Skip to main content
Molecules logoLink to Molecules
. 2013 Jul 3;18(7):7761–7847. doi: 10.3390/molecules18077761

In-silico Leishmania Target Selectivity of Antiparasitic Terpenoids

Ifedayo Victor Ogungbe 1,*, William N Setzer 2
PMCID: PMC6270436  PMID: 23823876

Abstract

Neglected Tropical Diseases (NTDs), like leishmaniasis, are major causes of mortality in resource-limited countries. The mortality associated with these diseases is largely due to fragile healthcare systems, lack of access to medicines, and resistance by the parasites to the few available drugs. Many antiparasitic plant-derived isoprenoids have been reported, and many of them have good in vitro activity against various forms of Leishmania spp. In this work, potential Leishmania biochemical targets of antiparasitic isoprenoids were studied in silico. Antiparasitic monoterpenoids selectively docked to L. infantum nicotinamidase, L. major uridine diphosphate-glucose pyrophosphorylase and methionyl t-RNA synthetase. The two protein targets selectively targeted by germacranolide sesquiterpenoids were L. major methionyl t-RNA synthetase and dihydroorotate dehydrogenase. Diterpenoids generally favored docking to L. mexicana glycerol-3-phosphate dehydrogenase. Limonoids also showed some selectivity for L. mexicana glycerol-3-phosphate dehydrogenase and L. major dihydroorotate dehydrogenase while withanolides docked more selectively with L. major uridine diphosphate-glucose pyrophosphorylase. The selectivity of the different classes of antiparasitic compounds for the protein targets considered in this work can be explored in fragment- and/or structure-based drug design towards the development of leads for new antileishmanial drugs.

Keywords: antileishmanial activity, terpenoids, drug targets, docking, Leishmania

1. Introduction

Several closely-related protozoan parasites in the genus Leishmania are etiological agents for a number of clinical forms of leishmaniasis. These clinical forms of leishmaniasis are characterized as either cutaneous, diffuse cutaneous, disseminated cutaneous, mucocutaneous, visceral or post-kala-azar dermal. Species causing this protozoan disease have been reported in several tropical and Neotropical regions including Africa, the Americas, Eastern Europe, central and western Asia, the Indian subcontinent as well as in Australia. There are over 350 million people at risk of infection in Leishmania-endemic regions. There are several treatment options for leishmaniasis, although the effectiveness of the available drugs depends on which clinical form is being treated, and also on the specific geographical location. For a review of the current treatment options please see reference [1]. There remains a need for better chemotherapy for cutaneous, visceral and post-kala-azar dermal leishmaniasis, as well as, Leishmania-HIV co-infection.

Current chemotherapy of visceral and cutanoeus leishmaniasis includes miltefosine, a compound that has been demonstrated to inhibit P13K/Akt signaling pathway, and fluconazole, a sterol 14α-demethylase inhibitor. In addition to currently targeted Leishmania proteins, several other proteins have also been identified, or suggested as potential drug targets in Leishmania [2,3,4,5]. Most of these targets include enzymes that are critical to the metabolism of glucose, sterols, nucleotides and glycosylphosphatidylinositol, as well as enzymes important for the maintenance of trypanothione and polyamine levels. Many of these proteins have been shown to be important to the survival of the parasites. Other targets include cyclin-dependent- and mitogen-activated protein kinases, topoisomerases and cathepsin-like proteases.

Some of the enzymes that are involved in glucose metabolism and are potential drug targets in some species of Leishmania include pyruvate kinase (PYK) [6,7], phosphoglucose isomerase (PGI) [8,9], uridine diphosphate-glucose pyrophosphorylase (UGPase) [10], glyceraldehyde-3-phosphate dehydrogenase (GAPDH) [11,12,13], glycerol-3-phosphate dehydrogenase (GPDH) [14,15], triosephosphate isomerase (TIM) [16,17,18], thiol-dependent reductase I (TDR1) [19] and phosphomannomutase (PMM). TDR1 is involved in the regulation of the terminal steps of glycolysis and the enzyme fortuitously catalyzes the activation of antiparasitic antimonial prodrugs while PMM catalyzes the conversion of mannose-6-phosphate to mannose-1-phosphate, which is essential for the biosynthesis of glycoconjugates, and it has been suggested to be a potential drug target [20]. The enzyme that catalyzes the trypanothione-coupled conversion of methylglyoxal, a toxic byproduct of glycolysis, to lactate in Leishmania, glyoxalase II (GLO2), has also been suggested as a drug target [21,22] although modeling studies of the enzyme have suggested that inhibition of glyoxalase II will have little effect on toxic glyoxal build up in the cell [23]. In addition to these, the cysteine protease, cathepsin B (CatB) [24,25], as well as oligopeptidase B (OPB) [26,27,28] are also being investigated as potential drug targets. A number of proteins involved in nucleoside and nucleotide metabolism in Leishmania have also been investigated as druggable targets. These includes dihydroorotate dehydrogenase (DHODH), an enzyme involved in the de novo synthesis of pyrimidine [29,30], deoxyuridine triphosphate nucleotidohydrolase (dUTPase), an enzyme involved in controlling intracellular dUTP levels [31,32,33], nicotinamidase (PnC1), an essential enzyme for the production of NAD+ [34], nucleoside hydrolase (NH) [35,36,37], nuceloside diphosphate kinase b (NDKb) [38] as well as phosphodiesterase 1 (PDE1) [39,40,41] and pteridine reductase 1 (PTR1) [42,43,44,45]. Also, proteins involved in co-/post-translational protein processing like N-myristoyltransferase (NMT) [46,47,48] and cyclophilins (Cyp) [49,50] have being actively investigated as antileishmanial drug targets as well as charged-tRNA synthesizing enzymes, methionyl-tRNA synthetase [51] and tyrosyl-tRNA synthetase [52].

Numerous phytochemical agents have exhibited either in vitro or in vivo antileishmanial activity [5,53,54,55,56,57,58,59,60,61]. While the activities of many of these compounds are notable, what is generally unknown are the biochemical targets of these agents. In this study, we have carried out a molecular docking analysis of known antiparasitic plant-derived isoprenoids with established drug targets with known structures available from the Protein Data Bank.

2. Results and Discussion

2.1. Monoterpenoid Docking

The structures of the monoterpenoids examined in this study are shown in Figure 1, while the corresponding docking energies are summarized in Table 1, Table 2 and Table 3. The overall strongest docking monoterpenoid ligands were the acyclic geranial, geraniol, and neral, probably owing to their flexibility. These ligands, however, did not show docking selectivity to any of the Leishmania protein targets, but rather docked strongly to most of the proteins investigated. The protein targets that showed predominantly strong docking by monoterpenoids were L. major uridine diphosphate-glucose pyrophosphorylase (LmajUGPase), L. major methionyl t-RNA synthetase (LmajMetRS), and L. infantum nicotinamidase (LinfPnC1). Geranial had a docking energy of −76.9 kJ/mol with LmajUGPase, comparable in docking energy with several other proteins. Both enantiomers of piperitone showed significantly stronger docking to Lmaj UGPase (−68.0 kJ/mol) than the other targets, suggesting selectivity for that protein. Geranial was also the strongest docking ligand with LmajMetRS (−76.8 kJ/mol), but perilla alcohol (−73.6 kJ/mol) was selective for that protein target. Carvone, piperitone, and α-thujone showed significantly selective docking to LinfPnC1 (docking energies less than −73 kJ/mol). Interestingly, although the monoterpenoids showed a docking propensity for LinfPnC1, higher terpenoids (sesquiterpenoids, diterpenoids, and triterpenoids) showed very little inclination to dock to this protein, generally with positive docking energies (see below).

Figure 1.

Figure 1

Monoterpenoids examined in this study.

Table 1.

MolDock docking energies (kJ/mol) of monoterpenoids with Leishmania major protein targets.

Monoterpenoids LmajCatB LmajDHODH LmajdUTPase LmajNDKb LmajNH LmajNMT LmajOPB LmajPDE1 LmajPTR1 LmajMetRS LmajTyrRS LmajUGPase
δ-3-Carene −43.8 −63.0 −50.0 −56.3 −51.0 −52.9 −62.7 −56.9 −54.9 −60.8 −63.2 −65.1
Camphor −43.2 −61.3 −39.2 −52.4 −50.4 −50.0 −49.1 −58.1 −43.6 −52.0 −44.6 −60.9
Carvacrol −46.5 −64.8 −58.9 −61.9 −52.7 −69.9 −66.6 −62.6 −62.1 −70.9 −66.7 −66.2
(S)-Carvone −46.7 −68.9 −56.0 −63.6 −53.2 −55.8 −56.0 −63.6 −56.6 −69.2 −61.5 −66.5
1,8-Cineole −37.1 −57.6 −37.8 −50.6 −43.5 −45.7 −42.5 −53.6 −39.7 −46.8 −45.4 −59.6
p-Cymene −40.8 −55.7 −54.6 −54.8 −51.4 −63.0 −57.6 −58.1 −56.5 −61.9 −63.6 −60.7
Geranial −52.8 −69.0 −67.3 −77.1 −65.8 −75.6 −63.8 −66.7 −72.8 −76.8 −73.7 −76.9
Geraniol −55.9 −69.7 −68.9 −73.5 −67.5 -72.8 −68.0 −65.1 −70.2 −76.5 −72.1 −74.1
Isopulegol −46.3 −64.8 −51.1 −59.0 −55.4 −63.6 −54.7 −57.0 −53.8 −61.0 −65.0 −62.6
(R)-Limonene −46.1 −61.6 −49.6 −59.5 −47.5 −52.4 −56.4 −57.6 −57.2 −63.4 −58.4 −65.6
(S)-Limonene −44.3 −58.7 −56.4 −56.2 −50.0 −65.9 −59.5 −58.6 −56.3 −64.3 −66.0 −62.0
Limonene oxide −44.1 −65.2 −48.2 −57.7 −52.5 −52.5 −59.6 −59.0 −50.1 −59.0 −52.0 −64.8
Linalool −52.3 −67.4 −63.9 −70.1 −62.0 −71.0 −63.2 −65.5 −65.7 −73.7 −72.5 −71.9
Myrtenal −47.1 −64.3 −45.7 −56.5 −48.8 −51.5 −60.8 −61.8 −51.7 −57.3 −55.7 −66.2
Neral −49.6 −72.2 −68.3 −76.6 −68.0 −75.2 −64.6 -67.3 −71.8 −75.3 −71.0 −75.6
Perilla alcohol −49.0 −63.1 −58.2 −60.9 −52.3 −72.9 −68.1 −64.0 −63.5 −73.6 −72.9 −63.5
(R)-α-Phellandrene −41.7 −61.6 −53.2 −59.8 −51.0 −53.8 −56.4 −55.9 −59.2 −66.7 −60.8 −66.4
(S)-α-Phellandrene −42.2 −60.3 −54.5 −57.8 −51.9 −65.1 −58.6 −58.3 −55.0 −65.3 −64.7 −63.6
α-Pinene −40.0 −54.9 −39.3 −52.0 −45.1 −44.9 −53.4 −53.4 −42.0 −53.4 −49.4 −60.6
β-Pinene −39.6 −55.5 −39.8 −52.6 −47.0 −45.3 −52.9 −53.7 −41.3 −54.3 −47.5 −60.4
(R)-Piperitone −45.9 −63.0 −54.9 −60.2 −51.9 −67.0 −60.2 −63.1 −62.0 −63.8 −65.0 −67.9
(S)-Piperitone −46.8 −67.4 −54.6 −61.2 −50.8 −60.8 −61.2 −62.3 −59.7 −65.6 −64.9 −68.0
Sabinene −43.7 −63.4 −54.6 −63.3 −51.4 −55.8 −58.9 −57.5 −58.4 −66.5 −62.0 −67.0
γ-Terpinene −41.1 −57.4 −56.0 −56.0 −52.4 −65.5 −58.8 −59.7 −57.5 −63.5 −65.5 −62.0
Terpinen-4-ol −47.5 −62.5 −57.4 −59.7 −53.2 −60.8 −58.9 −61.0 −61.7 −66.9 −69.8 −64.4
Terpinolene −46.2 −59.8 −52.6 −55.3 −49.1 −58.8 −55.3 −58.5 −57.0 −62.8 −62.3 −61.2
α-Thujone −48.4 −73.0 −55.8 −62.2 −51.7 −59.0 −58.6 −64.3 −63.5 −73.8 −62.1 −67.5
β-Thujone −47.6 −69.7 −58.2 −60.2 −56.9 −59.7 −62.8 −65.0 −62.3 −71.0 −62.5 −67.9
Thymol −45.8 −61.7 −55.7 −60.9 −52.3 −68.7 −59.2 −64.2 −62.9 −65.6 −69.5 −63.8
Verbenone −41.4 −62.0 −44.3 −57.5 −49.4 −51.0 −48.7 −58.2 −47.0 −53.0 −52.7 −63.2

Table 2.

MolDock docking energies (kJ/mol) of monoterpenoids with Leishmania donovani and L. mexicana protein targets.

Monoterpenoids LdonCatB LdonCyp LdonDHODH LdonNMT LmexGAPDH LmexGPDH LmexPGI LmexPMM LmexPYK LmexPYK LmexPYK LmexTIM
Site 1 Site 2 Site 3
δ-3-Carene −50.9 −56.1 −59.4 −49.5 −53.7 −59.1 −43.5 −51.8 −58.9 −50.8 −59.4 −58.0
Camphor −42.7 −48.0 −62.2 −47.6 −44.4 −58.8 −40.9 −50.4 −50.2 −45.7 −55.1 −45.9
Carvacrol −58.3 −63.8 −57.9 −64.9 −56.0 −61.2 −48.6 −57.9 −63.9 −53.4 −65.5 −56.3
(S)-Carvone −54.0 −65.6 −60.3 −59.7 −49.6 −61.2 −49.5 −58.3 −62.4 −55.5 −62.9 −54.1
1,8-Cineole −36.3 −46.8 −53.6 −38.0 −39.8 −51.1 −37.6 −47.1 −52.5 −42.7 −50.3 −48.3
p-Cymene −51.7 −54.5 −51.4 −54.7 −48.4 −56.1 −50.2 −52.9 −58.0 −53.4 −60.4 −55.2
Geranial −68.7 −67.2 −65.2 −75.0 −66.6 −70.4 −74.4 −63.9 −71.1 −61.2 −75.2 −71.4
Geraniol −69.3 −68.2 −65.8 −71.7 −64.2 −72.4 −70.1 −63.1 −71.3 −61.6 −75.5 −70.1
Isopulegol −52.9 −61.1 −57.6 −65.2 −57.9 −60.9 −44.9 −57.6 −63.1 −55.3 −59.3 −59.4
(R)-Limonene −52.1 −58.6 −57.2 −51.8 −49.5 −58.1 −43.4 −53.3 −56.9 −51.1 −58.1 −53.1
(S)-Limonene −54.5 −57.2 −50.5 −62.3 −51.9 −58.7 −43.5 −55.3 −61.3 −54.8 −62.2 −56.9
Limonene oxide −46.2 −58.4 −63.9 −33.4 −54.1 −61.1 −44.3 −53.9 −58.3 −52.2 −61.2 −57.6
Linalool −65.1 −65.1 −70.5 −65.6 −61.4 −67.8 −58.6 −66.9 −68.7 −60.1 −74.8 −65.9
Myrtenal −47.7 −59.2 −60.1 −36.7 −49.1 −60.2 −45.0 −52.6 −57.7 −50.4 −55.8 −53.6
Neral −64.4 −69.2 −70.5 −71.7 −66.1 −72.9 −58.7 −63.2 −71.8 −65.2 −74.2 −65.5
Perilla alcohol −58.7 −65.2 −57.5 −71.0 −60.3 −63.1 −50.4 −57.7 −67.0 −57.8 −68.7 −60.7
(R)-α-Phellandrene −52.8 −58.6 −58.9 −54.9 −53.6 −57.0 −52.9 −51.0 −60.9 −50.9 −59.7 −55.8
(S)-α-Phellandrene −53.4 −59.1 −55.0 −59.2 −52.5 −57.2 −47.7 −53.3 −61.9 −52.7 −62.1 −55.2
α-Pinene −40.5 −52.5 −56.2 −37.5 −43.7 −53.0 −39.9 −47.1 −50.7 −42.8 −49.6 −46.4
β-Pinene −39.7 −53.2 −57.4 −39.5 −45.2 −52.4 −39.2 −47.3 −49.9 −41.8 −50.7 −48.2
(R)-Piperitone −57.5 −66.1 −54.1 −65.1 −57.1 −60.2 −50.4 −58.0 −62.7 −54.8 −61.9 −58.4
(S)-Piperitone −55.3 −63.2 −64.2 −59.3 −53.8 −61.2 −46.7 −57.4 −63.8 −56.1 −62.2 −56.4
Sabinene −49.3 −59.0 −57.9 −59.4 −50.9 −59.9 −46.0 −52.1 −61.0 −51.6 −61.2 −55.8
γ-Terpinene −53.1 −56.2 −54.0 −59.5 −50.6 −57.9 −49.2 −54.0 −60.4 −55.7 −62.2 −56.8
Terpinen-4-ol −52.4 −63.8 −55.1 −64.6 −51.4 −61.7 −51.8 −56.9 −64.5 −56.9 −65.6 −58.7
Terpinolene −54.1 −57.8 −52.6 −57.7 −48.0 −57.2 −45.3 −51.9 −58.9 −51.3 −58.9 −54.7
α-Thujone −51.3 −63.8 −63.6 −53.2 −56.1 −65.0 −49.8 −56.6 −65.2 −54.2 −62.2 −57.7
β-Thujone −56.3 −61.6 −60.7 −58.1 −53.2 −65.6 −48.2 −58.0 −65.1 −54.7 −61.0 −59.9
Thymol −55.8 −61.3 −54.5 −64.1 −52.1 −62.3 −47.2 −56.6 −65.2 −56.3 −61.7 −57.1
Verbenone −40.9 −58.0 −61.6 −45.4 −48.1 −59.6 −42.4 −52.2 −56.9 −49.2 −58.0 −48.9

Table 3.

MolDock docking energies (kJ/mol) of monoterpenoids with Leishmania infantum protein targets.

Monoterpenoids LinfCYP51 LinfGLO2 LinfPnC1 LinfTDR1 LinfTR
δ-3-Carene −50.4 −48.0 −66.1 −45.9 −56.3
Camphor −46.1 −37.8 −56.8 −43.8 −52.1
Carvacrol −59.5 −53.8 −71.0 −53.5 −60.9
(S)-Carvone −54.9 −47.9 −73.6 −52.1 −57.6
1,8-Cineole −43.3 −34.9 −54.4 −39.5 −50.6
p-Cymene −53.2 −52.1 −64.1 −49.6 −57.8
Geranial −63.0 −61.7 −75.0 −64.3 −70.1
Geraniol −64.5 −59.1 −74.8 −64.2 −69.1
Isopulegol −50.8 −49.6 −67.6 −49.8 −58.6
(R)-Limonene −51.6 −51.4 −68.8 −48.4 −54.0
(S)-Limonene −53.0 −52.7 −65.2 −49.1 −60.0
Limonene oxide −51.6 −46.6 −64.8 −45.4 −54.0
Linalool −61.6 −56.1 −72.7 −62.2 −66.1
Myrtenal −48.7 −45.2 −63.2 −47.6 −54.1
Neral −60.7 −57.1 −76.4 −61.4 −68.1
Perilla alcohol −61.9 −60.0 −69.3 −57.8 −65.5
(R)-α-Phellandrene −51.1 −50.9 −68.1 −48.4 −56.1
(S)-α-Phellandrene −53.9 −51.2 −66.3 −50.6 −59.4
α-Pinene −42.4 −38.4 −56.9 −41.0 −47.3
β-Pinene −43.0 −37.5 −56.9 −41.6 −48.3
(R)-Piperitone −54.9 −50.2 −70.9 −51.3 −62.8
(S)-Piperitone −54.2 −51.6 −73.0 −54.2 −60.3
Sabinene −52.9 −53.8 −68.2 −54.4 −58.8
γ-Terpinene −54.8 −53.0 −65.8 −49.7 −59.2
Terpinen-4-ol −53.2 −51.3 −69.4 −50.4 −63.3
Terpinolene −52.4 −51.3 −67.6 −49.6 −59.2
α-Thujone −53.8 −53.9 −74.5 −54.0 −60.4
β-Thujone −54.5 −50.8 −69.4 −52.0 −64.7
Thymol −60.2 −53.5 −71.5 −52.9 −59.6
Verbenone −50.2 −42.2 −63.0 −48.0 −50.5

Monoterpenoids represents a very small percentage of terpene-derived compounds that have been reported to have antileishmanial activity, and the docking energies of monoterpenoids were generally weaker than those obtained for limonoids, withanolides, triterpenoids, steroids and diterpenoids with these same targets (see below). Their docking energies were much higher than the energies obtained for the co-crystallized ligands of those protein targets. The higher docking energies of these compounds correlate with their small size (and molecular weight), and the minimal intermolecular interactions they are able to have with the protein targets. So, comparatively, it appears that monoterpenoids will not be prime leads for structure-based antileishmanial drug discovery. However, they may be useful in fragment-based drug discovery [62,63]. Additionally, several terpene-derived compounds are used in topical formulations. Therefore, those monoterpenoids that have antileishmanial activity and no reported toxicity at physiologically relevant concentration/dosage should be evaluated as possible components of topical polytherapy for leishmaniasis.

2.2. Sesquiterpenoid Docking

Sesquiterpenoids examined in this work are shown in Figure 2, Figure 3, Figure 4 and Figure 5; docking energies of sesquiterpenoids are summarized in Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14 and Table 15. The germacranolide sesquiterpenoids exhibited the overall strongest docking energies toward the Leishmania protein targets, with 16,17-dihydrobrachycalyxolide the strongest-docking germacranolide. This ligand showed docking selectivity toward LmajMetRS (docking energy = −152.9 kJ/mol) and L. mexicana phosphor-mannomutase (LmexPMM) (docking energy = −136.3 kJ/mol). The two proteins most selectively targeted by the germacranolides in terms of docking energies were LmajMetRS and L. major dihydroorotate dehydrogenase (LmajDHODH). Although most germacranolides did not dock with LinfPnC1, tatridin A did show docking selectivity for this protein target. Based on molecular weight, the strongest-docking germacranolide was 4α,5β-epoxy-8-epi-inunolide, and this ligand showed docking selectivity toward both LmajMet RS and LmajDHODH.

Figure 2.

Figure 2

Germacranolide sesquiterpenoids examined in this work.

Figure 3.

Figure 3

Guaianolide sesquiterpenoids examined in this work.

Figure 4.

Figure 4

Eudesmanolide sesquiterpenoids examined in this work.

Figure 5.

Figure 5

Miscellaneous sesquiterpenoids examined in this work.

Table 4.

MolDock docking energies (kJ/mol) of germacranolide sesquiterpenoids with Leishmania major protein targets.

