24:45–50. doi: 10.3892/ijmm_00000204. [DOI] [PubMed] [Google Scholar]
  • 206.Cho J.-H., Dimri M., Dimri G.P. MicroRNA-31 is a transcriptional target of histone deacetylase inhibitors and a regulator of cell senescence. J. Biol. Chem. 2015;290:10555–10567. doi: 10.1074/jbc.M114.624361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 207.Yin W., Wang P., Wang X., Song W., Cui X., Yu H., Zhu W. Identification of microRNAs and mRNAs associated with multidrug resistance of human laryngeal cancer HEp-2 cells. Braz. J. Med. Biol. Res. 2013;46:546–554. doi: 10.1590/1414-431X20131662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 208.Zhong S., Chen X., Wang D., Zhang X., Shen H., Yang S., Lv M., Tang J., Zhao J. MicroRNA expression profiles of drug-resistance breast cancer cells and their exosomes. Oncotarget. 2016;7:19601–19609. doi: 10.18632/oncotarget.7481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 209.Papa S., Popat S., Shah R., Prevost A.T., Lal R., McLennan B., Cane P., Lang-Lazdunski L., Viney Z., Dunn J.T., Barrington S., Landau D., Spicer J. Phase 2 study of sorafenib in malignant mesothelioma previously treated with platinum-containing chemotherapy. J. Thorac. Oncol. 2013;8:783–787. doi: 10.1097/JTO.0b013e31828c2b26. [DOI] [PubMed] [Google Scholar]
  • 210.Tang S., Tan G., Jiang X., Han P., Zhai B., Dong X., Qiao H., Jiang H., Sun X. An artificial lncRNA targeting multiple miRNAs overcomes sorafenib resistance in hepatocellular carcinoma cells. Oncotarget. 2016;7:73257–73269. doi: 10.18632/oncotarget.12304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 211.Dasasri S., Tchounwou P.B. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 2014;5:364–378. doi: 10.1016/j.ejphar.2014.07.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 212.Basu A., Krishnamurthy S. Cellular response to cisplatin-induced DNA damage. J. Nucleic Acids. 2010;2010 doi: 10.4061/2010/201367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 213.Yamaguchi M., Lowenstein C. MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle. 2009;8:712–715. doi: 10.4161/cc.8.5.7753. [DOI] [PubMed] [Google Scholar]
  • 214.Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 2010;17:193–199. doi: 10.1038/cdd.2009.56. [DOI] [PubMed] [Google Scholar]
  • 215.Misso G., Di Martino M.T., De Rosa G., Farooqi A.A., Lombardi A., Campani V., Zarone M.R., Gullá A., Tagliaferri P., Tassone P., Caraglia M. Mir-34: a new weapon against cancer? Mol. Ther. Nucleic Acids. 2014;3:e194. doi: 10.1038/mtna.2014.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 216.Di Martino M.T., Campani V., Misso G., Gallo Cantafio M.E., Gullá A., Foresta U., Guzzi P.H., Castellano M., Grimaldi A., Gigantino V., Franco R., Lusa S., Cannataro M., Tagliaferri P., De Rosa G., Tassone P., Caraglia M. In vivo activity of miR-34a mimics delivered by stable nucleic acid lipid particles (SNALPS) against multiple myeloma. PLoS One. 2014;9 doi: 10.1371/journal.pone.0090005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 217.Beg M.S., Brenner A.J., Sachdev J., Borad M., Kang Y.K., Soudemire J., Smith S., Bader A.G., Kim S., Hong D.S. Phase 1 study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest. N. Drugs. 2017;35:180–188. doi: 10.1007/s10637-016-0407-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 218.Wang S., Cao M., Deng X., Xiao X., Yin Z., Hu Q., Zhou Z., Zhang F., Zhang R., Wu Y., Sheng W., Zheng Y. Degradable hyaluronic acid/protamine sulfate interpolyelectrolyte complexes as miRNA-delivery nanocapsules for triple-negative breast cancer therapy. Adv. Healthc. Mater. 2015;4:281–290. doi: 10.1002/adhm.201400222. [DOI] [PubMed] [Google Scholar]
  • 219.Hu Q.L., Jiang Q.Y., Jin X., Shen J., Wang K., Li Y.B., Xu F.J., Tang G.P., Li Z.H. Cationic microRNA-delivering nanovectors with bifunctional peptides for efficient treatment of PANC-1 xenograft model. Biomaterials. 2013;34:2265–2276. doi: 10.1016/j.biomaterials.2012.12.016. [DOI] [PubMed] [Google Scholar]
  • 220.Porpodis K., Zarogoulidis P., Boutsikou E., Papaioannou A., Machairiotis N., Tsakiridis K., Katsikogiannis N., Zaric B., Perin B., Huang H., Kougioumtzi I., Spyratos D., Zarogoulidis K. Malignant pleural mesothelioma: current and future perspectives. J. Thorac. Dis. 2013;5:S397–S406. doi: 10.3978/j.issn.2072-1439.2013.08.08. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Non-coding RNA Research are provided here courtesy of KeAi Publishing

RESOURCES