Germacranolides LmajCatB LmajDHODH LmajdUTPase LmajNDKb LmajNH LmajNMT LmajOPB LmajPDE1 LmajPTR1 LmajMetRS LmajTyrRS LmajUGPase
8-Acetyl-13-O-ethylpiptocarphol −90.8 −113.1 −99.0 −87.6 −84.0 −108.3 −114.1 −98.2 −105.3 −127.1 −99.1 −105.1
Centratherin −85.4 −115.1 −92.2 −95.7 −96.6 −106.8 −101.2 −102.8 −101.5 −125.8 −112.9 −108.0
Costunolide −62.3 −86.5 −73.8 −71.8 −68.1 −79.8 −78.4 −75.0 −79.9 −75.6 −76.3 −81.8
2-Deethoxy-2β-methoxyphantomolin −94.9 −121.1 −96.1 −85.7 −88.2 −95.4 −96.6 −101.1 −102.4 −114.6 −105.2 −95.3
8,13-Diacetylpiptocarphol −92.2 −115.1 −105.5 −93.4 −88.9 −106.7 −100.2 −102.6 −107.3 −131.5 −99.6 −110.6
16α,17-Dihydrobrachycalyxolide −100.1 −129.1 −112.5 −117.3 −111.0 −121.5 −100.2 −122.8 −105.0 −152.9 −117.7 −115.7
11(13)-Dehydroivaxillin −78.0 −108.3 −78.6 −80.6 −81.5 −84.4 −91.4 −81.9 −89.1 −101.9 −88.3 −95.7
11β,13-Dihydrotanachin −66.9 −96.3 −73.5 −67.8 −79.6 −78.7 −77.2 −75.3 −66.8 −77.2 −78.9 −89.6
Elephantopin −86.7 −114.6 −98.8 −90.3 −91.5 −105.0 −97.8 −106.8 −103.9 −119.3 −105.0 −105.7
11-epi-Ivaxillin −76.9 −109.9 −80.5 −81.7 −83.5 −85.1 −94.9 −86.9 −90.1 −102.4 −80.7 −85.9
4,5α-Epoxy-6α-acetoxy-1(10)E,11(13)-germacradien-12,8α-olide −77.1 −92.4 −94.2 −80.4 −82.5 −99.6 −95.4 −89.1 −86.5 −94.8 −87.9 −92.5
4α,5β-Epoxy-8-epi-inunolide −74.1 −100.5 −76.5 −76.8 −80.3 −82.5 −86.2 −81.0 −88.5 −99.1 −84.8 −88.2
Eremantholide C −89.2 −103.4 −86.5 −100.2 −86.2 −96.6 −95.3 −98.1 −83.1 −100.9 −87.2 −101.8
Eupatoriopicrin −83.7 −107.8 −106.2 −99.2 −104.9 −114.5 −111.1 −105.7 −100.3 −120.7 −97.3 −102.0
Goyazensolide −73.5 −107.0 −90.0 −97.6 −93.1 −108.4 −101.1 −107.7 −98.2 −116.4 −110.9 −107.4
Hanphyllin −71.2 −91.5 −73.8 −76.9 −77.7 −80.8 −79.5 −76.3 −80.7 −85.7 −84.5 −84.4
8-(3'-Hydroxymethacryloxy)-hirsutinolide 13-acetate −94.0 −107.3 −106.8 −105.6 −104.4 −107.8 −105.0 −110.7 −109.6 −134.9 −105.1 −108.6
Ineupatorolide A −83.1 −117.3 −90.0 −92.4 −91.0 −98.7 −100.4 −97.2 −112.8 −119.4 −112.1 −105.9
Ivaxillin −76.6 −104.2 −79.3 −78.3 −75.2 −83.2 −90.6 −82.6 −83.4 −98.1 −82.8 −88.3
Molephantin −80.8 −105.0 −87.4 −80.0 −87.4 −101.6 −87.9 −99.0 −94.7 −106.0 −99.3 −91.9
Neurolenin B −86.0 −116.4 −88.0 −100.0 −88.7 −95.6 −77.3 −103.0 −86.7 −99.8 −90.3 −99.5
Neurolenin C −82.7 −116.3 −93.0 −94.4 −86.2 −102.1 −89.6 −95.8 −102.6 −112.6 −99.0 −117.6
Neurolenin D −90.5 −111.1 −95.9 −99.2 −92.4 −97.5 −87.9 −101.4 −94.6 −104.7 −90.7 −100.6
Parthenolide −65.8 −98.7 −80.6 −75.2 −81.4 −78.8 −83.1 −80.1 −84.4 −89.3 −79.3 −89.6
Tagitinin C −87.4 −102.0 −90.4 −89.0 −96.1 −96.8 −95.1 −105.2 −102.8 −111.3 −94.5 −102.2
Tanachin −71.3 −94.1 −71.1 −78.3 −76.4 −80.6 −82.5 −78.9 −75.1 −91.4 −80.0 −86.8
Tatridin A −74.1 −96.6 −69.7 −75.7 −76.3 −80.7 −88.6 −78.4 −89.8 −91.2 −80.8 −90.7
8-Tigloylhirsutinolide 13-acetate −93.8 −116.4 −105.4 −98.0 −99.9 −114.6 −110.3 −113.6 −113.6 −124.8 −105.5 −119.9
Vernolide D −97.8 −124.5 −110.9 −106.3 −121.8 −117.9 −112.4 −118.3 −114.4 −128.1 −111.8 −121.5

Table 5.

MolDock docking energies (kJ/mol) of germacranolide sesquiterpenoids with Leishmania donovani and L. mexicana protein targets.

Germacranolides LdonCatB LdonCyp LdonDHODH LdonNMT LmexGAPDH LmexGPDH LmexPGI LmexPMM LmexPYK LmexPYK LmexPYK LmexTIM
Site 1 Site 2 Site 2
8-Acetyl-13-O-ethylpiptocarphol −92.9 −97.6 −79.4 −84.2 −93.2 −99.2 −88.6 −113.3 −102.5 −94.9 −99.2 −95.1
Centratherin −89.0 −−88.7 −86.0 −90.9 −82.2 −126.6 −87.5 −108.9 −100.3 −96.0 −107.5 −100.6
Costunolide −78.9 −80.5 −61.1 −65.8 −63.5 −80.6 −64.5 −76.0 −84.8 −73.8 −87.1 −77.6
2-Deethoxy-2β-methoxyphantomolin −101.6 −88.0 −80.7 −87.6 −88.7 −110.2 −87.4 −110.3 −103.1 −85.8 −105.8 −79.2
8,13-Diacetylpiptocarphol −86.4 −99.7 −88.0 −92.8 −96.2 −102.6 −97.4 −118.1 −103.0 −100.4 −94.7 −100.0
16α,17-Dihydrobrachycalyxolide −104.2 −104.4 −100.0 −96.1 −108.9 −130.0 −107.9 −136.3 −125.1 −108.8 −110.3 −114.6
11(13)-Dehydroivaxillin −78.1 −85.0 −64.3 −83.7 −72.9 −99.4 −68.0 −90.6 −91.0 −79.8 −106.6 −81.8
11β,13-Dihydrotanachin −73.4 −77.2 −52.3 −75.2 −69.6 −81.9 −67.2 −79.1 −82.3 −74.9 −78.1 −66.1
Elephantopin −83.4 −90.2 −86.6 −88.1 −82.6 −116.1 −89.7 −115.8 −110.5 −92.9 −103.0 −92.4
11-epi-Ivaxillin −77.0 −84.8 −66.5 −88.4 −74.1 −96.3 −66.4 −88.9 −93.2 −79.4 −106.9 −78.0
4,5α-Epoxy-6α-acetoxy-1(10)E,11(13)-germacradien-12,8α-olide −77.0 −90.7 −66.4 −82.3 −73.0 −98.9 −79.5 −91.7 −97.8 −88.0 −88.3 −81.5
4α,5β-Epoxy-8-epi-inunolide −73.3 −85.8 −76.9 −78.8 −67.6 −90.7 −62.3 −86.8 −87.8 −75.2 −95.4 −78.6
Eremantholide C −87.6 −98.8 −86.4 −76.2 −77.4 −114.2 −79.9 −103.2 −102.0 −104.2 −85.1 −94.2
Eupatoriopicrin −87.0 −94.3 −98.3 −96.1 −99.5 −116.5 −92.5 −102.7 −119.4 −103.5 −96.0 −97.7
Goyazensolide −86.2 −85.7 −83.9 -82.3 −87.8 −124.1 −88.4 −107.9 −99.0 −95.9 −103.4 −98.7
Hanphyllin −85.4 −85.0 −32.6 −67.3 −69.8 −81.3 −66.5 −80.5 −86.6 −75.1 −87.5 −83.5
8-(3'-Hydroxymethacryloxy-hirsutinolide 13-acetate −98.6 −98.4 −80.0 −98.5 −88.4 −113.9 −96.1 −117.6 −112.4 −101.4 −110.7 −103.4
Ineupatorolide A −97.4 −95.2 −94.2 −86.5 −72.5 −102.4 −82.2 −99.7 −100.1 −91.2 −100.4 −104.6
Ivaxillin −73.9 −84.9 −74.6 −78.3 −77.9 −90.4 −68.4 −91.3 −93.5 −77.9 −105.0 −80.7
Molephantin −87.9 −94.5 −36.3 −89.4 −79.4 −92.9 −78.8 −96.6 −106.8 −88.8 −99.8 −99.9
Neurolenin B −88.1 −82.6 −66.6 −76.5 −77.7 −98.4 −80.1 −110.7 −103.3 −92.0 −100.4 −85.9
Neurolenin C −93.6 −89.8 −49.0 −94.7 −86.5 −94.4 −79.3 −106.0 −95.0 −89.9 −91.6 −95.2
Neurolenin D −94.8 −78.1 −77.6 −95.3 −87.1 −94.1 −80.8 −111.4 −97.7 −89.1 −92.4 −92.0
Parthenolide −73.2 −81.2 −75.6 −75.4 −63.6 −89.6 −64.8 −84.4 −88.5 −79.3 −88.9 −78.1
Tagitinin C −88.0 −84.6 −52.0 −87.5 −85.2 −92.8 -78.0 −112.3 −101.4 −91.5 −98.0 −91.4
Tanachin −77.7 −82.1 −58.7 −71.0 −70.6 −89.8 −69.9 −81.7 −86.0 −83.4 −77.9 −83.4
Tatridin A −84.7 −84.5 −67.6 −72.8 −59.3 −85.7 −61.6 −83.8 −83.5 −81.2 −89.7 −76.9
8-Tigloylhirsutinolide 13-acetate −104.5 −83.9 −94.8 −97.3 −91.0 −110.3 −99.2 −117.5 −111.3 −98.3 −108.0 −102.8
Vernolide D −107.5 −94.3 −89.6 −102.3 −94.8 −120.3 −96.8 −125.4 −117.4 −113.7 −99.8 −109.1

Table 6.

MolDock docking energies (kJ/mol) of germacranolide sesquiterpenoids with Leishmania infantum protein targets.

Germacranolides LinfCYP51 LinfGLO2 LinfPnC1 LinfTDR1 LinfTR
8-Acetyl-13-O-ethylpiptocarphol −100.4 −89.8 no dock −82.3 −99.7
Centratherin −109.0 −87.1 no dock −88.5 −104.9
Costunolide −74.4 −63.6 no dock −69.9 −71.2
2-Deethoxy-2β-methoxyphantomolin −101.4 −83.7 no dock −83.2 −95.3
8,13-Diacetylpiptocarphol −97.8 −88.8 no dock −91.7 −101.6
16α,17-Dihydrobrachycalyxolide −126.4 −108.8 no dock −104.2 −112.9
11(13)-Dehydroivaxillin −81.4 −69.4 −86.5 −79.4 −81.2
11β,13-Dihydrotanachin −73.7 −63.2 −86.6 −72.2 −76.3
Elephantopin −110.7 −90.5 no dock −92.2 −104.4
11-epi-Ivaxillin −83.4 −73.9 −79.8 −77.7 −81.2
4,5α-Epoxy-6α-acetoxy-1(10)E,11(13)-germacradien-12,8α-olide −92.9 −79.5 no dock −80.9 −89.6
4α,5β-Epoxy-8-epi-inunolide −77.1 −67.0 −80.3 −70.2 −77.2
Eremantholide C −91.3 −70.7 no dock −81.6 −95.3
Eupatoriopicrin −100.1 −91.3 no dock −96.5 −105.1
Goyazensolide −104.7 −83.9 no dock −84.3 −98.8
Hanphyllin −79.3 −64.9 −64.6 −75.7 −76.4
8-(3'-Hydroxymethacryloxy)-hirsutinolide 13-acetate −120.2 −90.6 no dock −100.1 −114.7
Ineupatorolide A −102.5 −84.2 no dock −89.1 −95.0
Ivaxillin −82.2 −70.1 no dock −75.0 −84.9
Molephantin −101.0 −82.4 no dock −82.3 −101.2
Neurolenin B −95.7 −76.0 no dock −81.0 −92.5
Neurolenin C −95.9 −76.9 no dock −82.0 −93.3
Neurolenin D −99.7 −76.0 no dock −80.7 −86.9
Parthenolide −82.1 −63.5 −84.6 −75.2 −76.9
Tagitinin C −97.0 −79.4 no dock −77.6 −90.7
Tanachin −82.0 −61.0 −62.5 −73.7 −74.5
Tatridin A −87.0 −65.2 −97.2 −70.9 −77.8
8-Tigloylhirsutinolide 13-acetate −124.6 −88.1 no dock −91.5 −109.1
Vernolide D −131.9 −94.9 no dock −100.0 −110.4

Table 7.

MolDock docking energies (kJ/mol) of guaianolide sesquiterpenoids with Leishmania major protein targets.

Guaianolides LmajCatB LmajDHODH LmajdUTPase LmajNDKb LmajNH LmajNMT LmajOPB LmajPDE1 LmajPTR1 LmajMetRS LmajTyrRS LmajUGPase
Arborescin −66.2 −93.6 −78.3 −83.0 −72.7 −78.2 −85.3 −77.7 −95.1 −90.4 −91.8 −79.5
Carpesiolin −73.3 −97.3 −73.5 −79.0 −70.7 −79.4 −84.1 −75.6 −87.3 −86.7 −86.0 −88.0
Confertin −62.4 −90.0 −72.4 −73.5 −75.8 −72.7 −81.5 −70.1 −74.8 −94.4 −78.3 −83.7
Cynaropicrin −78.6 −117.2 −104.1 −101.0 −106.4 −109.8 −97.6 −109.4 −103.0 −115.0 −107.2 −108.6
Damsin −64.9 −102.1 −74.1 −77.0 −77.4 −83.2 −79.4 −78.2 −74.8 −89.1 −77.5 −85.1
11,13-Dehydrocompressanolide −72.6 −94.1 −77.6 −78.6 −74.9 −76.8 −78.7 −80.1 −85.0 −93.3 −81.7 −92.6
Dehydrocostuslactone −63.2 −86.9 −76.2 −73.1 −72.7 −69.5 −75.1 −73.5 −82.1 −86.5 −83.8 −79.8
Dehydroleucodine −66.9 −89.5 −85.2 −84.2 −80.6 −79.9 −83.7 −84.2 −94.2 −90.9 −93.3 −83.2
Dehydrozaluzanin C −73.3 −90.4 −74.9 −78.7 −69.8 −79.0 −86.3 −77.7 −85.4 −92.2 −88.4 −85.4
Diguaiaperfolin −127.8 −154.5 −130.6 −116.8 −135.7 −129.4 −114.3 −129.7 −124.3 −129.9 −144.6 −151.8
4,15-Dinor-1,11(13)-xanthadiene-3,5β:12,8β-diolide −76.3 −92.7 −88.4 −83.9 −70.7 −80.2 −87.5 −84.9 −95.0 −95.8 −83.4 −92.6
8-Epixanthatin-1β,5β-epoxide −78.0 −108.0 −77.8 −89.0 −84.5 −88.3 −87.1 −88.3 −92.0 −106.8 −89.5 −95.4
Helenalin −67.2 −92.8 −74.6 −74.6 −80.7 −77.5 −80.1 −79.0 −84.0 −86.4 −87.5 −87.2
Helenalin acetate −72.4 −88.8 −84.1 −81.6 −86.2 −88.9 −92.6 −91.0 −76.8 −98.7 −90.3 −89.8
8β-Hydroxyzaluzanin D −81.2 −102.8 −95.6 −87.0 −89.7 −91.1 −98.7 −90.2 −88.3 −94.1 −93.9 −98.9
Lactucin −68.8 −100.7 −84.2 −91.9 −93.4 −87.9 −89.7 −91.7 −104.1 −92.2 −103.6 −89.3
Lactucopicrin −97.7 −123.3 −113.8 −107.4 −110.9 −112.6 −116.8 −122.0 −129.9 −137.7 −116.5 −120.1
Mexicanin I −75.9 −92.6 −77.9 −80.4 −79.7 −80.1 −83.8 −76.5 −83.8 −88.1 −89.1 −87.0
2-Oxo-8-tigloyloxyguaia-1(10),3-diene-6,12-olide-14-carboxylic acid −82.1 −117.0 −99.2 −96.9 −95.9 −96.7 −90.1 −105.0 −108.3 −114.1 −103.1 −110.8
Peruvin −62.0 −91.6 −71.8 −72.0 −78.4 −81.3 −79.5 −76.2 −79.1 −85.4 −78.2 −101.9
Psilostachyin −71.8 −89.5 −75.0 −83.3 −75.7 −78.7 −78.1 −79.8 −76.7 −90.3 −81.7 −87.2
Psilostachyin C −72.4 −91.5 −74.3 −75.8 −79.5 −72.8 −82.2 −78.3 −79.9 −92.5 −82.3 −89.7
Pungiolide A −91.6 −96.7 −96.8 −116.1 −106.0 −109.6 −111.8 −122.8 −108.3 −122.6 −107.3 −117.5
Xanthipungolide −52.4 −78.4 −50.0 −55.4 −62.7 −64.5 −62.6 −66.8 −48.3 −69.8 −60.4 −74.8
Zaluzanin D −68.6 −103.0 −93.1 −86.7 −80.0 −93.1 −90.8 −93.7 −89.1 −96.5 −97.1 −95.3

Table 8.

MolDock docking energies (kJ/mol) of guaianolide sesquiterpenoids with Leishmania donovani and L. mexicana protein targets.

Guaianolides LdonCatB LdonCyp LdonDHODH LdonNMT LmexGAPDH LmexGPDH LmexPGI LmexPMM LmexPYK LmexPYK LmexPYK LmexTIM
Site 1 Site 2 Site 3
Arborescin −74.7 −82.7 −71.6 −73.6 −68.3 −−91.9 −65.5 −82.7 −88.1 −75.1 −86.5 −73.8
Carpesiolin −76.7 −78.5 −61.5 −69.7 −66.5 −91.8 −61.9 −83.4 −85.7 −88.6 −94.1 −82.1
Confertin −67.1 −85.2 −12.0 −68.1 −62.1 -85.1 −61.5 −79.0 −85.9 −77.1 −82.1 −70.8
Cynaropicrin −80.5 −99.7 −57.3 −92.8 −88.0 −121.8 −97.2 −114.7 −127.0 −91.8 −94.1 −90.1
Damsin −73.3 −88.7 −0.9 −73.6 −69.4 −85.7 −64.6 −79.5 −88.1 −79.9 -84.8 −68.3
11,13-Dehydrocompressanolide −74.2 −87.8 −73.4 −72.8 −70.3 −93.1 −64.9 −86.0 −84.0 −82.1 −92.3 −79.6
Dehydrocostuslactone −71.2 −83.5 -64.8 −66.8 −60.4 −84.8 −57.7 −76.1 −82.5 −74.6 −88.7 −69.5
Dehydroleucodine −78.0 −84.2 −63.9 −72.1 −73.5 −88.0 −66.2 −83.0 −91.4 −74.7 −89.7 −72.3
Dehydrozaluzanin C −74.4 −86.1 −79.0 −76.0 −68.3 −91.0 −70.8 −82.9 −85.4 −80.5 −99.5 −77.9
Diguaiaperfolin −126.1 −124.8 −121.6 −135.5 −122.1 −138.1 −129.7 −145.6 −146.9 −141.4 −138.3 −116.5
4,15-Dinor-1,11(13) -xanthadiene−3,5β:12,8β-diolide −80.7 −89.5 −78.7 −75.7 −69.9 −84.6 −67.7 −82.2 −86.4 −81.3 −90.6 −76.7
8-Epixanthatin-1β,5β-epoxide −87.2 −90.1 −64.8 −78.4 −71.9 −103.4 −72.8 −85.4 −97.2 −90.3 −90.9 −80.6
Helenalin −70.7 −90.8 −47.7 −76.1 −69.5 −79.3 −64.9 −80.8 −83.1 −85.2 −83.6 −79.0
Helenalin acetate −74.2 −77.2 −76.9 −74.9 −78.5 −105.5 −74.7 −87.6 −99.3 −86.9 −78.5 −79.9
8β-Hydroxyzaluzanin D −82.3 −85.7 −84.0 −84.3 −76.7 −101.7 −77.6 −101.1 −110.6 −82.4 −90.4 −79.3
Lactucin −87.0 −87.4 −70.5 −72.2 −84.2 −94.7 −74.0 −92.4 −100.7 −87.8 −94.2 −79.1
Lactucopicrin −114.3 −111.2 −65.0 −114.4 −99.5 −126.7 −108.5 −119.9 −120.4 −115.0 −116.1 −107.3
Mexicanin I −76.3 −80.5 −74.7 −71.3 −70.4 −88.9 −63.0 −81.9 −86.6 −88.8 −92.3 −76.5
2-Oxo-8-tigloyloxyguaia-1(10),3-diene-6,12-olide-14-carboxylic acid −97.4 −97.0 −91.1 −101.5 −81.8 −117.3 −82.4 −111.8 −118.9 −96.8 −115.4 −86.6
Peruvin −66.7 −83.6 −64.1 −74.6 −62.7 −83.0 −61.5 −83.0 −88.5 −79.1 −83.6 −74.1
Psilostachyin −69.6 −85.7 −6.0 −73.5 −65.8 −91.5 −63.4 −85.3 −92.7 −78.1 −88.8 −70.5
Psilostachyin C −71.9 −81.4 −14.5 −67.6 −64.8 −85.2 −62.0 −81.6 −85.1 −77.9 −85.6 -70.9
Pungiolide A −97.3 −102.9 −83.7 −93.9 −89.1 −110.0 −98.8 −105.0 −123.5 −111.6 −81.4 −98.4
Xanthipungolide -50.4 −63.3 −3.8 −55.4 −57.3 −75.0 −43.1 −67.5 −66.9 −57.2 -83.7 −54.3
Zaluzanin D −83.6 −87.2 −59.0 −79.4 −77.1 −102.6 −75.1 −96.2 −106.8 −83.6 −97.7 −86.4

Table 9.

MolDock docking energies (kJ/mol) of guaianolide sesquiterpenoids with Leishmania infantum protein targets.

Guaianolides LinfCYP51 LinfGLO2 LinfPnC1 LinfTDR1 LinfTR
Arborescin −79.3 −64.1 −59.5 −70.7 −95.1
Carpesiolin −81.0 −64.2 −65.0 −72.2 −82.4
Confertin −79.8 −61.0 −41.9 −67.9 −79.8
Cynaropicrin −106.2 −85.8 no dock −91.6 −105.4
Damsin −78.9 −68.5 −70.3 −68.3 −79.2
11,13-Dehydrocompressanolide −77.9 −66.7 −68.8 −74.1 −78.2
Dehydrocostuslactone −73.5 −61.4 −68.8 −69.1 −82.4
Dehydroleucodine −79.6 −65.7 −72.1 −71.5 −92.8
Dehydrozaluzanin C −81.1 −67.1 −81.8 −73.2 −85.3
Diguaiaperfolin −141.0 −118.8 no dock −118.6 −147.5
4,15-Dinor-1,11(13)-xanthadiene-3,5β:12,8β-diolide −79.7 −67.8 −70.8 −76.8 −84.4
8-Epixanthatin-1β,5β-epoxide −84.2 −77.5 −52.1 −80.4 −88.8
Helenalin −89.0 −62.4 −24.6 −70.1 −79.7
Helenalin acetate −85.9 −71.7 no dock −76.1 −81.6
8β-Hydroxyzaluzanin D −97.3 −75.2 no dock −79.1 −93.3
Lactucin −88.9 −72.7 no dock −85.0 −99.8
Lactucopicrin −114.8 −103.6 no dock −106.7 −101.6
Mexicanin I −79.1 −64.4 −83.3 −73.2 −79.3
2-Oxo-8-tigloyloxyguaia-1(10),3-diene-6,12-olide-14-carboxylic acid −100.1 −94.1 no dock −92.0 −100.8
Peruvin −85.4 −59.4 no dock −68.9 −75.4
Psilostachyin −85.7 −69.7 no dock −67.2 −84.5
Psilostachyin C −74.1 −59.9 −55.5 −67.0 −82.1
Pungiolide A −109.4 −97.5 −69.9 −105.6 −114.8
Xanthipungolide −64.8 −52.0 −32.1 −47.9 −59.0
Zaluzanin D −92.4 −75.7 no dock −77.4 −86.5

Table 10.

MolDock docking energies (kJ/mol) of eudesmanolide sesquiterpenoids with Leishmania major protein targets.

Eudesmanolides LmajCatB LmajDHODH LmajdUTPase LmajNDKb LmajNH LmajNMT LmajOPB LmajPDE1 LmajPTR1 LmajMetRS LmajTyrRS LmajUGPase
Alantolactone −58.1 −90.7 −61.4 −79.0 −73.8 −72.4 −70.1 −67.2 −65.8 −83.2 −74.2 −87.9
Anthecularin −56.1 −77.7 −62.7 −68.7 −67.2 −65.7 −73.7 −72.3 −59.6 −70.9 −72.6 −85.9
Arbusculin B −54.8 −79.8 −67.6 −64.4 −66.2 −71.8 −75.8 −64.1 −66.6 −75.9 −73.3 −79.8
α−Cyclocostunolide −63.7 −85.3 −75.1 −72.6 −69.7 −70.6 −74.7 −69.1 −78.5 −86.1 −77.1 −77.2
β−Cyclocostunolide −64.6 −85.9 −67.0 −73.5 −67.9 −69.7 −76.1 −66.7 −81.9 −83.2 −73.0 −77.9
Deacetyl−β−cyclopryethrosin −69.1 −97.8 −73.4 −76.4 −72.9 −80.2 −82.3 −76.9 −83.3 −93.6 −76.0 −91.1
11,13−Dihydrovernodalin −78.0 −110.6 −91.9 −100.3 −89.7 −99.7 −99.0 −106.2 −103.4 −114.7 −104.0 −94.5
Douglanin −66.7 −90.4 −76.9 −71.6 −71.9 −69.6 −77.8 −74.7 −79.4 −88.2 −77.1 −78.5
Frullanolide −60.6 −81.1 −71.3 −73.2 −69.2 −73.1 −76.9 −77.3 −73.5 −80.4 −75.1 −82.6
4−Hydroxyanthecotulide −76.1 −104.1 −90.1 −103.0 −88.3 −101.7 −95.0 −100.5 −100.8 −103.2 −98.1 −112.3
8β−[4−Hydroxy−5−(5−hydroxytigloyloxy)-tigloyl]santamarin −109.5 −128.9 −116.3 −125.3 −117.8 −115.9 −113.3 −117.5 −130.2 −153.1 −128.3 −127.1
Isoalantolactone −60.2 −89.6 −65.0 −82.0 −74.4 −74.4 −70.3 −72.2 −66.4 −87.3 −74.2 −88.6
Ivalin −66.1 −94.6 −68.6 −78.4 −74.3 −80.7 −74.8 −74.6 −73.3 −88.8 −73.7 −92.0
Ivalin acetate −77.4 −93.6 −87.4 −87.4 −83.2 −89.5 −90.8 −89.6 −91.6 −104.5 −87.8 −83.4
Onoseriolide −72.4 −92.4 −82.8 −81.4 −78.5 −79.8 −88.5 −83.8 −88.6 −101.4 −81.3 −82.5
2−Oxoalantolactone −59.1 −94.0 −64.8 −79.6 −76.3 −78.0 −75.0 −69.7 −68.4 −85.5 −75.0 −91.1
Oxyonoseriolide −77.5 −94.5 −82.3 −80.4 −81.5 −88.9 −88.7 −88.0 −87.8 −104.7 −92.7 −99.1
4−Peroxy−1,2,4,5−tetrahydro−α−santonin −63.3 −97.6 −72.6 −71.0 −72.5 −74.1 −87.3 −80.3 −90.1 −85.2 −76.6 −82.4
Santamarin −65.3 −86.0 −74.9 −72.7 −72.6 −71.6 −80.5 −73.1 −79.0 −89.3 −79.4 −79.4
α−Santonin −63.8 −92.0 −73.1 −73.4 −68.6 −71.3 −84.1 −78.0 −82.7 −85.6 −85.1 −84.1
Sivasinolide −69.8 −90.0 −68.9 −84.5 −72.9 −78.7 −84.5 −72.6 −86.8 −98.1 −80.6 −82.9
Trilobolide 6−isobutyrate −86.0 −108.8 −90.3 −93.8 −95.6 −103.7 −102.2 −97.6 −82.6 −87.4 −95.1 −94.7
Trilobolide 6−methacrylate −78.4 −103.8 −87.9 −85.0 −94.2 −111.3 −87.6 −97.6 −78.9 −87.5 −92.1 −92.2
Vernangulide B −91.2 −118.3 −108.7 −105.8 −105.6 −113.0 −99.8 −107.1 −122.9 −125.3 −105.0 −111.9
Vernodalin −80.8 −107.5 −94.4 −101.0 −92.4 −105.7 −89.4 −92.4 −104.5 −116.3 −95.8 −102.2
Vernodalol −82.5 −112.8 −100.1 −99.1 −96.4 −97.3 −94.5 −99.4 −100.0 −107.8 −94.6 −90.2
Wedelolide A −88.3 −109.9 −95.0 −83.5 −94.0 −109.6 −84.2 −103.7 −83.1 −131.6 −96.2 −98.4
Wedelolide B −88.0 −113.0 −91.2 −87.0 −94.2 −107.4 −99.0 −107.4 −82.8 −134.0 −102.8 −94.9

Table 11.

MolDock docking energies (kJ/mol) of eudesmanolide sesquiterpenoids with Leishmania donovani and L. mexicana protein targets.

Eudesmanolides LdonCatB LdonCyp LdonDHODH LdonNMT LmexGAPDH LmexGPDH LmexPGI LmexPMM LmexPYK LmexPYK LmexPYK LmexTIM
Site 1 Site 2 Site 3
Alantolactone −67.1 −78.3 −55.0 −64.4 −62.6 −79.8 −57.8 −74.6 −78.6 −72.2 −79.7 −77.9
Anthecularin −62.4 −65.2 −57.0 −63.9 −60.1 −80.3 −59.8 −70.9 −79.7 −64.4 −81.3 −69.7
Arbusculin B −60.0 −74.6 −58.2 −63.5 −64.3 −84.1 −55.6 −75.3 −73.9 −69.6 −74.8 −70.3
α−Cyclocostunolide −67.2 −78.6 −62.6 −62.9 −60.5 −83.6 −57.3 −73.7 −78.8 −73.8 −80.1 −68.0
β−Cyclocostunolide −69.9 −78.0 −69.9 −67.0 −60.2 −85.0 −58.9 −78.3 −76.3 −75.2 −87.9 −73.4
Deacetyl−β−cyclopryethrosin −73.4 −82.9 −63.3 −72.8 −71.5 −92.2 −63.3 −84.0 −84.6 −78.1 −88.1 −81.4
11,13−Dihydrovernodalin −89.3 −94.8 −59.5 −84.3 −79.3 −107.0 −82.3 −102.5 −104.4 −94.9 −100.7 −87.1
Douglanin −69.0 −80.6 −71.4 −66.3 −63.7 −88.6 −58.9 −76.6 −82.7 −77.2 −82.1 −65.1
Frullanolide −61.5 −77.8 −65.2 −63.1 −67.0 −79.4 −58.7 −75.6 −82.1 −72.5 −86.1 −72.8
4−Hydroxyanthecotulide −87.9 −94.0 −93.9 −86.1 −86.4 −103.7 −85.0 −100.3 −98.8 −91.5 −98.0 −97.0
8β−[4−Hydroxy−5−(5−hydroxytigloyloxy)-tigloyl]santamarin −112.4 −115.3 −37.4 −121.4 −96.5 −128.2 −113.8 −132.1 −124.3 −119.9 −112.8 −105.4
Isoalantolactone −69.9 −83.1 −70.6 −64.4 −59.3 −82.4 −56.8 −77.4 −80.0 −69.7 −85.1 −74.0
Ivalin −77.3 −84.5 −74.6 −73.2 −62.5 −84.1 −62.0 −80.9 −83.6 −73.4 −88.9 −70.0
Ivalin acetate −91.5 −92.5 −63.2 −66.9 −73.8 −97.0 −70.5 −92.4 −97.2 −80.3 −81.4 −86.8
Onoseriolide −73.8 −88.1 −84.8 −77.0 −72.8 −93.9 −66.8 −84.1 −87.9 −78.0 −95.0 −77.1
2−Oxoalantolactone −64.0 −80.8 −58.1 −64.1 −65.3 −85.5 −61.4 −77.8 −81.7 −74.7 −83.5 −77.9
Oxyonoseriolide −77.9 −84.5 −61.8 −78.5 −78.5 −95.4 −70.4 −84.6 −98.4 −80.6 −103.9 −79.3
4−Peroxy−1,2,4,5−tetrahydro−α−santonin −68.0 −72.4 −68.6 −72.3 −62.0 −92.4 −58.1 −82.3 −85.2 −73.3 −83.0 −73.0
Santamarin −69.3 −79.8 −56.3 −67.4 −65.6 −89.5 −61.2 −81.2 −82.6 −75.9 −82.0 −71.6
α−Santonin −68.9 −78.3 −71.0 −68.6 −65.5 −85.6 −57.8 −82.5 −80.7 −69.1 −85.4 −72.0
Sivasinolide −71.6 −85.1 −61.8 −73.5 −68.1 −94.9 −62.3 −84.7 −88.4 −77.9 −91.5 −76.4
Trilobolide 6−isobutyrate −82.4 −83.4 −71.3 −80.7 −79.8 −99.2 −84.5 −103.2 −96.5 −89.4 −92.1 −72.4
Trilobolide 6−methacrylate −83.4 −80.8 −20.7 −82.7 −70.3 −99.2 −88.3 −107.3 −94.9 −92.7 −87.2 −74.7
Vernangulide B −93.8 −106.6 −126.8 −96.1 −90.5 −121.5 −100.6 −120.1 −116.6 −105.6 −107.5 −104.7
Vernodalin −84.6 −94.2 −79.2 −87.4 −80.6 −110.8 −81.5 −106.2 −104.5 −106.1 −99.5 −94.0
Vernodalol −88.4 −96.3 −50.6 −83.9 −84.1 −105.2 −93.5 −99.8 −103.5 −99.1 −103.4 −83.2
Wedelolide A −87.9 −68.5 −85.5 −91.6 −84.0 −96.0 −90.3 −114.9 −103.2 −107.4 −92.9 −92.7
Wedelolide B −81.5 −64.3 −88.3 −97.5 −79.2 −96.0 −92.2 −127.4 −102.4 −108.8 −102.6 −96.0

Table 12.

MolDock docking energies (kJ/mol) of eudesmanolide sesquiterpenoids with Leishmania infantum protein targets.

Eudesmanolides LinfCYP51 LinfGLO2 LinfPnC1 LinfTDR1 LinfTR
Alantolactone −71.3 −60.0 no dock −66.1 −75.5
Anthecularin −70.8 −47.5 −58.4 −62.3 −71.0
Arbusculin B −71.0 −58.8 −12.7 −62.1 −73.6
α−Cyclocostunolide −70.4 −60.3 −82.7 −69.1 −79.0
β−Cyclocostunolide −75.9 −62.0 −79.0 −71.6 −73.1
γ−Cyclocostunolide −71.0 −57.5 −12.1 −62.2 −67.4
Deacetyl−β−cyclopryethrosin −74.8 −64.8 −75.5 −71.5 −82.2
11,13−Dihydrovernodalin −105.4 −83.0 no dock −85.8 −95.4
Douglanin −76.4 −60.7 −10.6 −67.9 −80.1
Frullanolide −75.2 −61.3 −55.4 −70.5 −74.5
4−Hydroxyanthecotulide −90.2 −82.6 −68.4 −85.4 −92.1
8β−[4−Hydroxy−5−(5−hydroxytigloyloxy)-tigloyl]santamarin −117.8 −98.9 no dock −103.4 −114.9
Isoalantolactone −69.1 −57.8 −31.1 −64.3 −74.2
Ivalin −72.9 −65.0 −16.1 −65.6 −80.5
Ivalin acetate −88.7 −72.0 no dock −76.6 −91.2
Onoseriolide −82.0 −70.0 −24.6 −71.8 −82.4
2−Oxoalantolactone −73.4 −57.6 no dock −68.1 −79.4
Oxyonoseriolide −86.7 −71.3 −11.8 −78.4 −87.9
4−Peroxy−1,2,4,5−tetrahydro−α−santonin −80.6 −73.2 −66.0 −66.5 −78.2
Santamarin −67.8 −59.5 −85.2 −71.3 −81.3
α−Santonin −74.2 −69.4 −44.0 −65.5 −86.4
Sivasinolide −75.2 −63.3 −72.1 −72.5 −81.1
Trilobide 6−isobutyrate −97.9 −82.0 no dock −80.3 −90.2
Trilobide 6−methacrylate −96.0 −86.3 no dock −77.2 −90.2
Vernangulide B −105.2 −98.6 no dock −99.3 −99.0
Vernodalin −105.9 −88.9 no dock −86.6 −96.9
Vernodalol −103.1 −79.4 no dock −88.9 −96.8
Wedelolide A −97.6 −80.8 no dock −90.4 −99.4
Wedelolide B −105.8 −77.6 no dock −92.8 −96.6

Table 13.

MolDock docking energies (kJ/mol) of miscellaneous sesquiterpenoids with Leishmania major protein targets.

Miscellaneous Sesquiterpenoids LmajCatB LmajDHODH LmajdUTPase LmajNDKb LmajNH LmajNMT LmajOPB LmajPDE1 LmajPTR1 LmajMetRS LmajTyrRS LmajUGPase
Alloaromadendrene −56.8 −81.7 −67.0 −68.2 −66.1 −71.1 −74.3 −68.2 −91.9 −70.7 −70.0 −76.6
Aromadendrene −56.9 −78.5 −68.4 −66.9 −64.7 −70.2 −73.2 −67.9 −99.4 −73.2 −72.4 −72.2
1,10−Bisaboladiene−3,4−diol −67.4 −92.7 −81.0 −82.8 −79.8 −87.5 −89.2 −82.9 −102.6 −91.1 −80.7 −89.5
α−Bisabolol −75.2 −92.5 −76.3 −77.5 −75.6 −89.9 −74.7 −79.9 −110.6 −93.8 −80.3 −83.2
Corymbolone −56.5 −82.2 −59.1 −67.5 −70.2 −66.5 −69.5 −65.5 −59.5 −77.2 −68.3 −85.9
α−Eudesmol −60.9 −80.3 −64.8 −70.7 −68.1 −66.0 −66.0 −74.2 −86.8 −83.1 −76.9 −74.7
β−Eudesmol −58.8 −83.4 −69.6 −69.6 −66.5 −68.2 −72.7 −67.3 −89.6 −76.9 −68.1 −79.1
1(10),5−Germacradien−4−ol −62.0 −88.1 −68.8 −69.1 −73.3 −70.1 −76.0 −72.2 −100.0 −87.1 −75.0 −88.6
Germacrene D −57.9 −81.4 −66.6 −65.1 −70.8 −68.8 −69.7 −69.9 −96.7 −77.7 −70.6 −81.8
Gossypol −59.1 −106.1 −85.2 −89.5 −83.9 −104.6 −98.4 −111.5 −120.6 −92.7 −108.0 −90.7
Gossypol−6,6'−dimethylether −90.8 −108.3 −84.1 −95.0 −85.6 −95.5 −84.6 −114.3 −117.5 −88.0 −108.6 −100.3
Gossypol−6−methylether −93.1 −109.1 −85.9 −93.7 −103.2 −116.8 −102.1 −113.3 −122.2 −94.1 −111.6 −95.6
Homalomenol C −67.8 −88.7 −65.1 −69.4 −72.6 −72.4 −76.6 −74.7 −92.6 −83.9 −75.5 −88.6
1−Hydroperoxy−10(14),11−guaiadiene −60.7 −85.4 −70.4 −70.7 −69.0 −74.0 −77.5 −78.5 −96.5 −83.6 −76.5 −83.7
10−Hydroperoxy−1,11−guaiadiene −64.6 −82.2 −76.5 −73.3 −74.6 −77.5 −77.5 −82.7 −109.1 −86.4 −80.1 −79.9
14−Hydroperoxy−1(10),11−guaiadiene −71.5 −88.0 −88.1 −79.2 −78.4 −78.5 −80.0 −82.3 −111.6 −87.9 −79.1 −86.6
Kudtriol −60.6 −86.7 −65.3 −68.9 −72.5 −71.5 −66.2 −69.2 −81.5 −82.3 −68.0 −80.5
5−epi−Kudtriol −59.9 −86.5 −69.2 −68.4 −70.4 −78.2 −75.8 −75.8 −65.9 −77.9 −65.1 −83.0
Longifolene −52.1 −75.8 −50.0 −62.3 −59.6 −58.9 −63.0 −66.7 −61.3 −62.3 −63.1 −70.8
Mukaadial −67.0 −89.5 −71.1 −72.7 −67.3 −75.0 −76.6 −72.0 −80.7 −79.2 −82.3 −81.8
Mustakone −47.5 −78.0 −61.9 −62.0 −64.5 −64.2 −67.6 −67.5 −66.1 −71.7 −65.4 −81.7
Muzigadial −64.6 −93.9 −66.8 −70.6 −65.0 −70.6 −74.1 −66.3 −81.5 −81.9 −68.5 −76.8
Nerolidol −69.5 −91.4 −86.4 −86.5 −81.2 −93.0 −84.3 −89.8 −117.0 −100.5 −87.9 −94.2
Oplopanone −59.4 −81.9 −69.4 −66.1 −68.2 −70.8 −73.0 −71.7 −106.4 −76.9 −74.0 −74.2
10,12−Peroxycalamenene −41.0 −71.0 −57.9 −57.4 −60.8 −65.9 −66.3 −74.3 −70.6 −69.3 −68.4 −70.7
Plagiochilin A −83.4 −103.9 −94.1 −94.1 −93.6 −88.5 −95.7 −92.7 −132.3 −102.9 −106.0 −105.9
Polygodial −61.3 −86.0 −70.7 −71.6 −64.8 −71.0 −76.9 −66.6 −91.1 −86.3 −71.5 −80.4
Zingiberene−3,6−α−peroxide −62.3 −89.4 −75.8 −75.4 −76.0 −82.6 −68.3 −84.9 −87.4 −92.0 −76.8 −88.2
Zingiberene−3,6−β−peroxide −62.2 −86.9 −73.6 −75.4 −74.9 −78.7 −72.4 −84.7 −89.9 −82.0 −73.7 −84.9

Table 14.

MolDock docking energies (kJ/mol) of miscellaneous sesquiterpenoids with Leishmania donovani and L. mexicana protein targets.

Miscellaneous Sesquiterpenoids LdonCatB LdonCyp LdonDHODH LdonNMT LmexGAPDH LmexGPDH LmexPGI LmexPMM LmexPYK LmexPYK LmexPYK LmexTIM
Site 1 Site 2 Site 3
Alloaromadendrene −66.6 −77.8 −46.3 −58.8 −61.3 −78.3 −57.1 −71.4 −79.0 −62.3 −79.7 −68.9
Aromadendrene −66.1 −72.0 −56.6 −62.4 −57.1 −75.0 −54.4 −71.9 −79.4 −65.5 −77.1 −65.1
1,10−Bisaboladiene−3,4−diol −73.0 −82.3 −74.6 −85.5 −70.9 −94.2 −71.9 −78.6 −88.2 −76.9 −84.5 −80.0
α−Bisabolol −75.2 −76.8 −68.1 −81.0 −65.2 −85.2 −67.0 −84.8 −90.3 −75.7 −79.7 −77.7
Corymbolone −60.9 −72.2 −62.0 −63.5 −60.6 −74.4 −56.1 −70.5 −74.6 −72.4 −80.2 −69.4
6α,9α−Dihydroxypolygodial −65.8 −86.7 −61.9 −72.3 −65.5 −88.4 −58.7 −77.1 −83.6 −74.4 −91.4 −69.6
α−Eudesmol −62.3 −74.4 −49.2 −57.4 −57.2 −78.4 −53.9 −76.3 −73.5 −64.3 −82.9 −67.2
β−Eudesmol −66.1 −74.1 −57.0 −63.4 −58.8 −75.1 −56.5 −77.8 −72.4 −65.5 −83.0 −68.3
1(10),5−Germacradien−4−ol −69.7 −78.5 −49.2 −70.5 −62.2 −81.5 −58.6 −75.2 −78.1 −68.4 −84.1 −74.8
Germacrene D −65.0 −74.6 −64.4 −68.3 −60.1 −77.0 −58.3 −70.1 −73.5 −64.9 −82.0 −71.3
Gossypol −79.2 −86.4 −88.4 −64.5 −81.7 −117.4 −76.4 −116.4 −110.5 −96.9 −93.4 −86.4
Gossypol−6,6'−dimethylether −89.6 −82.6 −90.2 −82.3 −71.9 −112.2 −81.8 −119.8 −113.9 −103.5 −96.5 −84.3
Gossypol−6−methylether −82.2 −90.0 −87.5 −82.4 −69.4 −113.0 −75.3 −115.2 −111.7 −103.6 −101.0 −83.4
Homalomenol C −66.5 −75.6 −26.8 −65.5 −64.4 −89.4 −63.4 −74.5 −87.0 −68.4 −84.5 −73.1
1−Hydroperoxy−10(14),11−guaiadiene −59.3 −78.1 −59.8 −61.2 −63.7 −85.3 −61.7 −73.4 −81.5 −74.5 −79.2 −68.5
10−Hydroperoxy−1,11−guaiadiene −77.0 −82.0 −67.9 −66.3 −66.3 −83.7 −60.1 −80.2 −86.0 −73.5 −85.7 −78.9
14−Hydroperoxy−1(10),11−guaiadiene −78.4 −92.8 −85.2 −69.2 −70.4 −93.9 −67.8 −79.5 −87.7 −75.2 −91.0 −79.6
Kudtriol −69.5 −78.5 −66.2 −65.6 −61.3 −79.2 −58.9 −73.8 −78.6 −69.7 −93.0 −70.4
5−epi−Kudtriol −59.0 −78.2 −65.4 −66.2 −69.3 −79.6 −55.7 −76.8 −77.6 −70.7 −83.7 −68.5
Longifolene −52.4 −69.7 −35.7 −56.3 −57.6 −74.0 −52.4 −63.5 −68.1 −63.1 −66.8 −60.8
Mukaadial −65.9 −86.9 −61.9 −72.3 −72.0 −92.6 −58.7 −77.1 −83.7 −74.5 −91.5 −69.6
Mustakone −57.7 −57.0 −61.7 −59.3 −56.1 −76.2 −53.7 −69.0 −72.7 −63.2 −73.7 −63.2
Muzigadial −70.3 −85.5 −15.2 −62.1 −66.3 −78.6 −57.9 −76.5 −80.4 −73.1 −81.2 −71.5
Nerolidol −79.6 −82.0 −87.3 −76.3 −74.5 −91.1 −79.5 −84.3 −87.3 −76.5 −91.7 −85.8
Oplopanone −68.5 −78.9 −64.1 −65.2 −59.8 −78.2 −58.4 −71.5 −77.0 −67.2 −78.5 −68.5
10,12−Peroxycalamenene −51.6 −70.8 −62.9 −54.6 −58.3 −71.8 −49.9 −71.3 −66.5 −61.4 −69.9 −62.4
Plagiochilin A −96.2 −89.1 −95.1 −81.9 −78.8 −105.9 −75.5 −99.4 −99.8 −97.9 −87.5 −89.2
Polygodial −60.0 −80.5 −57.6 −68.6 −62.1 −81.9 −55.2 −73.3 −78.4 −69.2 −84.7 −76.3
Zingiberene−3,6−α−peroxide −75.1 −71.7 −80.1 −74.3 −67.0 −83.7 −67.1 −80.7 −79.9 −74.0 −81.1 −76.1
Zingiberene−3,6−β−peroxide −71.6 −75.1 −77.1 −76.2 −60.7 −84.3 −66.0 −74.9 −83.0 −67.0 −87.3 −74.6

Table 15.

MolDock docking energies (kJ/mol) of miscellaneous sesquiterpenoids with Leishmania infantum protein targets.

Miscellaneous Sesquiterpenoids LinfCYP51 LinfGLO2 LinfPnC1 LinfTDR1 LinfTR
Alloaromadendrene −66.8 −57.0 −52.9 −61.7 −67.2
Aromadendrene −60.8 −59.7 −60.8 −61.6 −76.8
1,10−Bisaboladiene−3,4−diol −75.6 −70.8 −63.5 −72.1 −85.0
α−Bisabolol −76.5 −74.1 −73.4 −75.0 −74.7
Corymbolone −65.9 −54.6 −49.1 −59.4 −65.3
6α,9α−Dihydroxypolygodial −75.7 −62.3 −23.0 −63.6 −78.0
α−Eudesmol −62.6 −58.1 −28.2 −59.1 −69.5
β−Eudesmol −68.0 −59.6 −23.9 −64.3 −69.7
1(10),5−Germacradien−4−ol −70.4 −58.4 −52.6 −63.6 −70.2
Germacrene D −64.6 −57.4 −62.7 −68.0 −70.2
Gossypol −109.9 −99.6 no dock −86.6 −97.0
Gossypol−6,6'−dimethylether −109.5 −95.1 no dock −88.7 −101.1
Gossypol−6−methylether −113.1 −99.6 no dock −94.5 −100.9
Homalomenol C −72.3 −57.3 −41.9 −64.4 −68.5
1−Hydroperoxy−10(14),11−guaiadiene −74.5 −56.7 −15.4 −62.9 −72.8
10−Hydroperoxy−1,11−guaiadiene −79.3 −66.5 −38.7 −67.3 −75.4
14−Hydroperoxy−1(10),11−guaiadiene −81.4 −67.2 −69.9 −74.2 −74.4
Kudtriol −68.1 −51.5 no dock −65.3 −72.4
5−epi−Kudtriol −67.9 −61.6 no dock −63.0 −71.5
Longifolene −64.9 −49.4 −48.0 −54.6 −61.5
Mukaadial −74.9 −61.5 −21.0 −63.7 −78.0
Mustakone −63.5 −57.5 −18.1 −55.3 −63.3
Muzigadial −72.6 −56.5 −66.6 −65.1 −84.6
Nerolidol −79.3 −72.3 −72.0 −79.1 −82.5
Oplopanone −65.7 −59.4 −55.6 −63.2 −69.2
10,12−Peroxycalamenene −65.2 −46.6 no dock −58.2 −70.5
Plagiochilin A −95.9 −79.6 no dock −80.5 −89.3
Polygodial −72.1 −57.6 −45.3 −62.8 −72.3
Zingiberene−3,6−α−peroxide −77.7 −65.4 −65.8 −66.7 −75.1
Zingiberene−3,6−β−peroxide −69.8 −65.5 −51.2 −62.7 −72.9

The guaianolide with the strongest docking energy was diguaiaperfolin, probably owing to its dimeric structure and larger molecular weight (716.77 amu). This ligand did show notable docking (−154.5 kJ/mol) with LmajDHODH as well as with LmajUGPase (docking energy = −151.8 kJ/mol). 8β-[4-Hydroxy-5-(5-hydroxytigloyloxy)tigloyl]santamarin was the strongest-docking eudesmanolide, and this ligand showed docking selectivity to LmajMetRS (docking energy = −153.1 kJ/mol). The proteins most strongly targeted by both the guaianolides and the eudesmaolides were also LmajMetRS and LmajDHODH. Interestingly, the miscellaneous sesquiterpenoids preferentially targeted L. major pteridine reductase 1 (LmajPTR1), and plagiochilin A showed notable selectivity (docking energy = −132.2 kJ/mol) for this protein.

Several electrophilic sesquiterpenoids have exhibited antiprotozoal activity [5] and many of these showed docking selectivity to LmajDHODH. The active site of this protein has some potential nucleophilic residues, namely Ser 69, Ser 196, and Cys 131. Suitably oriented electrophilic ligands could form covalent bonds with these nucleophiles and thus inhibit the enzyme. Thus, for example, the germacranolide tatridin A docked preferentially to LmajDHODH, and the lowest-energy docked pose oriented the electrophilic carbon of the α-methylene lactone moiety close to the sulfur atom of Cys 131 (see Figure 6). Similarly, the lowest-energy docked orientation of 11-epi-ivaxillin places one of the epoxide groups near to the sulfur atom of Cys 131 (Figure 7). Conversely, the lowest-energy docked pose of neurolenin B is such that the electrophilic carbon of the α-methylene lactone group of the ligand is near the hydroxyl group of Ser 69 (Figure 8). The ligand with the lowest docking energy to LmajDHODH was the guaianolide dimer diguaiaperfolin (−154.5 kJ/mol). The lowest-energy pose for this ligand placed the cyclopentenone moiety near the sulfur atom of Cys 131 (Figure 9).

Figure 6.

Figure 6

Lowest-energy docked pose of tatridin A with L. major dihydroorotate dehydrogenase (LmajDHODH, PDB 3mhu). The cofactor, riboflavin monophosphate, is shown as a space-filling structure.

Figure 7.

Figure 7

Lowest-energy docked pose of 11-epi-ivaxillin with L. major dihydroorotate dehydrogenase (LmajDHODH, PDB 3mhu). The cofactor, riboflavin monophosphate, is shown as a space-filling structure.

Figure 8.

Figure 8

Lowest-energy docked pose of neurolenin B with L. major dihydroorotate dehydrogenase (LmajDHODH, PDB 3mhu). The cofactor, riboflavin monophosphate, is shown as a space-filling structure.

Figure 9.

Figure 9

Lowest-energy docked pose of diguaiaperfolin with L. major dihydroorotate dehydrogenase (LmajDHODH, PDB 3mhu). The cofactor, riboflavin monophosphate, is shown as a space-filling structure.

2.3. Diterpenoid Docking

Structures of diterpenoids are shown in Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17 and Figure 18. Docking energies of the diterpenoids are assembled in Table 16, Table 17, Table 18, Table 19, Table 20, Table 21, Table 22, Table 23, Table 24, Table 25, Table 26, Table 27 and Table 28. The diterpenoids ligands generally favored docking to L. mexicana glycerol-3-phosphate dehydrogenase (LmexGPDH). In particular, the kaurane diterpenoids strongly docked to this target. In addition to LmexGPDH, labdane diterpenoids showed docking preferences for LmajMetRS and LmajDHODH. The strongest-docking ligands were the cinnamoyl cassanes 6β-O-cinnamoyl-12-hydroxy-(13)15-en-16,12-olide-18-cassaneoic acid and 6β-O-2',3'-dihydro-cinnamoyl-12-hydroxy-(13)15-en-16,12-olide-18-cassaneoic acid. These two ligands showed significant docking preference to LmajMetRS and LmexPMM.

Figure 10.

Figure 10

Abietane diterpenoids examined in this study.

Figure 11.

Figure 11

Clerodane diterpenoids examined in this study.

Figure 12.

Figure 12

Labdane diterpenoids examined in this study.

Figure 13.

Figure 13

Kaurane diterpenoids examined in this study.

Figure 14.

Figure 14

Pimarane diterpenoids examined in this study.

Figure 15.

Figure 15

Cassane diterpenoids examined in this study.

Figure 16.

Figure 16

Icetaxane diterpenoids examined in this study.

Figure 17.

Figure 17

Mulinane diterpenoids examined in this study.

Figure 18.

Figure 18

Miscellaneoous diterpenoids examined in this study.

Table 16.

MolDock docking energies (kJ/mol) of abietane diterpenoids with Leishmania major protein targets.

Abietane diterpenoids LmajCatB LmajDHODH LmajdUTPase LmajNDKb LmajNH LdonNMT LmajOPB LmajPDE1 LmajPTR1 LmajMetRS LmajTyrRS LmajUGPase
Abieta−7,13−diene −71.5 −80.8 −79.3 −80.3 −76.3 −69.7 −82.2 −77.0 −74.7 −96.9 −78.1 −78.3
ar−Abietatriene−12,16−diol−14,16−oxide −74.0 −97.8 −78.9 −96.2 −78.0 −74.8 −98.2 −83.2 −73.8 −89.0 −84.6 −77.8
ar−Abietatrien−12−ol−6,7−dione−14,16−oxide −66.1 −91.8 −86.1 −79.4 −72.8 −74.2 −98.2 −83.6 −84.5 −92.7 −91.4 −83.4
epi−Abietic acid −75.3 −93.5 −81.8 −74.9 −84.0 −78.1 −86.1 −80.7 −82.1 −99.8 −87.3 −84.7
4− epi−Abietol −71.9 −87.6 −81.8 −80.4 −80.9 −69.3 −83.4 −74.8 −78.1 −96.3 −81.0 −82.3
Cryptotanshinone −69.2 −93.7 −74.6 −81.3 −59.6 −78.3 −91.6 −83.4 −81.2 −105.2 −86.5 −78.6
12− O−Deacetyl−6−O−acetyl−18−acetyloxycoleon Q −81.2 −89.0 −95.0 −89.7 −99.9 −79.5 −95.5 −111.8 −93.9 −94.2 −88.9 −114.2
12− O−Deacetyl−6−O−acetyl−19−acetyloxycoleon Q −76.3 −104.3 −82.9 −93.8 −101.2 −75.4 −100.7 −107.4 −84.3 −99.0 −92.0 −96.9
12−Deoxyroyleanone −78.2 −79.2 −74.3 −74.8 −72.9 −73.1 −76.5 −83.6 −86.4 −85.9 −77.6 −77.4
9α,13α− epi−Dioxyabiet−8(14)−en−18−oic acid −65.5 −88.2 −79.9 −82.1 −80.1 −64.0 −89.6 −79.4 −71.2 −89.5 −88.2 −81.6
9α,13α− epi−Dioxyabiet−8(14)en−18−ol −47.3 −86.6 −76.2 −78.7 −72.3 −65.3 −74.4 −76.8 −72.7 −81.5 −74.0 −71.2
Dracocephalone A −66.5 −82.6 −70.8 −76.6 −71.9 −66.7 −93.0 −83.2 −87.4 −83.4 −72.9 −78.7
Dracocequinone A −66.6 −84.4 −74.5 −76.0 −74.1 −75.4 −94.8 −83.5 −73.8 −87.6 −76.4 −82.6
Dracocequinone B −74.5 −89.1 −71.5 −78.4 −78.4 −76.6 −83.4 −81.9 −76.0 −88.7 −77.3 −88.2
Ferruginol −68.7 −90.3 −81.0 −81.7 −76.0 −71.3 −85.3 −82.2 −83.7 −99.3 −83.4 −81.2
Hinokiol −77.9 −88.2 −85.2 −75.8 −79.1 −62.3 −84.5 −74.9 −77.9 −92.4 −77.7 −74.0
Hinokiol−1−one −79.9 −87.2 −87.6 −80.6 −81.8 −70.4 −86.5 −76.7 −81.6 −97.4 −82.2 −77.5
7β−Hydroxyabieta−8,13−diene−11,12−dione −76.2 −77.8 −94.0 −83.9 −79.9 −76.5 −91.4 −84.1 −81.3 −95.2 −86.2 −83.9
7α−Hydroxyabieta−8,11,13−triene −76.8 −85.3 −84.5 −75.4 −69.1 −66.7 −83.0 −81.3 −77.8 −90.9 −78.7 −82.0
14−Hydroxy−7,9(11),13−abietatriene−6,12−dione −74.8 −83.5 −71.0 −82.1 −68.6 −76.5 −88.3 −76.2 −78.6 −94.8 −84.7 −85.5
11−Hydroxy−7,9(11),13−abietatrien−12−one −72.5 −82.5 −80.1 −82.3 −75.3 −72.1 −83.7 −73.6 −82.4 −95.9 −74.1 −80.4
12−Hydroxy−8,12−abietadiene−3,11,14−trione −75.9 −86.0 −75.2 −79.9 −83.7 −73.9 −90.3 −84.7 −94.2 −85.3 −79.6 −86.0
1β−Hydroxycryptotanshinone −74.7 −96.0 −70.0 −80.8 −70.1 −79.2 −99.1 −83.8 −84.0 −104.4 −90.0 −78.5
7−Hydroxy−12−methoxy−20− nor−abieta−1,5(10),7,9,12−pentaen−6,14−dione −66.6 −91.6 −75.4 −80.9 −72.5 −79.2 −92.5 −82.4 −83.6 −94.2 −83.7 −81.5
14−Hydroxy−6−oxoferruginol −56.1 −91.1 −72.3 −85.5 −75.7 −73.9 −87.0 −79.5 −83.6 −90.3 −75.2 −79.3
6−Hydroxysalvinolone −77.1 −83.3 −76.6 −76.2 −77.6 −72.4 −82.3 −81.2 −82.7 −93.7 −87.1 −86.5
Komarovinone A −82.0 −82.4 −79.2 −73.1 −72.7 −67.1 −96.1 −83.5 −84.6 −100.0 −77.6 −84.0
1−Oxocryptotanshinone −75.8 −102.9 −74.7 −77.9 −70.6 −75.4 −96.6 −79.8 −82.4 −114.6 −89.3 −78.0
1−Oxomiltirone −71.6 −84.7 −78.4 −77.8 −71.6 −76.8 −90.3 −82.8 −79.8 −104.9 −82.4 −79.1
Royleanone −73.5 −84.0 −72.2 −81.9 −79.6 −72.3 −90.5 −82.7 −91.0 −87.9 −80.5 −83.9
Sugiol −67.6 −90.5 −82.4 −73.2 −81.5 −53.1 −76.2 −84.0 −77.2 −97.3 −84.0 −84.4
Taxodione −79.0 −87.2 −77.8 −83.5 −75.7 −72.3 −85.6 −78.3 −69.0 −90.7 −82.0 −80.4
6,11,12,16−Tetrahydroxy−5,8,11,13−abietatetraen−7−one −78.2 −88.6 −81.5 −82.9 −80.2 −73.3 −95.1 −87.8 −88.3 −93.8 −83.4 −90.7
6,12,14−Trihydroxyabieta−5,8,11,13−tetraen−7−one −69.6 −86.1 −70.6 −78.7 −73.9 −80.8 −89.4 −84.6 −81.5 −97.4 −85.9 −83.5
4− epi−Triptobenzene L −68.9 −94.9 −89.9 −81.7 −79.6 −76.6 −87.6 −85.9 −83.3 −88.2 −82.4 −82.4
Uncinatone −84.3 −81.8 −81.6 −85.9 −62.1 −74.5 −86.5 −86.5 −108.8 −107.7 −95.6 −77.6

Table 17.

MolDock docking energies (kJ/mol) of abietane diterpenoids with Leishmania donovani and L. mexicana protein targets.

Abietane diterpenoids LdonCatB LdonCyp LdonDHODH LdonNMT LmexGAPDH LmexGPDH LmexPGI LmexPMM LmexPYK LmexPYK LmexPYK LmexTIM
Site 1 Site 2 Site 3
Abieta−7,13−diene −73.0 −84.2 −70.8 −69.7 −69.1 −92.6 −62.7 −76.6 −81.3 −71.3 −74.2 −62.9
ar−Abietatriene−12,16−diol−14,16−oxide −77.9 −84.2 −70.5 −74.8 −73.7 −104.7 −74.6 −82.6 −104.4 −83.5 −84.9 −73.1
ar−Abietatrien−12−ol−6,7−dione−14,16−oxide −76.3 −90.1 −75.9 −74.2 −69.1 −102.3 −68.9 −93.5 −99.2 −87.3 −90.1 −72.1
epi−Abietic acid −77.4 −86.4 −67.6 −78.1 −60.9 −97.6 −67.8 −81.5 −84.0 −74.5 −91.0 −68.6
4− epi−Abietol −77.2 −88.0 −69.7 −69.3 −68.1 −94.0 −66.3 −78.8 −78.0 −75.2 −72.6 −65.9
Cryptotanshinone −77.5 −80.5 −84.5 −78.3 −66.6 −101.9 −71.1 −84.4 −95.4 −75.3 −71.7 −65.3
12− O−Deacetyl−6−O−acetyl−18−acetyloxycoleon Q −78.6 −93.4 −41.3 −79.5 −86.6 −108.4 −87.4 −109.1 −102.6 −110.1 −102.8 −86.7
12− O−Deacetyl−6−O−acetyl−19−acetyloxycoleon Q −99.6 −80.4 −45.8 −75.4 −90.6 −105.1 −87.4 −109.7 −101.1 −96.2 −88.7 −73.6
12−Deoxyroyleanone −80.4 −86.7 −72.1 −73.1 −68.2 −99.6 −62.7 −82.7 −84.0 −73.0 −87.4 −68.4
9α,13α− epi−Dioxyabiet−8(14)−en−18−oic acid −59.0 −88.1 −51.5 −64.0 −71.2 −100.3 −69.3 −86.9 −82.4 −77.1 −85.3 −76.1
9α,13α− epi−Dioxyabiet−8(14)en−18−ol −55.8 −76.8 −58.2 −65.3 −63.2 −96.6 −66.9 −81.2 −79.7 −71.6 −74.1 −70.9
Dracocephalone A −74.3 −81.2 −73.4 −66.7 −69.5 −103.5 −64.4 −82.2 −84.9 −74.8 −81.2 −68.1
Dracocequinone A −71.2 −83.6 −77.7 −75.4 −66.1 −104.7 −66.2 −82.5 −84.7 −72.0 −79.9 −68.9
Dracocequinone B −75.7 −81.6 −72.0 −76.6 −67.4 −107.2 −67.7 −83.7 −82.8 −72.2 −77.3 −76.7
Ferruginol −70.5 −91.1 −75.4 −71.3 −71.2 −96.7 −75.1 −83.7 −82.9 −75.3 −76.1 −69.8
Hinokiol −77.1 −87.8 −72.0 −62.3 −71.1 −95.9 −65.9 −79.3 −81.4 −71.9 −73.5 −63.7
Hinokiol−1−one −77.0 −86.1 −72.7 −70.4 −70.9 −99.6 −63.7 −80.2 −79.7 −69.7 −77.2 −67.6
7β−Hydroxyabieta−8,13−diene−11,12−dione −83.8 −79.8 −80.7 −76.5 −69.0 −100.8 −69.4 −89.6 −91.6 −77.9 −83.9 −76.8
7α−Hydroxyabieta−8,11,13−triene −75.4 −76.3 −73.1 −66.7 −68.1 −96.5 −70.5 −78.2 −82.5 −74.8 −82.9 −67.0
14−Hydroxy−7,9(11),13−abietatriene−6,12−dione −74.5 −89.5 −81.6 −76.5 −72.7 −96.0 −68.6 −86.8 −85.3 −76.6 −75.3 −67.9
11−Hydroxy−7,9(11),13−abietatrien−12−one −79.6 −87.1 −76.1 −72.1 −61.8 −97.7 −68.7 −83.9 −78.1 −76.3 −78.1 −69.9
12−Hydroxy−8,12−abietadiene−3,11,14−trione −79.7 −82.0 −75.6 −73.9 −66.2 −109.4 −68.9 −92.5 −88.8 −75.3 −84.8 −71.0
1b−Hydroxycryptotanshinone −78.4 −84.0 −80.5 −79.2 −68.3 −98.5 −71.1 −87.5 −94.5 −77.8 −74.5 −70.8
7−hydroxy−12−methoxy−20− nor−abieta−1,5(10),7,9,12−pentaen−6,14−dione −75.6 −87.7 −69.1 −79.2 −67.5 −102.0 −68.2 −87.1 −88.6 −68.1 −79.9 −65.2
14−Hydroxy−6−oxoferruginol −66.5 −93.7 −78.2 −73.9 −71.7 −96.9 −61.8 −87.2 −88.7 −80.8 −70.6 −68.5
6−Hydroxysalvinolone −78.8 −78.9 −77.6 −72.4 −62.2 −94.7 −66.0 −89.9 −94.9 −84.3 −75.8 −69.0
Komarovinone A −80.3 −81.2 −81.2 −67.1 −65.0 −98.3 −69.2 −90.1 −86.5 −80.4 −70.8 −73.4
1−Oxocryptotanshinone −76.1 −80.4 −71.9 −75.4 −66.9 −95.0 −69.1 −85.7 −89.6 −79.8 −77.1 −65.4
1−Oxomiltirone −74.3 −71.4 −78.1 −76.8 −61.6 −92.9 −65.3 −81.5 −84.5 −76.6 −71.2 −66.5
Royleanone −80.1 −85.8 −75.6 −72.3 −61.3 −102.2 −65.3 −87.9 −90.8 −77.4 −73.0 −69.1
Sugiol −73.9 −78.4 −77.3 −53.1 −65.1 −95.8 −66.2 −85.3 −86.3 −79.1 −71.1 −71.8
Taxodione −80.6 −94.1 −77.9 −72.3 −68.0 −97.3 −70.5 −89.2 −81.6 −79.0 −75.8 −49.5
6,11,12,16−Tetrahydroxy−5,8,11,13−abietatetra−en−7−one −79.0 −86.0 −84.9 −73.3 −66.9 −96.1 −65.9 −95.6 −105.1 −87.5 −77.6 −75.5
6,12,14−Trihydroxyabieta−5,8,11,13−tetraen−7−one −72.7 −84.9 −81.2 −80.8 −72.6 −97.7 −62.5 −89.1 −89.8 −89.2 −77.1 −62.8
4− epi−Triptobenzene L −76.3 −89.7 −76.3 −76.6 −72.3 −101.5 −70.0 −85.1 −85.7 −77.6 −77.9 −72.5
Uncinatone −85.4 −73.3 −72.1 −74.5 −69.8 −89.0 −65.3 −84.4 −94.8 −84.1 −89.2 −64.4

Table 18.

MolDock docking energies (kJ/mol) of abietane diterpenoids with Leishmania infantum protein targets.

Abietane diterpenoids LinfCYP51 LinfGLO2 LinfPnC1 LinfTDR1 LinfTR
Abieta−7,13−diene −76.4 −71.1 no dock −65.7 −72.6
ar−Abietatriene−12,16−diol−14,16−oxide −87.3 −76.4 no dock −74.3 −78.4
ar−Abietatrien−12−ol−6,7−dione−14,16−oxide −84.7 −72.7 no dock −76.8 −83.5
epi−Abietic acid −83.8 −67.7 no dock −66.4 −74.5
4− epi−Abietol −78.5 −68.9 no dock −64.6 −72.4
Cryptotanshinone −83.6 −67.0 no dock −71.5 −84.1
12− O−Deacetyl−6−O−acetyl−18−acetyloxycoleon Q −106.3 −80.7 no dock −88.6 −103.4
12− O−Deacetyl−6−O−acetyl−19−acetyloxycoleon Q −105.1 −85.8 no dock −87.3 −98.2
12−Deoxyroyleanone −81.7 −72.8 no dock −67.2 −77.2
9α,13α− epi−Dioxyabiet−8(14)−en−18−oic acid −90.4 −73.1 no dock −68.7 −77.1
9α,13α− epi−Dioxyabiet−8(14)en−18−ol −80.3 −70.1 no dock −65.9 −72.3
Dracocephalone A −83.2 −64.1 no dock −76.6 −82.5
Dracocequinone A −82.5 −63.6 no dock −77.7 −74.9
Dracocequinone B −85.6 −69.1 no dock −76.4 −75.5
Ferruginol −78.9 −71.0 no dock −73.2 −79.0
Hinokiol −77.7 −68.5 no dock −62.4 −70.0
Hinokiol−1−one −84.6 −69.6 no dock −72.9 −72.4
7β−Hydroxyabieta−8,13−diene−11,12−dione −85.1 −71.6 no dock −73.0 −85.6
7α−Hydroxyabieta−8,11,13−triene −79.5 −68.9 no dock −67.6 −77.1
14−Hydroxy−7,9(11),13−abietatriene−6,12−dione −82.9 −71.7 no dock −71.5 −84.5
11−Hydroxy−7,9(11),13−abietatrien−12−one −81.1 −68.0 no dock −69.6 −73.3
12−Hydroxy−8,12−abietadiene−3,11,14−trione −83.4 −76.4 no dock −73.8 −86.9
1β−Hydroxycryptotanshinone −84.1 −66.5 no dock −75.5 −88.2
7−Hydroxy−12−methoxy−20− nor−abieta−1,5(10),7,9,12−pentaen−6,14−dione −84.6 −67.7 no dock −73.0 −78.3
14−Hydroxy−6−oxoferruginol −85.2 −73.0 no dock −71.7 −79.3
6−Hydroxysalvinolone −81.2 −68.6 no dock −80.7 −85.5
Komarovinone A −86.9 −66.3 no dock −74.9 −84.7
1−Oxocryptotanshinone −83.9 −66.9 no dock −72.6 −84.1
1−Oxomiltirone −85.5 −64.4 no dock −69.7 −78.6
Royleanone −82.6 −72.0 no dock −72.8 −82.1
Sugiol −81.8 −70.4 no dock −72.6 −78.7
Taxodione −81.2 −68.2 no dock −71.1 −75.8
6,11,12,16−Tetrahydroxy−5,8,11,13−abietatetraen−7−one −88.5 −66.5 no dock −85.7 −93.8
6,12,14−Trihydroxyabieta−5,8,11,13−tetraen−7−one −83.5 −73.4 no dock −75.9 −81.9
4− epi−Triptobenzene L −83.0 −72.3 no dock −65.2 −76.3
Uncinatone −93.0 −73.3 no dock −82.5 −85.5

Table 19.

MolDock docking energies (kJ/mol) of clerodane diterpenoids with Leishmania major protein targets.

Clerodane diterpenoids LmajCatB LmajDHODH LmajdUTPase LmajNDKb LmajNH LdonNMT LmajOPB LmajPDE1 LmajPTR1 LmajMetRS LmajTyrRS LmajUGPase
15−Acetoxy−cis−cleroden−3−en−18−al −68.6 −94.1 −85.0 −97.9 −96.0 −87.3 −90.4 −94.9 −94.7 −107.1 −92.6 −106.9
15−Acetoxy−cis−cleroden−3−en−18−oic acid −75.0 −103.1 −88.3 −97.2 −92.3 −87.0 −91.6 −95.3 −93.2 −97.7 −94.4 −97.3
18−Acetoxy−cis−cleroden−3−en−15−oic acid −76.9 −103.7 −82.7 −96.7 −88.8 −80.7 −97.3 −96.8 −89.3 −104.2 −97.5 −98.2
15−O−Acetylcistadiol −68.0 −94.7 −87.4 −97.3 −94.7 −80.4 −96.8 −89.2 −92.9 −106.7 −95.0 −95.3
18−O−Acetylcistadiol −70.5 −103.4 −88.1 −91.7 −93.2 −85.0 −94.0 −93.8 −82.3 −101.2 −95.9 −100.3
Cistadiol −64.1 −93.4 −79.7 −81.6 −81.9 −69.0 −77.1 −85.2 −79.2 −78.9 −80.7 −92.5
trans−Dehydrocrotonin −78.6 −114.9 −90.2 −91.8 −84.5 −75.9 −89.0 −89.1 −99.2 −115.1 −97.7 −92.1
15,18−Di−O−acetylcistadiol −77.8 −100.5 −92.8 −109.4 −94.8 −84.2 −90.5 −107.0 −91.6 −117.5 −100.6 −110.4
8−epi−Kolavenol −71.5 −94.5 −79.2 −80.4 −85.0 −72.3 −78.7 −80.6 −82.8 −92.9 −85.3 −95.3
epi−Populifolic acid −69.9 −85.5 −72.7 −82.3 −83.4 −71.7 −76.3 −82.2 −78.3 −85.0 −78.2 −89.9
ent−16R−Hydroxy−3,13−clerodadien−15,16−olide −77.7 −108.7 −86.4 −88.2 −87.7 −88.2 −90.8 −87.5 −101.9 −105.9 −104.9 −97.4
ent−16S−Hydroxy−3,13−clerodadien−15,16−olide −81.9 −101.9 −84.6 −91.0 −83.9 −78.4 −93.4 −82.2 −100.3 −110.7 −99.4 −105.1
15−Hydroxy−cis−cleroden−3−en−18−al −66.5 −91.8 −77.4 −81.8 −86.8 −76.7 −76.8 −83.7 −77.5 −92.8 −80.1 −91.4
15−Hydroxy−cis−cleroden−3−en−18−oic acid −69.0 −95.8 −90.1 −83.5 −86.9 −80.5 −82.1 −86.0 −80.4 −95.9 −84.3 −95.2
18−Hydroxy−cis−cleroden−3−en−15−oic acid −70.0 −93.4 −76.1 −86.3 −86.8 −76.2 −79.7 −87.2 −81.1 −96.1 −82.9 −97.4
ent−12−Oxo−3,13(16)−clerodien−15−oic acid −75.0 −112.7 −86.3 −90.0 −93.2 −88.2 −87.7 −83.0 −96.5 −107.2 −87.6 −110.5

Table 20.

MolDock docking energies (kJ/mol) of clerodane diterpenoids with Leishmania donovani and L. mexicana protein targets.

Clerodane diterpenoids LdonCatB LdonCyp LdonDHODH LdonNMT LmexGAPDH LmexGPDH LmexPGI LmexPMM LmexPYK LmexPYK LmexPYK LmexTIM
Site 1 Site 2 Site 3
15−Acetoxy−cis−cleroden−3−en−18−al −80.4 −84.1 −75.1 −87.3 −76.7 −107.2 −75.4 −101.2 −96.3 −96.5 −89.3 −84.6
15−Acetoxy−cis−cleroden−3−en−18−oic acid −83.5 −85.0 −75.2 −87.0 −86.3 −93.6 −84.4 −104.8 −100.2 −92.9 −90.4 −80.9
18−Acetoxy−cis−cleroden−3−en−15−oic acid −82.9 −90.6 −85.1 −80.7 −77.3 −109.2 −77.6 −97.4 −95.9 −90.8 −89.5 −95.5
15−O−Acetylcistadiol −82.8 −79.6 −72.7 −80.4 −77.4 −102.7 −77.8 −98.9 −96.3 −96.8 −87.7 −89.7
18−O−Acetylcistadiol −79.8 −92.7 −66.9 −85.0 −73.2 −105.6 −78.9 −97.1 −92.5 −96.8 −92.6 −98.6
Cistadiol −66.6 −81.0 −58.3 −69.0 −70.5 −91.1 −70.4 −88.0 −90.4 −82.8 −82.5 −80.2
trans−Dehydrocrotonin −92.8 −98.7 −51.3 −75.9 −73.0 −100.5 −77.1 −94.2 −107.8 −87.6 −92.4 −95.2
15,18−Di−O−acetylcistadiol −82.2 −82.4 −94.8 −84.2 −85.2 −122.2 −86.7 −104.1 −102.9 −101.7 −97.4 −99.1
8−epi−Kolavenol −75.5 −83.0 −77.8 −72.3 −71.7 −100.8 −70.6 −85.6 −92.1 −84.2 −94.6 −78.9
epi−Populifolic acid −68.3 −75.8 −63.4 −71.7 −73.8 −89.4 −69.7 −88.7 −91.1 −79.3 −85.0 −82.4
ent−16R−Hydroxy−3,13−clerodadien−15,16−olide −74.7 −89.1 −82.9 −88.2 −85.4 −105.8 −79.8 −96.5 −103.1 −89.0 −95.5 −83.1
ent−16S−Hydroxy−3,13−clerodadien−15,16−olide −88.6 −91.8 −82.7 −78.4 −83.9 −100.1 −81.3 −97.2 −102.0 −92.3 −90.3 −85.8
15−Hydroxy−cis−cleroden−3−en−18−al −77.5 −87.9 −67.4 −76.7 −74.1 −97.2 −70.9 −87.6 −96.8 −86.4 −85.4 −82.4
15−Hydroxy−cis−cleroden−3−en−18−oic acid −71.4 −86.4 −66.4 −80.5 −74.9 −99.5 −73.3 −85.9 −99.3 −88.1 −88.5 −80.5
18−Hydroxy−cis−cleroden−3−en−15−oic acid −72.5 −84.3 −59.0 −76.2 −78.2 −95.4 −73.2 −90.2 −89.2 −83.9 −90.5 −88.0
ent−12−Oxo−3,13(16)−clerodien−15−oic acid −84.3 −95.2 −72.0 −88.2 −85.3 −88.0 −76.6 −95.9 −108.8 −88.3 −91.6 −86.9

Table 21.

MolDock docking energies (kJ/mol) of clerodane and labdane diterpenoids with Leishmania infantum protein targets.

Clerodane diterpenoids LinfCYP51 LinfGLO2 LinfPnC1 LinfTDR1 LinfTR
15−Acetoxy−cis−cleroden−3−en−18−al −96.8 −78.2 no dock −90.4 −91.8
15−Acetoxy−cis−cleroden−3−en−18−oic acid −93.0 −82.7 no dock −87.6 −91.7
18−Acetoxy−cis−cleroden−3−en−15−oic acid −98.2 −78.1 no dock −87.6 −97.6
15−O−Acetylcistadiol −101.7 −89.8 no dock −88.4 −94.3
18−O−Acetylcistadiol −95.8 −78.3 no dock −88.4 −93.8
Cistadiol −86.8 −68.7 no dock −78.3 −82.2
trans−Dehydrocrotonin −89.6 −74.5 no dock −77.6 −88.9
15,18−Di−O−acetylcistadiol −95.6 −85.8 no dock −89.2 −103.5
8−epi−Kolavenol −83.6 −72.3 −18.2 −80.5 −78.8
epi−Populifolic acid −83.8 −71.4 no dock −75.9 −77.0
ent−16R−Hydroxy−3,13−clerodadien−15,16−olide −87.9 −75.1 −22.6 −83.9 −87.5
ent−16S−Hydroxy−3,13−clerodadien−15,16−olide −88.4 −67.5 no dock −79.6 −78.8
15−Hydroxy−cis−cleroden−3−en−18−al −83.0 −68.9 no dock −81.0 −81.2
15−Hydroxy−cis−cleroden−3−en−18−oic acid −89.4 −66.8 no dock −78.4 −78.1
18−Hydroxy−cis−cleroden−3−en−15−oic acid −87.5 −69.6 −31.7 −82.8 −81.3
Labdane diterpenoids
ent−3β−Acetoxy−13−epi−manoyl−oxide −94.3 −72.4 no dock −67.4 −88.0
Andrographolide −97.9 −80.4 no dock −81.1 −91.9
14(R)−Aulacocarpin C
14(S)−Aulacocarpin C −93.1 −81.7 no dock −81.7 −92.8
Aulacocarpin D −92.7 −74.5 no dock −85.8 −93.5
trans−Communic acid −90.8 −75.0 no dock −82.6 −91.6
trans−Communic acid methyl ester −84.3 −77.2 no dock −76.0 −82.7
Copalic acid −89.8 −74.8 no dock −72.8 −86.8
Dehydropinifolic acid 15−methyl ester −93.9 −84.1 no dock −78.1 −83.6
12(S)−Hydroxy−15(R)−methoxy−labdan−8(17),13(14)−dien−15,16−olide −93.3 −84.8 no dock −89.8 −93.5
12(S)−Hydroxy−15(S)−methoxy−labdan−8(17,)13(14)−dien−15,16−olide −99.3 −88.5 no dock −88.8 −95.1
Labda−8(17),12−diene−15,16−dial −94.2 −84.8 no dock −89.2 −100.2
13(E)−Labda−7,13−dien−8α,15−diol −87.7 −76.3 no dock −81.7 −86.6
Labda−12,14−dien−7α,8α−diol −89.1 −77.8 no dock −79.8 −88.4
Labdan−8α,15−diol −85.9 −77.1 no dock −76.1 −87.2
Labd−8(17)−en−3β,15−diol −85.8 −77.4 no dock −82.0 −90.2
13(E)−Labd−13−en−8α,15−diol −84.2 −76.9 no dock −79.7 −87.2
Lambertianic acid −87.0 −75.4 no dock −78.4 −83.4
15(R)−Methoxy−labdan−8(17),11(E),13(14)−trien−15,16−olide −90.0 −73.6 no dock −72.5 −89.3
15(S)−Methoxy−labdan−8(17),11(E),13(14)−trien−15,16−olide −94.2 −87.8 no dock −88.3 −92.3
ent−12−Oxo−8,13(16)−labdadien−15−oic acid −96.0 −86.3 no dock −85.3 −96.8
ent−3β−Acetoxy−13−epi−manoyl−oxide −94.1 −77.8 no dock −78.5 −88.9

Table 22.

MolDock docking energies (kJ/mol) of labdane diterpenoids with Leishmania major protein targets.

Labdane diterpenoids LmajCatB LmajDHODH LmajdUTPase LmajNDKb LmajNH LdonNMT LmajOPB LmajPDE1 LmajPTR1 LmajMetRS LmajTyrRS LmajUGPase
ent−3β−Acetoxy−13−epi−manoyl−oxide −74.9 −96.4 −76.3 −82.2 −82.7 −78.7 −90.7 −82.0 −89.0 −85.9 −80.1 −91.2
Andrographolide −86.7 −114.6 −90.5 −92.1 −96.5 −101.8 −98.5 −94.4 −101.6 −114.1 −97.7 −95.9
14(R)−Aulacocarpin C −74.4 −116.1 −85.2 −91.7 −97.7 −99.7 −95.7 −85.2 −98.1 −107.0 −91.8 −103.3
14(S)−Aulacocarpin C −83.6 −114.7 −88.3 −90.3 −91.7 −97.4 −90.6 −83.1 −99.9 −107.9 −94.0 −100.3
Aulacocarpin D −80.8 −108.3 −89.0 −87.3 −87.3 −86.0 −91.8 −98.6 −92.9 −108.3 −93.8 −98.9
trans−Communic acid −69.5 −109.4 −86.3 −86.7 −87.5 −89.7 −83.7 −84.0 −88.4 −97.1 −88.2 −88.3
trans−Communic acid methyl ester −81.3 −103.5 −84.7 −86.3 −85.6 −84.1 −85.7 −83.0 −92.3 −99.6 −89.8 −88.7
Copalic acid −69.5 −102.7 −88.4 −89.5 −83.2 −83.9 −86.0 −96.2 −90.1 −105.1 −93.9 −104.6
Dehydropinifolic acid 15−methyl ester −87.3 −116.3 −102.2 −90.1 −87.9 −91.3 −101.0 −89.8 −89.7 −104.1 −99.8 −103.3
12(S)−Hydroxy−15(R)−methoxy−labdan−8(17),13(14)−dien−15,16−olide −85.8 −114.5 −87.2 −97.5 −88.7 −93.8 −96.4 −88.0 −96.1 −108.9 −103.0 −110.1
12(S)−Hydroxy−15(S)−methoxy−labdan−8(17,)13(14)−dien−15,16−olide −90.2 −112.6 −89.4 −98.7 −98.8 −84.0 −107.3 −89.1 −91.2 −110.4 −103.6 −111.4
Labda−8(17),12−diene−15,16−dial −77.5 −107.2 −87.2 −82.9 −93.0 −95.8 −82.8 −89.0 −97.5 −103.2 −95.5 −102.8
13(E)−Labda−7,13−dien−8α,15−diol −76.9 −100.6 −85.8 −87.0 −86.3 −89.7 −100.7 −85.8 −87.9 −107.5 −91.0 −90.8
Labda−12,14−dien−7α,8α−diol −71.9 −99.4 −76.2 −75.8 −89.8 −89.8 −90.5 −85.1 −81.5 −101.3 −87.8 −94.7
Labdan−8α,15−diol −78.9 −101.4 −84.6 −81.5 −80.3 −92.1 −93.7 −82.7 −86.0 −108.6 −83.9 −92.3
Labd−8(17)−en−3β,15−diol −75.5 −106.7 −82.2 −82.9 −80.6 −71.0 −88.0 −81.0 −93.9 −104.9 −85.9 −90.8
13(E)−Labd−13−en−8α,15−diol −69.4 −105.0 −82.1 −83.3 −85.1 −89.1 −88.5 −85.8 −88.9 −107.8 −89.8 −92.2
Lambertianic acid −69.8 −110.5 −86.3 −82.0 −84.0 −79.8 −81.8 −83.9 −93.5 −100.7 −87.7 −88.9
15(R)−Methoxy−labdan−8(17),11(E),13(14)−trien−15,16−olide −88.3 −111.4 −84.5 −97.3 −91.3 −91.7 −104.9 −94.4 −91.8 −101.5 −95.0 −98.9
15(S)−Methoxy−labdan−8(17),11(E),13(14)−trien−15,16−olide −83.1 −104.7 −84.8 −89.0 −95.4 −88.5 −109.2 −98.3 −99.0 −106.2 −98.3 −97.3
ent−12−Oxo−8,13(16)−labdadien−15−oic acid −78.0 −107.7 −93.4 −92.3 −88.2 −92.1 −90.6 −90.0 −94.1 −100.0 −97.0 −100.4

Table 23.

MolDock docking energies (kJ/mol) of labdane diterpenoids with Leishmania donovani and L. mexicana protein targets.

LdonCatB LdonCyp LdonDHODH LdonNMT LmexGAPDH LmexGPDH LmexPGI LmexPMM LmexPYK LmexPYK LmexPYK LmexTIM
Labdane diterpenoids Site 1 Site 2 Site 3
ent−3β−Acetoxy−13−epi−manoyl−oxide −83.3 −77.6 −60.4 −78.7 −67.9 −94.4 −69.1 −86.9 −90.2 −84.0 −77.7 −78.3
Andrographolide −88.9 −93.2 −94.9 −101.8 −86.1 −114.0 −79.6 −100.7 −110.3 −100.3 −107.0 −95.5
14(R)−Aulacocarpin C −87.0 −98.3 −92.5 −99.7 −78.4 −103.3 −76.8 −95.7 −99.6 −91.7 −114.0 −84.2
14(S)−Aulacocarpin C −85.6 −95.6 −90.3 −97.4 −75.0 −100.7 −77.8 −90.6 −97.1 −95.8 −109.0 −86.7
Aulacocarpin D −96.6 −88.1 −75.2 −86.0 −87.6 −99.9 −73.6 −87.5 −95.9 −89.8 −88.3 −87.8
trans−Communic acid −77.9 −87.9 −79.6 −89.7 −70.6 −100.8 −75.8 −88.3 −92.3 −82.9 −98.3 −83.1
trans−Communic acid methyl ester −85.8 −90.8 −81.9 −84.1 −73.5 −104.8 −72.2 −88.1 −95.4 −82.4 −90.0 −85.2
Copalic acid −89.0 −92.6 −85.1 −83.9 −73.8 −90.3 −76.9 −92.0 −94.8 −88.0 −92.4 −97.5
Dehydropinifolic acid 15−methyl ester −85.8 −95.2 −88.4 −91.3 −84.5 −123.2 −85.7 −100.6 −111.6 −93.2 −104.2 −99.0
12(S)−Hydroxy−15(R)−methoxy−labdan−8(17),13(14)−dien−15,16−olide −92.1 −93.8 −90.8 −93.8 −75.2 −117.2 −79.4 −101.2 −117.2 −96.5 −104.7 −93.8
12(S)−Hydroxy−15(S)−methoxy−labdan−8(17,)13(14)−dien−15,16−olide −95.4 −92.4 −82.7 −84.0 −88.1 −116.2 −91.2 −103.1 −117.1 −92.4 −109.7 −93.1
Labda−8(17),12−diene−15,16−dial −90.6 −93.4 −85.7 −95.8 −75.4 −97.3 −72.3 −93.0 −97.0 −87.4 −99.5 −85.4
13(E)−Labda−7,13−dien−8α,15−diol −88.4 −82.3 −80.9 −89.7 −76.3 −109.7 −73.5 −87.1 −100.2 −82.1 −93.7 −88.8
Labda−12,14−dien−7α,8α−diol −86.9 −83.8 −80.5 −89.8 −77.9 −86.3 −78.7 −89.2 −100.4 −85.5 −91.2 −91.6
Labdan−8α,15−diol −86.8 −82.0 −82.5 −92.1 −73.2 −94.9 −76.4 −95.9 −93.7 −86.0 −90.8 −88.8
Labd−8(17)−en−3β,15−diol −78.5 −85.4 −86.9 −71.0 −71.0 −87.8 −72.0 −93.5 −97.3 −81.6 −93.8 −86.2
13(E)−Labd−13−en−8α,15−diol −81.4 −82.1 −77.1 −89.1 −71.9 −104.1 −83.4 −88.7 −99.2 −84.5 −92.7 −92.0
Lambertianic acid −82.2 −82.9 −81.6 −79.8 −72.9 −109.5 −75.1 −95.1 −96.2 −85.6 −98.4 −80.3
15(R)−Methoxy−labdan−8(17),11(E),13(14)−trien−15,16−olide −106.6 −91.2 −92.5 −91.7 −79.3 −121.2 −76.7 −97.1 −105.9 −94.3 −95.6 −91.2
15(S)−Methoxy−labdan−8(17),11(E),13(14)−trien−15,16−olide −92.3 −92.2 −93.3 −88.5 −87.3 −115.8 −78.5 −94.5 −101.8 −97.0 −89.2 −91.5
ent−12−Oxo−8,13(16)−labdadien−15−oic acid −76.2 −84.3 −84.0 −92.1 −89.2 −99.0 −72.6 −102.2 −105.2 −91.1 −103.5 −91.8

Table 24.

MolDock docking energies (kJ/mol) of kaurane and pimarane diterpenoids with Leishmania major protein targets.

Kaurane diterpenoids LmajCatB LmajDHODH LmajdUTPase LmajNDKb LmajNH LdonNMT LmajOPB LmajPDE1 LmajPTR1 LmajMetRS LmajTyrRS LmajUGPase
15−Angeloyl−4α,15β−kaur−16−en−18−oic acid −88.6 −116.3 −75.8 −97.5 −97.3 −78.2 −85.5 −98.6 −97.4 −116.0 −91.4 −106.3
ent−11α−Hydroxy−16−kauren−15−one −64.3 −98.8 −69.7 −76.7 −83.3 −64.7 −87.8 −83.0 −74.0 −85.7 −75.1 −81.0
Kaurenoic acid −70.4 −95.2 −77.8 −76.3 −81.4 −58.4 −86.5 −80.6 −89.7 −97.5 −75.5 −83.2
Perymenic acid −97.6 −115.4 −75.2 −95.4 −103.0 −81.2 −88.9 −99.6 −98.5 −118.4 −91.2 −103.7
ent−15β−Senecioyloxy−16,17−epoxy−kauran−18−oic acid −97.3 −120.5 −76.6 −93.6 −102.4 −87.8 −100.7 −100.8 −86.6 −111.7 −93.3 −104.6
Pimarane diterpenoids
Acanthoic acid −66.0 −97.0 −73.1 −84.0 −86.6 −72.3 −87.9 −81.1 −78.7 −87.9 −72.7 −82.5
7β−Hydroxy− ent−pimara−8(14),15−dien−19−oic acid −74.0 −93.7 −79.3 −84.3 −87.3 −71.7 −92.6 −87.7 −76.7 −87.6 −78.9 −81.2
ent−15−Pimarene−8β,19−diol −72.1 −97.1 −69.0 −78.0 −86.3 −66.1 −87.4 −79.1 −77.5 −84.4 −74.3 −85.5
ent−8(14),15−Pimaradien−3β−acetoxy −72.5 −85.3 −83.9 −90.3 −89.4 −71.7 −88.6 −82.1 −83.7 −99.7 −88.9 −92.1
ent−8(14),15−Pimaradien−3β,19−diol −66.9 −90.8 −66.2 −78.3 −91.3 −71.5 −83.3 −80.0 −75.0 −86.6 −80.9 −81.6
ent−Pimara−8(14),15−dien−19−oic acid −65.8 −91.7 −69.9 −81.3 −87.1 −70.6 −89.3 −80.2 −81.5 −85.7 −75.7 −77.4
ent−8(14),15−Pimaradien−3β−ol −64.7 −89.0 −66.5 −77.7 −86.2 −66.6 −82.3 −76.4 −73.8 −79.4 −81.8 −76.4

Table 25.

MolDock docking energies (kJ/mol) of kaurane and pimarane diterpenoids with Leishmania donovani and L. mexicana protein targets.

LdonCatB LdonCyp LdonDHODH LdonNMT LmexGAPDH LmexGPDH LmexPGI LmexPMM LmexPYK LmexPYK LmexPYK LmexTIM
Kaurane diterpenoids Site 1 Site 2 Site 3
15−Angeloyl−4α,15β−kaur−16−en−18−oic acid −97.4 −78.7 −27.8 −78.2 −91.8 −121.4 −75.9 −96.9 −104.0 −89.2 −92.8 −77.3
ent−11α−Hydroxy−16−kauren−15−one −66.2 −82.3 no dock −64.7 −61.9 −84.4 −63.0 −81.1 −79.6 −73.8 −70.1 −80.5
Kaurenoic acid −69.6 −73.9 −21.6 −58.4 −64.6 −88.8 −64.5 −80.3 −93.9 −77.4 −81.3 −78.1
Perymenic acid −100.6 −92.3 −45.0 −81.2 −85.7 −128.3 −76.8 −100.4 −99.7 −95.7 −91.9 −80.3
ent−15β−Senecioyloxy−16,17−epoxy−kauran−18−oic acid −99.1 −88.1 −38.0 −87.8 −90.1 −128.9 −77.2 −96.5 −99.3 −92.9 −98.0 −81.1
Pimarane diterpenoids
Acanthoic_acid −69.3 −79.7 −62.5 −72.3 −59.8 −90.8 −69.0 −81.5 −92.4 −79.2 −78.3 −79.4
7β−Hydroxy− ent−pimara−8(14),15−dien−19−oic acid −71.2 −78.8 −13.1 −71.7 −71.7 −101.0 −68.7 −88.0 −96.6 −83.5 −76.9 −71.3
ent−15−Pimarene−8β,19−diol −75.9 −77.9 −63.4 −66.1 −72.6 −85.2 −68.6 −79.0 −79.7 −80.1 −71.6 −79.0
ent−8(14),15−Pimaradien−3β−acetoxy −79.6 −80.5 −36.8 −71.7 −71.4 −90.2 −63.2 −83.7 −88.7 −84.4 −73.5 −76.4
ent−8(14),15−Pimaradien−3β,19−diol −67.6 −73.6 −31.7 −71.5 −65.3 −90.2 −69.2 −83.6 −95.0 −79.6 −73.6 −82.7
ent−Pimara−8(14),15−dien−19−oic acid −66.6 −77.7 −53.0 −70.6 −64.0 −94.0 −66.0 −85.4 −88.0 −79.7 −70.8 −77.1
ent−8(14),15−Pimaradien−3b−ol −69.3 −71.6 −26.5 −66.6 −63.1 −88.7 −64.5 −80.7 −94.3 −77.1 −72.6 −79.9

Table 26.

MolDock docking energies (kJ/mol) of miscellaneous diterpenoids with Leishmania major protein targets.

LmajCatB LmajDHODH LmajdUTPase LmajNDKb LmajNH LdonNMT LmajOPB LmajPDE1 LmajPTR1 LmajMetRS LmajTyrRS LmajUGPase
Cassane diterpenoids
6β− O−Cinnamoyl−12−hydroxy−(13)15−en−16,12−olide−18−cassaneoic acid −78.8 −123.0 −110.4 −111.0 −119.5 −108.1 −107.4 −108.1 −120.0 −134.4 −115.8 −116.4
6α,7β−Diacetoxyvouacapane −77.8 −118.7 −80.7 −91.0 −92.6 −74.7 −85.6 −99.8 −86.5 −90.4 −88.3 −88.0
6β− O−2'3'−Dihydrocinnamoyl−12−hydroxy−(13)15−en−16,12−olide−18−cassaneoic acid −107.0 −125.0 −97.1 −107.3 −121.6 −101.3 −109.0 −109.0 −117.3 −135.2 −115.1 −114.3
Icetaxane diterpenoids
Cyclocoulterone −70.3 −92.1 −83.7 −88.6 −78.7 −81.3 −86.7 −96.1 −91.6 −100.2 −91.8 −92.0
5− epi−Icetexone −80.9 −91.0 −74.2 −81.6 −88.3 −27.2 −95.7 −88.5 −88.5 −96.9 −98.8 −85.9
Komaroviquinone −75.7 −83.0 −87.6 −84.9 −75.6 −76.5 −90.9 −98.1 −97.8 −105.2 −87.8 −87.0
Mulinane diterpenoids
Azorellanol −64.7 −107.8 −74.6 −79.1 −98.7 −80.0 −94.5 −99.7 −85.3 −98.6 −88.5 −91.9
7−Deacetylazorellanol −72.5 −98.4 −72.3 −80.2 −79.0 −72.4 −88.9 −91.8 −76.2 −94.0 −90.1 −78.7
Mulin−11,13−dien−20−oic acid −83.1 −103.0 −78.0 −84.3 −80.7 −71.5 −87.5 −83.5 −87.0 −100.5 −88.1 −88.3
Mulinic acid −69.4 −98.9 −71.9 −82.4 −80.7 −82.3 −83.6 −85.7 −74.6 −93.7 −78.3 −97.0
Mulinolic acid −75.6 −94.5 −87.3 −82.5 −84.5 −85.1 −84.9 −90.2 −81.1 −102.3 −92.2 −88.7
Miscellaneous diterpenoids
Hypoestoxide −74.1 −117.7 −88.3 −80.1 −87.8 −85.2 −94.0 −97.0 −78.1 −81.1 −99.5 −99.2
Komarovispirone −74.1 −92.9 −75.8 −88.9 −90.5 −75.5 −85.4 −86.4 −75.3 −79.9 −94.0 −91.4
Sacculatal −69.5 −112.7 −85.2 −87.1 −86.1 −82.4 −88.0 −85.9 −104.4 −103.5 −95.2 −100.4
Serratol −69.2 −90.5 −75.7 −77.2 −78.8 −77.4 −82.1 −89.7 −79.1 −93.2 −90.3 −88.6
Totarol −62.7 −96.6 −64.9 −85.1 −76.4 −69.8 −89.2 −80.7 −74.6 −97.7 −77.8 −93.1

Table 27.

MolDock docking energies (kJ/mol) of miscellaneous diterpenoids with Leishmania donovani and L. mexicana protein targets.

Cassane diterpenoids LdonCatB LdonCyp LdonDHODH LdonNMT LmexGAPDH LmexGPDH LmexPGI LmexPMM LmexPYK LmexPYK LmexPYK LmexTIM
Site 1 Site 2 Site 3
6β− O−Cinnamoyl−12−hydroxy−(13)15−en−16,12−olide−18−cassaneoic acid −107.7 −94.7 −104.3 −108.1 −103.7 −126.5 −103.9 −136.7 −133.4 −117.8 −110.2 −91.8
6α,7β−Diacetoxyvouacapane −83.2 −82.4 −78.8 −74.7 −77.3 −99.7 −86.4 −103.6 −102.4 −86.7 −85.6 −81.5
6β− O−2'3'−Dihydrocinnamoyl−12−hydroxy−(13)15−en−16,12−olide−18−cassaneoic acid −108.6 −100.4 −52.6 −101.3 −97.7 −125.8 −92.8 −140.1 −130.8 −118.5 −109.0 −102.6
Icetaxane diterpenoids
Cyclocoulterone −89.0 −82.5 −71.2 −81.3 −78.1 −117.3 −70.7 −87.7 −98.4 −87.3 −83.5 −79.3
5− epi−Icetexone −90.5 −80.3 −85.1 −27.2 −75.6 −99.1 −68.4 −89.5 −88.3 −78.6 −80.3 −80.3
Komaroviquinone −75.5 −81.9 −77.6 −76.5 −72.6 −105.7 −73.9 −90.4 −92.8 −82.4 −81.2 −69.5
Mulinane diterpenoids
Azorellanol −80.6 −82.6 −87.2 −80.0 −71.4 −100.2 −77.7 −95.1 −100.2 −89.9 −94.0 −84.8
7−Deacetylazorellanol −73.7 −90.1 −81.0 −72.4 −75.4 −103.4 −72.2 −91.8 −88.7 −82.8 −89.1 −72.3
Mulin−11,13−dien−20−oic acid −84.7 −95.2 −85.0 −71.5 −71.3 −97.5 −72.5 −98.2 −99.2 −80.6 −92.2 −86.8
Mulinic acid −63.1 −93.4 −72.3 −82.3 −70.2 −98.9 −63.7 −85.5 −94.4 −77.2 −87.1 −83.0
Mulinolic acid −76.7 −95.1 −77.5 −85.1 −78.7 −105.7 −68.8 −94.1 −94.7 −80.4 −87.4 −82.6
Miscellaneous diterpenoids
Hypoestoxide −80.6 −92.1 −67.1 −85.2 −78.1 −94.9 −85.7 −114.8 −102.4 −79.6 −87.9 −72.7
Komarovispirone −77.7 −80.5 −67.4 −75.5 −70.3 −101.0 −77.5 −90.5 −92.3 −86.1 −80.8 −79.0
Sacculatal −86.4 −84.1 −84.0 −82.4 −77.2 −103.5 −78.1 −92.5 −104.3 −87.9 −98.7 −79.1
Serratol −67.7 −78.7 −59.5 −77.4 −67.0 −89.9 −71.4 −94.3 −92.3 −82.9 −90.1 −70.1
Totarol −63.9 −70.3 −59.4 −69.8 −60.5 −88.0 −68.6 −84.0 −81.5 −72.2 −90.4 −65.7

Table 28.

MolDock docking energies (kJ/mol) of miscellaneous diterpenoids with Leishmania infantum protein targets.

Kaurane diterpenoids LinfCYP51 LinfGLO2 LinfPnC1 LinfTDR1 LinfTR
15−Angeloyl−4α,15β−kaur−16−en−18−oic acid −97.4 −64.6 no dock −82.4 −95.6
ent−11α−Hydroxy−16−kauren−15−one −82.8 −66.5 no dock −66.5 −76.6
Kaurenoic acid −79.9 −65.8 no dock −77.4 −82.6
Perymenic acid −98.3 −77.0 no dock −83.2 −97.0
ent−15β−Senecioyloxy−16,17−epoxy−kauran−18−oic acid −99.6 −77.9 no dock −85.4 −102.2
Pimarane diterpenoids
Acanthoic_acid −83.6 −64.6 no dock −72.4 −82.6
7β−Hydroxy− ent−pimara−8(14),15−dien−19−oic acid −90.4 −67.2 no dock −75.0 −79.2
ent−15−Pimarene−8β,19−diol −84.0 −63.8 no dock −69.9 −77.4
ent−8(14),15−Pimaradien−3β−acetoxy −90.6 −73.3 no dock −70.5 −92.1
ent−8(14),15−Pimaradien−3β,19−diol −82.2 −69.2 no dock −67.0 −78.9
ent−Pimara−8(14),15−dien−19−oic acid −84.2 −69.0 no dock −70.8 −80.3
ent−8(14),15−Pimaradien−3b−ol −78.3 −67.2 no dock −66.8 −79.1
Cassane diterpenoids
6β− O−Cinnamoyl−12−hydroxy−(13)15−en−16,12−olide−18−cassaneoic acid −125.4 −91.1 no dock −105.3 −119.8
6α,7β−Diacetoxyvouacapane −93.8 −77.7 no dock −83.7 −93.9
6β− O−2'3'−Dihydrocinnamoyl−12−hydroxy−(13)15−en−16,12−olide−18−cassaneoic acid −124.7 −88.7 no dock −99.0 −114.1
Icetaxane diterpenoids
Cyclocoulterone −90.3 −68.7 no dock −76.9 −90.0
5− epi−Icetexone −99.1 −75.8 no dock −81.0 −81.6
Komaroviquinone −96.8 −72.4 no dock −75.6 −88.7
Mulinane diterpenoids
Azorellanol −99.1 −72.4 no dock −78.2 −91.2
7−Deacetylazorellanol −88.5 −71.4 no dock −76.5 −85.9
Mulin−11,13−dien−20−oic acid −87.5 −72.9 no dock −79.1 −78.6
Mulinic acid −88.3 −70.6 no dock −73.8 −84.3
Mulinolic acid −89.0 −78.1 no dock −78.6 −85.8
Miscellaneous diterpenoids
Hypoestoxide −97.2 −82.2 no dock −73.6 −91.2
Komarovispirone −83.1 −72.0 no dock −74.4 −79.9
Sacculatal −93.5 −77.7 no dock −84.4 −88.1
Serratol −81.7 −77.1 no dock −78.5 −78.5
Totarol −76.4 −67.7 no dock −67.9 −73.4

Over 100 antiparasitic diterpenoids were docked into the protein targets in this study. These include abietane-, clerodane-, kaurane-, labdane-, pimarane-, cassane- and mulinane-like diterpenoids. In general, diterpenoids preferentially dock to LmajMetRS, LmajDHODH and LmexGPDH. 12-O-deacetyl-6-O-acetyl-18-acetyloxycoleon Q, the antiplasmodial diterpene isolated from the tropical Asia plant Anisochilus harmandii (Lamiaceae) [64] has a stronger docking energy (−111.8 kJ/mol) for LmajPDE1 than the co-crystallized competitive phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (docking energy = −78.1 kJ/mol). 14(R)-Aulacocarpin C and 15(S)-methoxy-labdan-8(17),11(E),13(14)-trien-15,16-olide are also selective for LmexPYK and LmajOPB, respectively. The cassane-like antileishmanial diterpenes 6β-O-2'3'-dihydrocinnamoyl-12-hydroxy-(13)15-en-16,12-olide-18-cassaneoic acid and 6β-O-cinnamoyl-12-hydroxy-(13)15-en-16,12-olide-18-cassaneoic acid have stronger docking energies than any of the other docked diterpenoids for most of the protein targets. These higher docking energies correlate with the fact they have higher molecular weights that the other diterpenoids. Despite the molecular weight correlation, 6β-O-2'3'-dihydrocinnamoyl-12-hydroxy-(13)15-en-16,12-olide-18-cassaneoic acid (MW: 496.592) is selective for LmajNMT. The compound’s docking score for LmajNMT is comparable to that of the protein’s co-crystallized pyrazole sulfonamide inhibitor (PDB ID: 4a30; MW: 495.425; docking energy = −121.1 kJ/mol). The lowest energy pose of 6β-O-2'3'-dihydrocinnamoyl-12-hydroxy-(13)15-en-16,12-olide-18-cassaneoic acid is predicted to have extensive interactions with residues Ala 204, Asp 83, Asp 84, Glu 82, Gly 205, Phe 88, Phe 90, Tyr 217, Tyr 345, Val 81 and Val 206. The cassane diterpenoid is predicted to have hydrogen bonding interactions through its carboxylic acid moiety and the ester bond of its cinnamoyl substituent to the backbone carbonyl group of Gly 205, and the side chain phenolic residue of Tyr 217, respectively (Figure 19). The icetaxane diterpenoids 5-epi-icetaxone showed preferential docking to L. infantum sterol 14α-demethylase (LinfCYP51) with a lower docking energy than the co-crystallized ligand, fluconazole (−99.1 and −91.3 kJ/mol, respectively).

Figure 19.

Figure 19

The lowest-energy pose of 6β-O-2'3'-dihydrocinnamoyl-12-hydroxy-(13)15-en-16,12-olide-18-cassaneoic acid and LmajNMT. The hydrogen bonding interactions between the ligand and the protein (Gly 205 and Tyr 217) is shown as blue dash lines. Val 81, Asp 83 and Phe 88 were also predicted to have very strong steric interactions with the ligand.

2.4. Triterpenoid Docking

Triterpenoids, including limonoids, withanolides, quassinoids, and steroids are shown in Figure 20, Figure 21, Figure 22, Figure 23, and Figure 24. The docking energies for the triterpenoid-based ligands are compiled in Table 29, Table 30, Table 31, Table 32, Table 33, Table 34, Table 35, Table 36, Table 37, Table 38, Table 39 and Table 40. The triterpenoids ligands with the strongest docking energies were the limonoids carapolide A and khayanolide A, and the withanolides 24,25-epoxywithanolide D and withangulatin A. Carapolide A showed significant docking to LmajDHODH (docking energy = −140.0 kJ/mol). Khayanolide A preferentially docked with LmajMetRS and LmexGPDH (docking energies = −138.5 and −137.8 kJ/mol, respectively). The limonoid with the strongest docking was, however, grandifotane with LmajDHODH with a docking energy of −154.4 kJ/mol. 6-O-Acetylswietenolide docked strongly to LmexGPDH (docking energy = −142.7 kJ/mol). The withanolide with the strongest docking was physagulin F with LmajMetRS, which had a docking energy of −133.2 kJ/mol. As a class, the steroids showed the most target selectivity with six of the seven steroids significantly docking more strongly to LmajMetRS. In general, limonoids showed some selectivity for LmexGPDH and LmajDHODH, while withanolides docked more selectively with LmajUGPase.

Figure 20.

Figure 20

Triterpenoids examined in this work.

Figure 21.

Figure 21

Steroids examined in this work.

Figure 22.

Figure 22

Quassinoids examined in this work.

Figure 23.

Figure 23

Limonoids examined in this work.

Figure 24.

Figure 24

Withanolides examined in this work.

Table 29.

MolDock docking energies (kJ/mol) of limonoids with Leishmania major protein targets.

Limonoids LmajCatB LmajDHODH LmajdUTPase LmajNDKb LmajNH LmajNMT LmajOPB LmajPDE1 LmajPTR1 LmajMetRS LmajTyrRS LmajUGPase
11α−Acetoxy−2α−hydroxy−6−deoxyswietenine_acetate −77.4 −100.5 −112.6 −84.0 −112.9 −113.7 −79.4 −90.7 −99.9 −85.3 −106.7 −103.7
3− O−Acetylanthothecanolide −102.6 −129.9 −114.6 −91.2 −111.4 −121.1 −103.5 −96.4 −102.1 −103.7 −106.8 −107.6
3− O−Acetylkhayalactone −70.4 −103.4 −96.4 −98.9 −115.9 −123.4 −96.9 −109.5 −109.5 −114.5 −106.6 −123.7
1− O−Acetylkhayanolide A −87.7 −103.2 −85.4 −86.3 −96.5 −114.1 −92.2 −93.2 −88.7 −81.1 −105.0 −106.8
1− O−Acetylkhayanolide B −80.0 −86.6 −87.0 −87.1 −80.7 −105.0 −105.5 −74.5 −72.8 −91.8 −95.5 −94.5
3− O−Acetylswietenine −79.2 −90.6 −95.8 −69.9 −102.9 −104.3 −82.6 −84.6 −82.4 −92.3 −95.5 −121.8
3− O−Acetylswietenolide −91.9 −115.0 −92.7 −82.9 −98.6 −115.0 −74.1 −81.5 −86.8 −80.1 −93.6 −100.2
6− O−Acetylswietenolide −87.9 −107.6 −80.0 −86.6 −97.4 −102.0 −81.6 −98.4 −85.7 −96.3 −107.5 −108.7
Anthothecanolide −103.7 −133.3 −85.5 −101.6 −93.7 −112.3 −98.4 −94.8 −104.4 −97.4 −96.8 −114.1
Carapa spirolactone −92.7 −91.4 −87.0 −89.7 −99.1 −90.6 −93.9 −104.0 −71.8 −92.1 −95.7 −86.5
Carapin −79.9 −109.2 −89.9 −95.0 −92.8 −95.0 −84.8 −92.6 −86.4 −88.3 −98.9 −110.5
Carapolide A −107.8 −140.0 −101.1 −114.9 −111.7 −119.2 −98.5 −113.5 −92.4 −125.5 −107.1 −123.5
Carapolide B −104.9 −128.3 −88.1 −117.3 −111.7 −117.4 −124.7 −106.0 −82.3 −98.6 −107.9 −107.4
Carapolide C −94.5 −105.1 −82.7 −106.2 −99.2 −110.1 −118.5 −109.8 −76.3 −95.5 −104.4 −107.8
7−Deacetoxy−7−oxogedunin −51.6 −95.8 −82.2 −90.1 −86.0 −93.6 −100.1 −100.2 −91.2 −79.0 −91.3 −86.5
1− O−Deacetyl−6−deoxykhayanolide E −104.2 −81.4 −75.8 −79.7 −96.9 −94.3 −88.0 −72.9 −85.6 −96.6 −94.1 −102.8
7−Deacetylgedunin −84.7 −86.9 −78.5 −84.8 −85.2 −87.5 −96.9 −99.7 −89.9 −83.2 −91.5 −90.3
1− O−Deacetyl−2α−hydroxykhayanolide E −96.4 −105.3 −77.1 −74.1 −91.7 −101.1 −93.7 −81.9 −85.9 −97.6 −109.8 −108.7
Deacetylkhayanolide E −104.7 −85.6 −76.5 −80.6 −88.0 −97.2 −87.0 −72.6 −83.1 −98.8 −110.8 −102.9
1−Deacetylkhivorin −60.5 −92.7 −96.1 −78.3 −96.3 −107.5 −58.1 −84.0 −81.8 −97.0 −98.5 −97.7
3−Deacetylkhivorin −73.2 −95.7 −90.4 −71.8 −96.0 −110.6 −99.1 −99.4 −81.4 −82.4 −98.7 −108.2
7−Deacetylkhivorin −77.8 −94.0 −99.2 −85.0 −88.2 −96.3 −93.5 −79.1 −87.1 −83.7 −89.9 −95.6
6−Deoxyswietenolide −84.5 −100.2 −79.3 −84.0 −97.3 −108.8 −90.1 −84.6 −93.8 −90.9 −98.2 −100.5
3,7−Dideacetylkhivorin −81.5 −93.0 −83.4 −64.8 −105.3 −96.3 −93.9 −109.3 −108.1 −76.6 −104.4 −99.6
Evodulone −83.0 −113.4 −87.5 −83.7 −103.1 −103.3 −96.8 −114.6 −87.5 −80.9 −96.0 −101.9
Fissinolide −89.4 −112.8 −93.5 −80.4 −99.0 −121.6 −99.6 −85.5 −94.3 −110.6 −88.8 −97.1
Gedunin −74.5 −106.8 −81.4 −70.2 −89.5 −102.1 −93.5 −102.8 −96.4 −87.1 −93.1 −97.7
Grandifolide A −75.5 −113.8 −93.3 −101.7 −115.1 −128.4 −96.9 −94.9 −95.7 −98.4 −108.3 −102.9
Grandifolin −91.5 −110.0 −99.7 −92.9 −96.2 −100.3 −94.8 −94.1 −114.7 −95.8 −108.9 −100.0
Grandifoliolenone −84.6 −88.5 −89.0 −88.7 −103.9 −106.0 −102.8 −97.8 −89.6 −86.1 −94.2 −119.8
Grandifotane −102.5 −154.5 −94.6 −80.1 −99.5 −106.1 −90.4 −107.9 −96.4 −96.5 −104.0 −112.7
6−Hydroxykhayalactone −112.4 −105.3 −89.5 −111.0 −106.7 −116.6 −92.8 −88.3 −98.9 −101.2 −111.5 −126.4
3β−Isobutyryloxy−1−oxomeliac−8(30)−enate −95.6 −119.9 −109.6 −89.9 −101.4 −111.4 −105.5 −81.3 −98.8 −86.9 −109.1 −110.0
Khayalactone −107.6 −110.0 −90.3 −103.4 −102.6 −115.8 −92.1 −96.1 −104.7 −101.0 −113.2 −126.4
Khayanolide A −110.8 −123.5 −101.3 −104.4 −111.1 −115.5 −98.4 −105.9 −107.9 −138.5 −127.4 −123.9
Khayanolide B −104.1 −93.6 −77.9 −86.4 −93.6 −99.7 −94.8 −59.4 −86.1 −97.9 −99.8 −105.4
Khivorin −75.6 −98.7 −99.2 −91.1 −99.1 −101.7 −97.5 −77.8 −92.1 −89.3 −101.3 −109.6
Methyl acetoxyangolensate −90.2 −102.1 −75.7 −99.5 −102.2 −107.2 −82.9 −93.5 −80.3 −108.2 −98.2 −94.5
Methyl angolensate −89.2 −104.2 −82.9 −100.1 −92.6 −109.9 −85.1 −90.8 −79.7 −110.5 −113.2 −108.6
Methyl hydroxyangolensate −82.9 −91.4 −73.0 −102.8 −87.6 −109.2 −73.0 −84.1 −79.5 −100.2 −108.8 −101.4
Methyl ivorensate −79.5 −106.7 −95.7 −102.4 −98.9 −99.8 −84.7 −76.1 −87.2 −95.8 −106.5 −108.2
Mexicanolide −86.9 −103.0 −82.7 −79.6 −95.4 −111.6 −90.8 −90.2 −95.6 −100.5 −93.9 −103.4
Proceranolide −86.5 −110.3 −77.8 −96.1 −97.0 −108.7 −76.0 −91.5 −94.3 −91.7 −102.2 −102.0
Proceranolide butanoate −94.0 −119.7 −87.9 −93.8 −97.5 −119.2 −95.9 −103.9 −89.2 −90.9 −107.1 −106.6
Proceranone −84.4 −103.0 −93.9 −97.8 −101.8 −106.0 −88.2 −115.6 −91.4 −82.7 −89.5 −113.2
Procerin −71.9 −98.4 −75.8 −19.8 −76.4 −96.8 −67.9 −46.1 −70.5 −58.8 −88.9 −78.6
Seneganolide −101.7 −122.0 −94.5 −106.6 −96.4 −110.3 −92.6 −92.4 −104.9 −106.9 −105.8 −104.6
Swiemahogin A −92.4 −125.6 −91.5 −115.5 −116.8 −119.1 −103.7 −122.0 −81.1 −111.1 −106.4 −123.7
Swietenine −93.7 −114.2 −99.4 −84.6 −113.1 −107.1 −88.8 −87.7 −87.6 −91.1 −106.8 −110.9
Swietenolide −85.7 −108.1 −80.4 −83.7 −97.4 −109.0 −71.8 −82.8 −84.3 −102.3 −97.4 −98.9
1,3,7−Trideacetylkhivorin −86.0 −95.7 −79.2 −76.7 −94.8 −88.5 −101.1 −97.0 −61.9 −81.2 −97.1 −84.1

Table 30.

MolDock docking energies (kJ/mol) of limonoids with Leishmania donovani and L. mexicana protein targets.

Limonoids LdonCatB LdonCyp LdonDHODH LdonNMT LmexGAPDH LmexGPDH LmexPGI LmexPMM LmexPYK LmexPYK LmexPYK LmexTIM
Site 1 Site 2 Site 3
11α−Acetoxy−2α−hydroxy−6−deoxyswietenine acetate −92.2 −85.4 −46.3 −82.9 −94.0 −99.6 −88.0 −121.3 −95.5 −103.8 −103.9 −81.9
3−O−Acetylanthothecanolide −100.8 −85.9 −54.7 −70.9 −108.1 −100.9 −94.3 −117.9 −110.2 −97.0 −94.7 −97.5
3−O−Acetylkhayalactone −77.2 −66.9 −90.3 −100.7 −108.8 −113.1 −104.3 −110.2 −104.4 −111.4 −107.4 −107.8
1−O−Acetylkhayanolide A −80.2 −47.6 −38.3 −92.4 −96.6 −115.5 −103.5 −110.9 −116.4 −101.2 −90.2 −84.7
1−O−Acetylkhayanolide B −81.3 −68.4 −65.9 −72.5 −83.2 −106.6 −82.6 −88.0 −94.9 −84.9 −91.4 −82.7
3−O−Acetylswietenine −75.2 −78.2 −57.4 −106.0 −74.8 −118.6 −81.1 −106.8 −101.8 −108.3 −103.5 −61.4
3−O−Acetylswietenolide −88.0 −81.2 −37.9 −106.8 −72.1 −103.8 −83.5 −89.0 −98.3 −95.5 −96.0 −68.2
6−O−Acetylswietenolide −86.6 −69.6 −58.4 −91.1 −82.4 −142.7 −92.8 −85.9 −110.1 −97.9 −95.8 −67.7
Anthothecanolide −97.5 −66.6 −69.0 −92.0 −95.0 −99.1 −86.8 −118.1 −100.7 −98.3 −91.0 −91.5
Carapa spirolactone −89.9 −75.5 −65.2 −61.7 −88.6 −94.8 −78.3 −96.5 −91.4 −94.8 −85.9 −78.6
Carapin −71.7 −102.8 no dock −94.8 −84.6 −106.0 −78.4 −99.7 −104.6 −94.8 −82.9 −78.9
Carapolide A −113.0 −101.2 −88.5 −97.5 −88.6 −118.9 −94.1 −112.6 −114.2 −115.6 −106.5 −100.6
Carapolide B −96.9 −82.5 −21.9 −93.1 −90.7 −107.7 −90.1 −98.7 −107.0 −109.9 −99.4 −91.4
Carapolide C −102.9 −99.2 −58.0 −78.9 −83.1 −112.1 −88.5 −115.3 −107.4 −113.3 −98.4 −94.4
7−Deacetoxy−7−oxogedunin −68.4 −66.9 −14.8 −79.7 −79.6 −92.1 −73.6 −83.5 −111.5 −101.0 −95.5 −83.9
1−O−Deacetyl−6−deoxykhayanolide E −101.8 −87.2 −70.1 −73.5 −82.3 −99.9 −82.4 −75.6 −97.4 −99.5 −91.7 −71.8
7−Deacetylgedunin −52.7 −81.4 −11.3 −82.6 −84.8 −91.5 −74.1 −82.5 −98.3 −93.9 −93.3 −80.6
1−O−Deacetyl−2α−hydroxykhayanolide E −98.1 −58.4 −48.5 −64.2 −79.0 −111.8 −87.0 −84.9 −100.4 −104.5 −86.2 −66.2
Deacetylkhayanolide E −96.2 −69.1 −56.0 −58.8 −84.2 −92.6 −85.0 −77.8 −97.5 −101.8 −88.6 −64.2
1−Deacetylkhivorin −52.5 −89.2 no dock −74.9 −76.6 −99.4 −83.8 −84.7 −98.4 −106.4 −93.5 −66.4
3−Deacetylkhivorin −68.8 −92.2 −66.2 −84.2 −96.9 −100.5 −99.7 −85.4 −98.4 −91.3 −79.4 −71.6
7−Deacetylkhivorin −68.1 −68.6 −36.1 −94.8 −88.0 −99.8 −83.1 −85.5 −105.3 −104.6 −94.1 −75.9
6−Deoxyswietenolide −90.3 −75.0 no dock −94.3 −74.2 −114.6 −84.8 −105.7 −90.4 −86.9 −94.5 −73.0
3,7−Dideacetylkhivorin −62.6 −69.3 −63.2 −87.3 −92.3 −96.2 −88.0 −78.6 −113.5 −85.2 −98.5 −73.1
Evodulone −80.2 −84.8 −74.3 −90.6 −79.0 −98.7 −86.6 −103.2 −103.4 −105.3 −93.2 −88.4
Fissinolide −83.6 −80.3 −54.6 −102.4 −64.2 −95.1 −85.1 −111.9 −90.4 −95.2 −92.9 −78.1
Gedunin −84.0 −88.2 no dock −88.3 −85.0 −98.3 −80.4 −82.0 −88.4 −99.1 −95.6 −88.9
Grandifolide A −77.1 −96.3 no dock −98.1 −91.2 −103.8 −90.9 −93.4 −104.5 −115.5 −87.3 −85.8
Grandifolin −53.7 −94.9 −67.0 −73.2 −83.7 −109.1 −89.4 −95.4 −105.1 −98.9 −104.0 −99.3
Grandifoliolenone −93.7 −93.8 −68.9 −77.3 −78.7 −115.1 −80.0 −101.4 −115.4 −103.6 −100.1 −87.3
Grandifotane −99.7 −70.8 −40.6 −99.4 −107.8 −113.7 −87.5 −117.2 −100.5 −100.6 −106.8 −29.1
6−Hydroxykhayalactone −106.7 −80.2 −88.2 −96.4 −94.0 −106.1 −97.3 −98.6 −103.4 −110.1 −91.2 −95.9
3β−Isobutyryloxy−1−oxomeliac−8(30)−enate −92.4 −82.3 no dock −99.8 −87.6 −99.2 −87.8 −89.7 −95.3 −117.6 −92.1 −60.0
Khayalactone −107.0 −68.1 −55.1 −97.7 −94.6 −116.0 −95.9 −102.0 −100.2 −100.8 −95.6 −94.2
Khayanolide A −110.9 −98.7 −18.3 −97.8 −92.5 −137.8 −98.6 −112.1 −115.3 −107.8 −107.3 −89.9
Khayanolide B −102.5 −72.5 −39.5 −70.4 −90.8 −94.6 −88.3 −77.6 −88.2 −105.2 −94.7 −71.2
Khivorin −64.6 −89.4 −72.0 −30.2 −92.4 −107.4 −82.0 −84.0 −93.9 −108.2 −85.6 −78.8
Methyl acetoxyangolensate −89.1 −58.8 −59.5 −88.8 −98.0 −94.6 −72.7 −81.8 −108.9 −98.4 −94.8 −41.3
Methyl angolensate −89.5 −52.0 −74.5 −27.42 −98.6 −112.9 −75.3 −109.7 −99.1 −95.9 −87.2 −79.6
Methyl hydroxyangolensate −91.0 −73.9 −74.7 −75.6 −94.5 −115.7 −76.6 −112.5 −93.1 −93.7 −87.6 −78.9
Methyl ivorensate −86.9 −75.4 −63.9 −82.2 −102.0 −119.7 −77.1 −80.8 −104.0 −91.3 −96.2 −70.8
Mexicanolide −85.4 −67.6 −33.9 −84.3 −67.9 −112.8 −92.2 −105.5 −97.3 −90.4 −98.3 −59.4
Proceranolide −90.2 −77.6 no dock −94.7 −66.8 −121.6 −87.2 −106.0 −90.0 −88.8 −94.6 −73.9
Proceranolide butanoate −94.7 −81.0 −70.3 −111.8 −76.2 −92.9 −89.1 −95.1 −100.9 −106.8 −107.4 −63.0
Proceranone −87.7 −89.0 no dock −84.6 −75.0 −99.3 −86.0 −109.9 −98.0 −108.4 −87.7 −98.6
Procerin −77.5 −22.4 −59.7 −107.5 −94.8 −111.3 −108.8 −84.5 −93.9 −86.6 −70.7 −64.8
Seneganolide −99.5 −92.0 −51.9 −88.4 −89.9 −98.8 −86.6 −109.8 −95.9 −92.5 −92.5 −83.5
Swiemahogin A −69.7 −94.9 −52.2 −81.4 −79.9 −125.4 −92.8 −117.4 −120.1 −106.2 −110.0 −91.4
Swietenine −90.7 −67.4 no dock −99.3 −85.0 −104.1 −86.3 −91.6 −99.6 −122.3 −100.7 −78.0
Swietenolide −87.3 −72.3 no dock −93.6 −72.3 −121.0 −88.9 −94.4 −99.2 −91.2 −87.7 −68.3
1,3,7−Trideacetylkhivorin −53.7 −80.5 no dock −76.2 −87.1 −97.2 −81.2 −71.5 −96.9 −93.0 −82.8 −83.2

Table 31.

MolDock docking energies (kJ/mol) of limonoids with Leishmania infantum protein targets.

Limonoids LinfCYP51 LinfGLO2 LinfPnC1 LinfTDR1 LinfTR
11α−Acetoxy−2α−hydroxy−6−deoxyswietenine acetate −98.0 −75.1 no dock −93.6 −89.4
3−O−Acetylanthothecanolide −102.5 −77.7 no dock −82.5 −101.6
3−O−Acetylkhayalactone −116.2 −99.5 no dock −103.7 −113.2
1−O−Acetylkhayanolide A −102.4 −89.1 no dock −87.9 −108.3
1−O−Acetylkhayanolide B −114.3 −82.0 no dock −80.6 −84.0
3−O−Acetylswietenine −95.3 −74.9 no dock −76.4 −84.2
3−O−Acetylswietenolide −105.4 −80.3 no dock −79.5 −95.4
6−O−Acetylswietenolide −103.1 −77.4 no dock −91.1 −92.6
Anthothecanolide −107.9 −74.6 −57.2 −82.9 −94.3
Carapa spirolactone −108.8 −69.7 no dock −68.3 −87.3
Carapin −94.3 −80.2 no dock −80.9 −86.3
Carapolide A −111.8 −89.1 no dock −98.1 −98.3
Carapolide B −103.1 −71.6 no dock −91.8 −92.9
Carapolide C −106.9 −80.4 no dock −79.4 −92.5
7−Deacetoxy−7−oxogedunin −104.3 −71.9 no dock −70.0 −84.6
1− O−Deacetyl−6−deoxykhayanolide E −98.0 −77.3 no dock −78.6 −90.9
7−Deacetylgedunin −91.2 −72.8 no dock −72.6 −80.4
1− O−Deacetyl−2α−hydroxykhayanolide E −110.6 −75.1 no dock −83.8 −88.6
Deacetylkhayanolide E −103.4 −81.0 −45.4 −83.0 −84.9
1−Deacetylkhivorin −101.2 −72.0 no dock −75.8 −87.7
3−Deacetylkhivorin −106.0 −76.8 no dock −76.0 −98.3
7−Deacetylkhivorin −94.5 −83.8 no dock −87.0 −73.7
6−Deoxyswietenolide −95.9 −76.5 no dock −83.0 −92.4
3,7−Dideacetylkhivorin −95.9 −74.8 no dock −76.3 −103.3
Evodulone −105.3 −81.6 no dock −88.6 −87.5
Fissinolide −99.2 −78.0 no dock −78.8 −99.0
Gedunin −107.4 −75.9 no dock −82.2 −78.4
Grandifolide A −109.3 −89.6 no dock −90.2 −99.8
Grandifolin −105.8 −76.1 no dock −75.8 −96.8
Grandifoliolenone −98.7 −90.7 −43.1 −75.9 −92.7
Grandifotane −111.5 −80.8 no dock −89.8 −90.0
6−Hydroxykhayalactone −116.0 −83.1 no dock −100.2 −98.6
3β−Isobutyryloxy−1−oxomeliac−8(30)−enate −102.7 −78.4 no dock −82.5 −103.4
Khayalactone −101.0 −90.6 no dock −100.3 −97.5
Khayanolide A −104.5 −83.4 no dock −84.3 −97.4
Khayanolide B −110.0 −77.4 −44.1 −97.2 −103.1
Khivorin −100.9 −71.4 no dock −82.0 −93.8
Methyl acetoxyangolensate −99.6 −66.4 no dock −84.9 −82.8
Methyl angolensate −90.5 −71.0 no dock −77.8 −85.6
Methyl hydroxyangolensate −95.8 −65.2 −48.5 −78.2 −85.4
Methyl ivorensate −95.5 −77.8 no dock −85.2 −92.5
Mexicanolide −90.4 −78.8 −27.5 −75.8 −92.3
Proceranolide −95.7 −78.9 no dock −83.1 −91.5
Proceranolide butanoate −100.6 −82.1 no dock −89.5 −93.5
Proceranone −107.9 −89.7 no dock −90.7 −94.6
Procerin −94.9 −70.1 no dock −68.8 −81.8
Seneganolide −101.8 −76.9 no dock −82.0 −86.4
Swiemahogin A −113.3 −84.7 no dock −93.4 −97.4
Swietenine −108.3 −79.6 no dock −83.2 −87.1
Swietenolide −97.0 −72.7 no dock −86.3 −93.3
1,3,7−Trideacetylkhivorin −92.0 −73.6 no dock −62.4 −86.6

Table 32.

MolDock docking energies (kJ/mol) of withanolides with Leishmania major protein targets.

Withanolides LmajCatB LmajDHODH LmajdUTPase LmajNDKb LmajNH LmajNMT LmajOPB LmajPDE1 LmajPTR1 LmajMetRS LmajTyrRS LmajUGPase
24,25−Epoxywithanolide D −92.9 −121.0 −109.3 −104.7 −104.2 −124.1 −102.7 −114.1 −114.2 −98.2 −119.5 −108.2
14−Hydroxyixocarpanolide −77.9 −104.9 −89.2 −77.9 −100.9 −98.2 −90.0 −113.0 −81.8 −99.0 −99.6 −106.6
Physagulin A −102.7 −123.7 −98.3 −103.1 −108.2 −113.7 −100.6 −115.8 −110.0 −98.4 −104.0 −110.6
Physagulin B −97.0 −107.6 −89.8 −105.1 −104.5 −119.6 −95.6 −103.5 −93.8 −114.8 −106.0 −111.0
Physagulin C −93.4 −99.5 −89.6 −105.5 −106.5 −113.8 −95.9 −118.3 −93.8 −127.3 −105.0 −122.7
Physagulin F −92.8 −88.2 −88.0 −96.5 −106.1 −102.6 −96.9 −107.5 −90.9 −133.2 −98.8 −98.5
Physagulin H −91.8 −112.0 −88.3 −92.9 −105.4 −111.2 −103.2 −111.8 −95.5 −126.1 −104.1 −112.8
Physagulin I −94.2 −107.1 −92.3 −99.1 −107.6 −103.0 −97.3 −110.6 −92.1 −123.8 −103.8 −106.2
Physagulin J −96.8 −105.4 −87.2 −90.6 −96.5 −106.7 −94.5 −117.6 −91.2 −105.6 −100.1 −110.1
Physagulin K −97.5 −118.5 −81.7 −69.4 −111.2 −112.6 −108.9 −108.9 −95.5 −101.7 −97.3 −104.1
Physagulin L −98.8 −114.8 −88.0 −69.9 −111.2 −112.1 −110.3 −97.3 −106.0 −103.0 −99.2 −107.6
Physagulin L' −107.0 −109.0 −104.2 −99.2 −99.7 −114.2 −108.2 −111.9 −108.2 −115.0 −103.5 −101.3
Physagulin M −72.5 −95.0 −90.9 −83.2 −104.8 −110.0 −88.3 −95.8 −89.1 −92.9 −103.3 −115.4
Physagulin M' −88.5 −115.0 −93.6 −99.3 −98.2 −112.8 −92.4 −106.9 −97.1 −120.2 −100.5 −101.0
Physagulin N −93.1 −102.8 −92.3 −93.1 −101.9 −115.2 −94.7 −108.5 −84.4 −110.6 −106.6 −118.1
Physagulin N' −94.4 −102.5 −72.7 −94.6 −99.7 −99.0 −96.1 −116.1 −90.0 −110.4 −90.2 −91.9
Physagulin O −87.3 −94.3 −81.5 −91.4 −100.8 −103.6 −95.0 −98.0 −87.0 −88.9 −95.5 −108.1
Physalin A −86.5 −92.6 −71.2 −86.8 −87.3 −92.0 −110.7 −70.2 −75.0 −84.2 −90.0 −101.2
Physalin B −76.9 −92.3 −80.8 −62.9 −90.0 −100.2 −86.9 −95.8 −76.7 −78.1 −88.3 −101.7
Physalin D −83.9 −87.6 −85.1 −65.4 −101.7 −99.7 −86.9 −85.4 −68.4 −83.2 −83.8 −96.5
Physalin E −82.1 −91.5 −85.3 −65.5 −88.5 −100.6 −94.1 −76.3 −66.7 −83.2 −82.2 −99.1
Physalin F −81.2 −90.1 −80.7 −66.0 −93.0 −101.4 −83.5 −96.3 −73.2 −78.0 −96.7 −101.7
Physalin G −95.6 −103.9 −80.1 −82.3 −96.3 −89.6 −91.7 −91.6 −88.0 −89.8 −103.5 −103.8
Physalin H −82.8 −89.5 −80.4 −65.0 −98.4 −95.8 −86.2 −86.6 −67.2 −80.8 −87.1 −93.0
Physalin I −78.8 −85.4 −82.6 −71.4 −85.9 −93.0 −87.3 −75.2 −60.5 −79.5 −82.5 −98.4
Physalin J −80.2 −91.0 −85.1 −74.9 −96.4 −103.1 −86.6 −91.8 −73.9 −77.7 −84.1 −94.1
Physalin K −83.1 −106.9 −73.7 −81.7 −87.5 −88.7 −66.7 −68.5 −71.5 −77.6 −81.3 −105.3
Physalin U −81.2 −96.3 −83.0 −50.7 −93.4 −93.0 −90.4 −99.2 −74.5 −85.2 −91.9 −103.1
Physalin V −88.4 −101.1 −83.0 −83.5 −103.5 −100.9 −96.4 −95.5 −79.4 −84.8 −86.9 −107.5
Physalin W −93.4 −95.0 −85.1 −75.9 −91.0 −92.0 −78.6 −100.4 −80.2 −84.0 −91.7 −110.3
Physangulide −101.9 −88.9 −104.0 −97.8 −101.8 −109.1 −92.9 −117.4 −110.6 −104.4 −96.4 −101.8
Physanolide A −85.7 −102.9 −84.6 −69.0 −97.6 −107.9 −93.8 −103.5 −100.5 −94.5 −88.4 −101.1
Vamonolide −83.4 −96.7 −87.8 −109.9 −95.7 −103.8 −96.5 −109.0 −84.4 −92.2 −106.7 −97.4
Withangulatin A −92.4 −121.9 −97.8 −108.1 −110.6 −124.2 −97.1 −112.9 −110.1 −99.4 −105.1 −112.2
Withangulatin B −105.4 −89.8 −96.1 −96.6 −95.7 −99.9 −94.3 −107.2 −96.2 −117.9 −104.7 −91.0
Withangulatin C −85.7 −93.6 −86.6 −100.7 −90.1 −109.7 −106.3 −89.2 −94.1 −125.9 −104.6 −98.5
Withangulatin D −88.8 −80.3 −89.4 −102.6 −96.6 −107.2 −92.0 −113.3 −86.9 −126.2 −105.2 −104.8
Withangulatin E −57.3 −94.8 −36.3 −92.5 −85.7 −102.4 −89.1 −95.7 −88.9 −96.0 −112.7 −97.9
Withangulatin F −85.1 −96.0 −83.8 −103.9 −97.7 −98.9 −87.9 −120.8 −85.8 −96.0 −102.4 −96.9
Withangulatin G −91.5 −122.3 −76.0 −100.4 −95.2 −100.1 −93.7 −99.7 −87.6 −97.7 −105.8 −92.5
Withangulatin H −91.6 −105.5 −89.1 −96.8 −81.0 −94.8 −105.1 −88.8 −71.0 −115.3 −102.2 −106.9
Withangulatin I −98.8 −112.4 −90.0 −91.3 −106.6 −113.1 −88.1 −105.6 −106.0 −98.2 −102.3 −110.7

Table 33.

MolDock docking energies (kJ/mol) of withanolides with Leishmania donovani and L. mexicana protein targets.

LdonCatB LdonCyp LdonDHODH LdonNMT LmexGAPDH LmexGPDH LmexPGI LmexPMM LmexPYK LmexPYK LmexPYK LmexTIM
Withanolides Site 1 Site 2 Site 3
24,25−Epoxywithanolide D −95.7 −101.5 −63.4 −103.0 −97.7 −118.1 −110.4 −125.7 −119.7 −106.2 −113.6 −95.4
14−Hydroxyixocarpanolide −88.0 −92.8 −30.7 −52.2 −80.7 −102.3 −77.5 −95.6 −103.6 −92.2 −100.3 −74.3
Physagulin A −97.4 −103.3 −82.8 −91.9 −91.4 −116.2 −100.5 −119.2 −111.6 −104.4 −106.5 −85.0
Physagulin B −105.4 −104.2 −85.9 −89.9 −94.2 −107.6 −96.3 −114.4 −110.3 −109.3 −103.8 −82.9
Physagulin C −98.7 −86.0 −80.6 −104.7 −91.6 −108.7 −98.2 −124.7 −103.4 −100.7 −103.8 −85.9
Physagulin F −94.8 −88.7 −84.6 −93.6 −88.7 −106.0 −87.9 −107.8 −105.8 −106.3 −91.6 −82.3
Physagulin H −96.5 −85.2 −83.6 −98.8 −86.0 −101.4 −97.2 −113.0 −106.2 −104.6 −101.7 −79.3
Physagulin I −95.9 −87.5 −77.2 −94.7 −90.2 −99.9 −91.5 −102.3 −101.2 −103.5 −95.0 −77.7
Physagulin J −94.4 −84.6 −60.7 −92.5 −88.5 −108.7 −91.2 −100.6 −98.5 −111.2 −100.6 −86.6
Physagulin K −85.1 −95.8 no dock −92.5 −94.2 −109.1 −90.1 −92.6 −112.2 −106.4 −97.1 −76.0
Physagulin L −90.6 −83.3 −67.6 −97.6 −96.2 −112.3 −98.2 −104.5 −117.3 −103.6 −92.0 −68.1
Physagulin L' −108.8 −104.3 −102.2 −94.7 −94.2 −110.7 −87.0 −109.4 −111.5 −98.2 −105.4 −101.2
Physagulin M −91.2 −91.3 −70.6 −81.4 −96.1 −101.8 −78.6 −87.4 −105.6 −111.5 −101.9 −75.9
Physagulin M' −84.3 −94.8 −30.7 −90.9 −89.8 −106.2 −88.9 −88.5 −110.5 −103.7 −96.3 −106.7
Physagulin N −94.9 −99.8 −89.5 −95.8 −95.0 −106.2 −80.7 −115.1 −105.1 −112.2 −95.4 −82.5
Physagulin N' −93.2 −83.6 −65.4 −85.2 −86.2 −112.3 −83.4 −103.2 −107.5 −103.8 −85.1 −55.3
Physagulin O −90.3 −88.8 −88.3 −93.9 −93.4 −103.5 −84.5 −94.6 −99.4 −102.4 −106.3 −72.0
Physalin A −85.6 −71.4 −41.9 −82.3 −83.6 −93.8 −82.0 −102.9 −88.1 −100.4 −91.4 −81.7
Physalin B −84.9 −71.7 −48.5 −81.8 −78.4 −88.5 −84.8 −92.6 −92.0 −89.4 −84.8 −73.9
Physalin D −82.6 −79.1 −54.4 −80.5 −79.6 −91.8 −84.5 −85.0 −89.8 −95.0 −79.9 −71.7
Physalin E −83.4 −63.3 −30.0 −75.9 −81.3 −83.5 −74.5 −83.7 −96.2 −93.5 −81.5 −76.0
Physalin F −83.7 −73.8 −57.4 −83.2 −80.7 −92.8 −92.4 −85.1 −90.9 −91.0 −76.6 −74.9
Physalin G −93.6 −71.0 −81.2 −92.5 −76.9 −78.4 −87.9 −97.9 −100.6 −90.4 −93.0 −69.2
Physalin H −85.2 −60.7 no dock −73.0 −81.0 −92.5 −86.0 −81.7 −92.6 −89.6 −81.2 −70.1
Physalin I −84.2 −51.6 no dock −68.3 −82.5 −96.2 −87.4 −79.0 −84.0 −86.5 −82.9 −61.6
Physalin J −83.1 −80.1 −55.5 −79.5 −82.2 −92.4 −78.2 −97.8 −97.0 −94.9 −88.0 −72.1
Physalin K −82.6 −74.7 −65.5 −84.2 −70.4 −90.2 −77.6 −76.5 −96.7 −87.4 −94.2 −60.7
Physalin U −83.0 −65.1 −68.5 −94.0 −85.9 −97.6 −93.2 −85.0 −97.0 −93.2 −85.9 −81.6
Physalin V −83.2 −83.6 −27.1 −84.3 −81.2 −93.9 −93.1 −82.8 −95.0 −92.7 −90.5 −52.8
Physalin W −93.9 −67.5 −77.2 −89.7 −84.0 −101.5 −92.1 −91.4 −98.1 −99.0 −86.9 −80.2
Physangulide −103.2 −99.4 −71.3 −106.0 −89.9 −105.2 −83.7 −111.5 −114.6 −108.0 −103.3 −82.8
Physanolide A −93.4 −96.3 −22.9 −103.0 −84.0 −99.6 −81.4 −106.3 −97.4 −96.3 −86.2 −44.5
Vamonolide −83.4 −89.7 −52.6 −90.2 −75.4 −96.2 −81.5 −107.1 −101.6 −100.9 −90.8 −77.4
Withangulatin A −106.1 −102.6 −39.9 −98.6 −96.7 −119.8 −105.4 −122.0 −109.2 −102.9 −107.5 −87.8
Withangulatin B −95.7 −90.0 no dock −94.6 −87.5 −99.4 −85.5 −94.2 −99.6 −106.1 −112.4 −92.4
Withangulatin C −91.7 −87.1 −27.3 −90.6 −88.3 −110.5 −87.0 −99.0 −106.2 −101.2 −113.8 −78.8
Withangulatin D −101.2 −92.4 no dock −93.6 −84.6 −105.1 −86.5 −96.2 −92.3 −104.8 −108.2 −86.5
Withangulatin E −81.0 −77.9 −25.9 −95.5 −76.9 −105.7 −85.8 −99.9 −102.7 −101.4 −100.8 −87.8
Withangulatin F −54.3 −94.3 −58.6 −83.3 −88.7 −108.4 −88.3 −100.2 −106.2 −97.7 −104.7 −99.5
Withangulatin G −91.5 −87.6 no dock −96.1 −74.2 −100.9 −85.5 −100.5 −99.8 −103.2 −95.7 −64.3
Withangulatin H −95.2 −85.5 −65.1 −85.9 −80.3 −102.5 −75.5 −98.8 −95.8 −106.9 −97.6 −80.7
Withangulatin I −93.5 −95.3 −82.6 −93.6 −95.5 −113.7 −89.3 −114.2 −116.1 −105.4 −94.5 −71.1

Table 34.

MolDock docking energies (kJ/mol) of withanolides with Leishmania infantum protein targets.

Withanolides LinfCYP51 LinfGLO2 LinfPnC1 LinfTDR1 LinfTR
24,25−Epoxywithanolide D −128.1 −102.8 no dock −103.8 −98.4
14−Hydroxyixocarpanolide −111.7 −81.1 no dock −85.3 −94.4
Physagulin A −106.7 −88.5 no dock −103.6 −102.7
Physagulin B −107.7 −82.8 no dock −99.0 −95.1
Physagulin C −122.5 −98.8 no dock −99.7 −94.2
Physagulin F −108.2 −70.6 no dock −80.8 −96.1
Physagulin H −114.9 −92.6 no dock −96.8 −91.9
Physagulin I −102.9 −75.1 no dock −84.5 −97.7
Physagulin J −115.4 −79.4 no dock −87.5 −93.2
Physagulin K −105.4 −76.4 no dock −88.5 −95.0
Physagulin L −109.4 −83.5 no dock −90.1 −94.7
Physagulin L ' −107.4 −90.3 no dock −102.4 −101.4
Physagulin M −106.5 −78.5 no dock −95.7 −94.4
Physagulin M ' −113.3 −81.6 no dock −94.8 −91.5
Physagulin N −114.0 −91.4 no dock −92.6 −95.2
Physagulin N ' −100.5 −87.7 no dock −85.7 −106.2
Physagulin O −108.2 −77.9 no dock −94.4 −92.2
Physalin A −105.0 −75.2 no dock −81.4 −73.9
Physalin B −110.4 −72.6 no dock −86.0 −93.8
Physalin D −113.5 −86.0 no dock −69.0 −93.0
Physalin E −115.4 −72.5 no dock −82.9 −92.6
Physalin F −111.9 −73.6 no dock −76.2 −93.0
Physalin G −99.1 −69.1 no dock −77.5 −91.0
Physalin H −112.4 −83.7 no dock −70.2 −94.5
Physalin I −101.3 −72.0 no dock −72.8 −94.2
Physalin J −111.1 −83.9 −34.5 −91.4 −93.0
Physalin K −93.9 −57.4 no dock −70.4 −89.5
Physalin U −99.8 −80.0 −37.3 −78.6 −94.1
Physalin V −114.5 −67.3 −50.4 −76.0 −102.3
Physalin W −98.6 −76.3 no dock −71.1 −81.1
Physangulide −116.5 −94.1 no dock −103.3 −103.2
Physanolide A −104.8 −90.5 no dock −88.1 −95.2
Vamonolide −105.8 −78.1 no dock −88.6 −97.3
Withangulatin A −114.5 −92.1 no dock −98.6 −94.2
Withangulatin B −112.3 −83.6 no dock −93.2 −90.6
Withangulatin C −112.1 −77.3 no dock −89.5 −87.7
Withangulatin D −106.6 −75.7 no dock −79.5 −96.3
Withangulatin E −120.7 −82.1 no dock −89.9 −85.6
Withangulatin F −111.9 −80.4 no dock −93.8 −92.6
Withangulatin G −115.5 −75.1 no dock −77.0 −97.7
Withangulatin H −119.1 −74.0 −40.1 −103.9 −89.9
Withangulatin I −118.5 −92.6 no dock −98.5 −97.6

Table 35.

MolDock docking energies (kJ/mol) of triterpenoids with Leishmania major protein targets.

Triterpenoids LmajCatB LmajDHODH LmajdUTPase LmajNDKb LmajNH LmajNMT LmajOPB LmajPDE1 LmajPTR1 LmajMetRS LmajTyrRS LmajUGPase
α−Amyrin −74.4 −81.7 −52.9 −55.1 −73.4 −84.8 −75.6 −100.9 −72.3 −71.8 −84.5 −82.7
β−Amyrin −43.0 −78.8 −66.1 −59.1 −76.8 −87.7 −84.4 −83.8 −65.7 −72.6 −84.0 −82.4
Betulin −71.9 −85.3 −75.8 −61.5 −99.0 −93.6 −94.4 −83.0 −71.2 −80.8 −99.1 −85.5
Betulinaldehyde −74.6 −81.7 −75.7 −71.9 −98.9 −93.5 −94.2 −88.4 −76.0 −78.5 −99.1 −89.4
Betulinic acid −74.2 −88.5 −66.7 −61.3 −96.3 −104.6 −89.1 −82.6 −73.5 −82.0 −103.3 −88.7
Corosolic acid −80.2 −74.7 −81.7 −63.1 −91.3 −107.7 −84.5 −106.4 −81.6 −79.3 −86.4 −81.4
Erythrodiol −34.6 −84.6 −64.6 −64.9 −79.5 −92.7 −87.0 −84.9 −67.2 −74.7 −87.6 −83.5
Friedelin −57.3 −72.5 −74.6 −53.9 −84.9 −75.9 −78.0 −79.6 −75.9 −71.3 −102.4 −76.5
Isoiguesterin −67.3 −79.4 −64.7 −73.5 −80.5 −95.5 −81.0 −92.2 −77.3 −77.2 −88.2 −85.2
20− epi−Isoiguesterinol −69.7 −74.0 −64.7 −83.9 −85.3 −96.4 −98.2 −96.2 −84.4 −81.4 −83.6 −78.6
Lawnermis acid methyl ester −75.8 −95.9 −81.6 −70.3 −76.5 −91.4 −81.6 −98.3 −66.7 −78.8 −92.2 −88.3
Lupeol −73.2 −84.6 −76.7 −53.1 −99.0 −87.5 −91.5 −85.5 −69.9 −74.3 −96.2 −75.9
Methyl seco−3,4−betulonic acid −87.2 −93.8 −84.8 −76.1 −101.2 −113.5 −96.5 −106.3 −97.0 −79.2 −90.1 −110.1
3− O−Methyl−6−oxopristimerol −91.4 −92.8 −75.9 −77.1 −99.5 −102.5 −88.4 −95.2 −79.1 −94.0 −99.9 −96.1
Oleanolic acid −82.5 −90.6 −80.2 −66.3 −72.7 −97.7 −79.8 −95.3 −66.6 −69.7 −88.4 −76.2
epi−Oleanolic acid −75.9 −76.7 −77.2 −54.2 −72.4 −83.7 −88.7 −98.5 −70.3 −84.2 −82.3 −95.6
6−Oxopristimerol −87.2 −91.5 −72.9 −76.4 −98.8 −103.6 −90.2 −91.8 −82.5 −93.2 −93.8 −101.2
(24 Z)−3−Oxotirucalla−7,24−dien−26−oic acid −96.4 −95.4 −86.1 −129.2 −104.4 −95.7 −99.7 −106.1 −90.3 −91.9 −102.2 −98.9
Pristimerin −69.3 −87.8 −72.3 −77.6 −88.1 −112.9 −86.3 −86.4 −87.8 −86.6 −102.0 −88.6
Rotundic acid −78.5 −85.1 −74.2 −49.1 −55.9 −85.7 −86.8 −98.4 −65.6 −80.8 −78.5 −83.4
Taraxerol −22.5 −83.4 −60.2 −48.0 −70.1 −82.4 −88.0 −78.8 −85.5 −85.1 −84.9 −88.1
Ursolic acid −70.8 −80.0 −74.0 −59.1 −72.0 −92.4 −80.4 −73.7 −71.9 −82.7 −84.3 −89.9
Uvaol −74.9 −82.4 −67.9 −67.8 −75.2 −88.3 −85.4 −89.9 −75.2 −74.9 −86.4 −87.0
Wallichianol −81.9 −93.2 −71.1 −74.6 −87.2 −102.7 −92.0 −75.2 −86.2 −80.1 −80.6 −89.4

Table 36.

MolDock docking energies (kJ/mol) of triterpenoids with Leishmania donovani and L. mexicana protein targets.

LdonCatB LdonCyp LdonDHODH LdonNMT LmexGAPDH LmexGPDH LmexPGI LmexPMM LmexPYK LmexPYK LmexPYK LmexTIM
Triterpenoids Site 1 Site 2 Site 3
α−Amyrin −79.7 −79.4 −19.0 −53.4 −73.7 −88.0 −73.5 −71.7 −70.4 −87.4 −85.4 −54.4
β−Amyrin −65.3 −75.6 no dock −64.7 −73.9 −77.2 −65.3 −71.0 −79.9 −94.4 −75.2 −35.5
Betulin −80.1 −78.2 no dock −77.8 −81.6 −101.1 −79.1 −82.6 −87.1 −98.0 −83.7 −70.3
Betulinaldehyde −82.8 −78.6 no dock −67.2 −75.9 −96.9 −83.5 −84.5 −87.5 −96.6 −82.5 −75.0
Betulinic acid −86.3 −65.2 no dock −80.7 −77.7 −97.3 −81.0 −87.8 −89.5 −97.8 −85.4 −76.3
Corosolic acid −80.8 −80.2 no dock −78.2 −78.0 −93.2 −81.9 −75.8 −80.7 −89.6 −73.0 −60.9
Erythrodiol −57.7 −75.8 −30.0 −69.5 −76.1 −80.8 −69.9 −73.0 −79.2 −96.6 −75.4 −39.3
Friedelin −65.9 −53.9 −48.8 −63.2 −72.7 −83.8 −64.8 −77.1 −73.6 −86.1 −76.7 −70.1
Isoiguesterin −69.9 −70.0 −48.8 −70.4 −76.6 −80.9 −68.8 −83.0 −80.7 −87.9 −77.0 −65.9
20− epi−Isoiguesterinol −70.5 −83.0 −55.8 −74.8 −75.9 −93.0 −73.1 −91.0 −88.9 −88.7 −76.3 −58.3
Lawnermis acid methyl ester −73.7 −77.4 −44.5 −73.4 −84.7 −97.0 −80.1 −77.6 −81.5 −96.3 −98.1 −57.7
Lupeol −80.7 −76.5 no dock −71.9 −88.5 −93.0 −72.1 −81.3 −82.0 −96.0 −79.6 −69.2
Methyl seco−3,4−betulonic acid −91.6 −83.9 no dock −92.0 −87.8 −102.4 −89.7 −98.0 −109.4 −102.6 −86.7 −82.2
3− O−Methyl−6−oxopristimerol −90.8 −83.7 no dock −85.0 −76.0 −90.2 −78.6 −92.9 −109.5 −96.4 −83.2 −61.4
Oleanolic acid −82.4 −74.2 no dock −69.7 −79.0 −86.9 −69.9 −80.8 −77.5 −90.4 −79.9 −74.9
epi−Oleanolic acid −61.1 −73.7 −50.7 −69.1 −81.2 −88.8 −66.3 −78.6 −79.6 −91.9 −74.8 −65.7
6−Oxopristimerol −90.6 −84.3 −60.9 −82.9 −80.8 −90.0 −79.1 −85.5 −98.4 −95.2 −94.1 −68.0
(24 Z)−3−Oxotirucalla−7,24−dien−26−oic acid −100.0 −88.1 −82.2 −89.0 −94.3 −108.5 −99.2 −104.0 −122.1 −104.4 −100.1 −91.2
Pristimerin −71.3 −78.4 −46.7 −85.9 −93.1 −90.7 −74.4 −102.4 −96.4 −97.4 −80.4 −63.0
Rotundic acid −71.6 −78.2 −36.3 −77.0 −75.8 −100.3 −71.4 −75.5 −80.8 −93.7 −82.5 −58.0
Taraxerol −51.7 −78.0 −29.6 −61.4 −69.4 −82.8 −68.2 −90.4 −81.4 −90.1 −69.8 −81.4
Ursolic acid −69.6 −78.7 no dock −71.7 −76.5 −97.3 −80.3 −75.5 −71.8 −93.0 −75.4 −46.5
Uvaol −81.4 −79.1 no dock −51.7 −75.9 −95.0 −78.0 −74.3 −76.4 −92.0 −82.8 −64.9
Wallichianol −81.5 −70.6 −58.4 −85.4 −83.8 −87.6 −80.4 −91.9 −96.8 −93.8 −82.3 −77.4

Table 37.

MolDock docking energies (kJ/mol) of triterpenoids with Leishmania infantum protein targets.

Triterpenoids LinfCYP51 LinfGLO2 LinfPnC1 LinfTDR1 LinfTR
α−Amyrin −99.3 −66.0 no dock −66.7 −71.9
β−Amyrin −98.9 −72.6 −43.9 −73.5 −68.4
Betulin −101.6 −73.8 −30.4 −79.1 −79.0
Betulinaldehyde −104.8 −74.8 no dock −74.1 −85.8
Betulinic acid −95.5 −75.2 no dock −80.5 −85.8
Corosolic acid −111.8 −64.5 no dock −74.2 −82.2
Erythrodiol −100.4 −71.2 no dock −76.7 −78.9
Friedelin −92.7 −64.4 −40.3 −71.0 −75.4
Isoiguesterin −83.7 −70.6 no dock −81.9 −77.2
20− epi−Isoiguesterinol −81.1 −71.1 no dock −80.4 −77.1
Lawnermis acid methyl ester −97.9 −72.9 −33.4 −72.3 −81.2
Lupeol −97.9 −70.7 −35.1 −77.1 −81.0
Methyl seco−3,4−betulonic acid −94.7 −67.1 no dock −88.7 −91.9
3− O−Methyl−6−oxopristimerol −98.6 −73.3 −12.0 −84.9 −92.2
Oleanolic acid −105.6 −70.7 no dock −79.2 −74.9
epi−Oleanolic acid −105.5 −74.4 no dock −81.6 −80.5
6−Oxopristimerol −95.8 −66.4 no dock −77.6 −94.9
(24 Z)−3−Oxotirucalla−7,24−dien−26−oic acid −112.4 −99.4 no dock −83.9 −97.0
Pristimerin −97.5 −78.3 no dock −82.4 −84.9
Rotundic acid −107.8 −60.5 −33.1 −76.5 −78.6
Taraxerol −91.5 −74.2 −39.1 −74.8 −76.9
Ursolic acid −102.3 −62.5 no dock −69.4 −76.3
Uvaol −101.1 −65.3 no dock −69.4 −77.4

Table 38.

MolDock docking energies (kJ/mol) of quassinoids and steroids with Leishmania major protein targets.

LmajCatB LmajDHODH LmajdUTPase LmajNDKb LmajNH LmajNMT LmajOPB LmajPDE1 LmajPTR1 LmajMetRS LmajTyrRS LmajUGPase
Quassinoids
15−β−Heptylchaparrinone −92.7 −121.0 −89.4 −118.4 −101.9 −112.4 −98.2 −109.3 −96.2 −120.5 −106.5 −101.0
Simalikalactone D −88.4 −106.2 −80.5 −99.3 −84.9 −98.5 −63.6 −105.2 −91.8 −111.7 −105.5 −111.1
Steroids
Cholesterol −90.5 −95.2 −93.3 −106.4 −101.7 −98.6 −111.4 −109.2 −109.5 −115.2 −99.3 −97.7
Clerosterol −97.9 −100.6 −95.5 −110.6 −104.8 −102.4 −91.6 −113.3 −110.8 −121.3 −101.0 −101.9
24−Hydroperoxy−24−vinylcholesterol −81.0 −99.9 −92.1 −111.0 −103.4 −105.0 −115.9 −117.7 −109.8 −127.0 −100.2 −112.4
Lanosterol −85.0 −85.4 −81.3 −94.1 −103.2 −96.3 −111.4 −108.4 −87.2 −88.8 −97.2 −99.3
Saringosterol −88.4 −103.8 −89.8 −108.1 −105.9 −101.6 −109.5 −115.5 −107.1 −126.4 −99.0 −106.1
β−Sitosterol −94.8 −98.7 −94.8 −106.4 −105.6 −102.1 −101.7 −111.9 −110.0 −121.5 −102.2 −111.6
Stigmasterol −87.8 −102.3 −94.6 −105.6 −108.1 −101.1 −101.0 −109.8 −109.3 −121.4 −106.4 −102.1

Table 39.

MolDock docking energies (kJ/mol) of quassinoids and steroids with Leishmania donovani and L. mexicana protein targets.

LdonCatB LdonCyp LdonDHODH LdonNMT LmexGAPDH LmexGPDH LmexPGI LmexPMM LmexPYK LmexPYK LmexPYK LmexTIM
Quassinoids Site 1 Site 2 Site 3
15−β−Heptylchaparrinone −93.0 −90.0 −88.8 −100.5 −84.9 −111.8 −90.5 −110.0 −123.2 −108.0 −98.8 −92.0
Simalikalactone D −98.1 −102.9 no dock −90.9 −89.5 −115.2 −70.9 −103.9 −93.4 −99.6 −107.4 −75.8
Steroids
Cholesterol −95.4 −99.4 −78.2 −90.9 −91.6 −102.8 −93.8 −104.3 −102.0 −95.5 −100.2 −87.3
Clerosterol −82.5 −99.9 −89.1 −99.9 −92.8 −104.0 −80.0 −108.3 −106.8 −104.2 −100.1 −96.0
24−Hydroperoxy−24−vinylcholesterol −97.8 −98.0 −101.7 −89.9 −93.5 −97.2 −77.0 −111.9 −103.8 −104.4 −89.5 −91.6
Lanosterol −84.1 −88.4 −55.0 −81.9 −81.1 −99.7 −91.5 −98.8 −103.6 −93.5 −103.8 −82.4
Saringosterol −97.9 −106.5 −98.9 −99.1 −86.7 −113.8 −91.1 −111.0 −106.5 −102.3 −88.7 −95.8
β−Sitosterol −100.9 −104.5 −86.7 −88.8 −92.5 −100.0 −96.7 −107.8 −105.5 −97.3 −92.6 −95.0
Stigmasterol −97.0 −98.5 −93.7 −92.3 −90.2 −112.3 −88.5 −107.6 −106.0 −104.3 −97.8 −96.5

Table 40.

MolDock docking energies (kJ/mol) of quassinoids and steroids with Leishmania infantum protein targets.

Quassinoids LinfCYP51 LinfGLO2 LinfPnC1 LinfTDR1 LinfTR
15−β−Heptylchaparrinone −107.6 −100.4 no dock −92.2 −96.8
Simalikalactone D −98.5 −85.8 no dock −83.7 −80.2
Steroids
Cholesterol −110.9 −86.9 no dock −87.4 −93.0
Clerosterol −116.3 −94.5 no dock −91.4 −95.8
24−Hydroperoxy−24−vinylcholesterol −121.5 −89.9 no dock −91.4 −96.6
Lanosterol −116.0 −85.7 no dock −81.5 −90.4
Saringosterol −117.2 −90.0 no dock −97.9 −99.8
β−Sitosterol −113.8 −87.6 no dock −94.1 −103.0
Stigmasterol −116.1 −86.4 no dock −96.6 −98.4

Grandifotane showed selective docking to LmajDHODH with a docking energy of −154.4 kJ/mol. The lowest-energy pose of the ligand placed the compound at the binding site of the co-crystallized ligand, 5-nitroorotic acid (Figure 25). The furan ring of the ligand is sandwiched between the riboflavin monophosphate cofactor and Cys 131. There are hydrogen-bonding interactions between the docked ligand and residues Asn 199, Asn 68, Ser 69, and Ser 130. Grandifotane, isolated from Khaya grandifoliola [65], has apparently not been reported to be antiparasitic. The bark and seeds of K. grandifoliola, however, have shown significant antimalarial activity [66]. 6-O-Acetylswietenolide, also isolated from K. grandifoliola, has shown antiplasmodial activity [67], and this compound showed preferential docking to LmexGPDH. The lowest-energy docking pose of 6-O-acetylswietenolide with LmexGPDH (Figure 26) lies in a cavity surrounded by Arg 274, Phe 26, Lys 125, Phe 156, Val 298, Lys 210, and Ala 157. Lys 125 and Lys 210 have been identified as critical to catalytic activity of this enzyme [15]. With the exception of lanosterol, the steroid ligands showed preferential docking to LmajMetRS. The lowest-energy poses for these steroids show them all occupying the methionyl adenylate binding site (Figure 27). The tetracyclic steroidal structures all occupy the same position in a hydrophobic pocket surrounded by Asp 486, Trp 515, Lys 522, His 228, Gly 227, His 513, and Tyr 218, and hydrogen-bonded by way of the 3-hydroxyl group of the steroid to Trp 516 and Gly 514. Clerosterol has shown in vitro antileishmanial activity [68], while saringosterol, stigmasterol, and 24-hydroperoxy-24-vinylcholesterol, in addition to clerosterol, have shown in vitro antitrypanosomal activity [69]. β-Sitosterol has shown modest antitrypanosomal activity [70].

Figure 25.

Figure 25

Lowest-energy docked pose of grandifontane with L. major dihydroorotate dehydrogenase (LmajDHODH, PDB 3mhu) showing key interactions with Cys 131, Asn 199, Asn 68, Ser 69, and Gln 139. Hydrogen-bonds are shown as blue dashed lines.

Figure 26.

Figure 26

Lowest-energy docked pose of 6-O-acetylswietenolide with L. mexicana glycerol-3-phosphate dehydrogenase (LmexGPDH, PDB 1n1e) showing key interactions with Arg 274, Ser 293, Phe 26 and Ala 157, and Gln 139. Hydrogen-bonds are shown as blue dashed lines.

Figure 27.

Figure 27

Lowest-energy poses of steroids, cholesterol (white), clerosterol (purple), saringosterol (green), stigmasterol (cyan), β-sitosterol (blue), and 24-hydroperoxy-24-vinylcholesterol (red), in the hydropobic pocket of L. major methionyl t-RNA synthetase (LmajMetRS, PDB 3kfl).

Not surprisingly, all of the steroids and many of the triterpenoids examined in this study showed significant docking preference for L. infantum sterol 14α-demethylase (LinfCYP51). This had been noted previously with Trypanosoma brucei sterol 14α-demethylase [71]. In particular, 24-hydroperoxy-24-vinylcholesterol (docking energy = −121.5 kJ/mol) and 24,25-epoxywithanolide D (docking energy = −128.1 kJ/mol) were strongly docking with LinfCYP51. The lowest-energy pose of 24-hydroperoxy-24,25-vinylcholesterol with LinfCYP51 places the hydroperoxy group of the ligand adjacent to the heme Fe (Figure 28); this ligand, then, can presumably oxidize the Fe and render the enzyme inactive.

Figure 28.

Figure 28

Lowest-energy poses of 24-hydroperoxy-24-vinylcholesterol with L. infantum sterol 14α-demethylase (LinfCYP51, PDB 3l4d). Note the proximity of the hydroperoxy group of the ligand with the Fe atom of the heme cofactor.

An examination of docking energies with respect to ligand molecular size suggests that for terpenoid ligands there is a threshold where larger size does not correspond to stronger binding to the protein target. A plot of molecular weights of representative terpenoids (monoterpenoids, germacranolide sesquiterpenoids, labdane diterpenoids, and triterpenoids) and docking energies to three different protein targets (LmajMetRS, LmexGPDH, and LdonCyp) (Figure 29) shows that strongest docking energies are terpenoids with molecular weights around 360–430 amu.

Figure 29.

Figure 29

Plots of docking energies vs. molecular weights for representative isoprenoids with three Leishmania protein targets.

3. Computational Methods

Protein-ligand docking studies were carried out based on the crystal structures of verified Leishmania protein drug targets: L. major cathepsin B, LmajCatB (prepared by structural homology to Trypanosoma brucei cathepsin B, PDB 3hhi [72]), L. major dihydroorotate dehydrogenase, LmajDHODH (PDB 3gye [73], PDB 3mhu, and PDB 3mjy [74]), L. major methionyl-tRNA synthetase, LmajMetRS (PDB 3kfl [51]), L. major nucleoside diphosphate kinase b, LmajNDKb (PDB 3ngs, PDB 3ngt, and PDB 3ngu [38]), L. major nucleoside hydrolase, LmajNH (PDB 1ezr [35]), L. major N-myristoyltransferase, LmajNMT (PDB 2wsa, PDB 3h5z [47], and PDB 4a30 [75]), L. major oligopeptidase B, LmajOPB (PDB 2xe4 [27]), L. major phosphodiesterase 1, LmajPDE1 (PDB 2r8q [40]), L. major pteridine reductase 1, LmajPTR1 (PDB 1e7w [43], PDB 1w0c [76], PDB 2bf7 [77], and PDB 3h4v [78]), L. major tyrosyl-tRNA synthetase, LmajTyrRS (PDB 3p0h and PDB 3p0j [52]), L. major uridine diphosphate-glucose pyrophosphorylase, LmajUGPase (PDB 2oef and PDB 2oeg [10]), L. major deoxyuridine triphosphate nucleotidohydrolase, LmajdUTPase (PDB 2yay and PDB 2yb0 [33]), L. donovani cathepsin B, LdonCatB (prepared by structural homology to T. brucei cathepsin B, PDB 3hhi [72]), L. donovani cyclophilin, LdonCyp (PDB 2haq [49] and PDB 3eov [79]), L. donovani dihydroorotate dehydrogenase, LdonDHODH (PDB 3c61 [80]), L. donovani N-myristoyltransferase, LdonNMT (PDB 2wuu [48]), L. mexicana glyceraldehyde-3-phosphate dehydrogenase. LmexGAPDH (PDB 1a7k [11] and PDB 1gyp [81]), L. mexicana glycerol-3-phosphate dehydrogenase, LmexGPDH (PDB 1evz [14], PDB 1m66, PDB 1n1e and PDB 1n1g [82]), L. mexicana phosphoglucose isomerase, LmexPGI (PDB 1q50 and PDB 1t10 [8]), L. mexicana phosphomannomutase, LmexPMM (PDB 2i54 and PDB 2i55 [83]), L. mexicana pyruvate kinase, LmexPYK (PDB 1pkl [6], PDB 3hqp [84], and PDB 3pp7 [85]), L. mexicana triosephosphate isomerase, LmexTIM (PDB 2vxn [17] and PDB 2y61 [86]), L. infantum sterol 14α-demethylase, LinfCYP51 (PDB 3l4d [87]), L. infantum glyoxalase II, LinfGLO2 (PDB 2p1e and PDB 2p18 [21]), L. infantum nicotinamidase, LinfPnC1 (PDB 3r2j [34]), L. infantum thiol-dependent reductase I, LinfTDR1 (PDB 4ags [19]), and L. infantum trypanothione reductase, LinfTR (PDB 2yau [88] and PDB 4adw [89] and PDB 4apn [90]) Prior to docking all solvent molecules and the co-crystallized ligands were removed from the structures. Molecular docking calculations for all compounds with each of the proteins were undertaken using Molegro Virtual Docker v. 5.0 [91,92], with a sphere large enough to accommodate the cavity centered on the binding sites of each protein structure in order to allow each ligand to search. If a co-crystallized inhibitor or substrate was present in the structure, then that site was chosen as the binding site. If no co-crystallized ligand was present, then suitably sized cavities were used as potential binding sites. Standard protonation states of the proteins based on neutral pH were used in the docking studies. The protein was used as a rigid model structure; no relaxation of the protein was performed. Assignments of charges on each protein were based on standard templates as part of the Molegro Virtual Docker program; no other charges were necessary to be set. Each ligand structure was built using Spartan ’10 for Windows [93]. The structures were geometry optimized using the MMFF force field [94]. Flexible ligand models were used in the docking and subsequent optimization scheme. As a test of docking accuracy and for docking energy comparison, co-crystallized ligands were re-docked into the protein structures (See Table 41). Different orientations of the ligands were searched and ranked based on their energy scores. The RMSD threshold for multiple cluster poses was set at <1.00 Å. The docking algorithm was set at maximum iterations of 1500 with a simplex evolution population size of 50 and a minimum of 30 runs for each ligand. Each binding site of oligomeric structures was searched with each ligand. The lowest-energy (strongest-docking) poses for each ligand in each protein target are summarized in Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19, Table 20, Table 21, Table 22, Table 23, Table 24, Table 25, Table 26, Table 27 and Table 28.

Table 41.

MolDock docking energies of co-crystallized ligands and root-mean-squared deviations between the co-crystallized ligand and the re-docked poses of the co-crystallized ligand with Leishmania protein crystal structures.

Protein Target PDB code Co-crystallized ligand E (kJ/mol) RMSD (Å)
LmajCatB homology none ---
LmajDHODH 3gye none ---
3mhu 5-nitroorotic acid −102.2 0.37
3mjy 5-aminoorotic acid −91.4 0.47
LmajdUTPase 2yay 2 '-deoxyuridine-5'-α,β-imido-triphosphate −117.1 1.36
2yb0 2 '-deoxyuridine −80.3 0.93
LmajNDKb 3ngs none ---
3ngt adenosine 5 '-monophosphate −122.5 4.07
3ngu adenosine 5 '-diphosphate −143.6 4.29
LmajNH 1ezr none ---
LmajNMT 2wsa 2,6-dichloro-4-(2-piperazin-1-ylpyridin-4- yl)- N-(1,3,5-trimethyl-1H-pyrazol-4-yl)benzenesulfonamide −121.0 0.88
3h5z myristoyl-CoA −115.4 7.52
4a30 4-bromo-2,6-dichloro- N-(1,3,5-trimethyl-1H-pyrazol-4-yl)benzene-sulfonamide −84.5 1.80
LmajOPB 2xe4 none ---
LmajPDE1 2r8q 3-isobutyl-1-methylxanthine −78.1 3.41
LmajPTR1 1e7w methotrexate −147.1 5.63
1w0c 2,4,6-triaminoquinazoline −72.7 0.52
2bf7 7,8-dihydrobiopterin −93.7 0.61
3h4v methyl 1-(4-{[(2,4-diaminopteridin-6-yl)methyl]amino}benzoyl)piperidine-4-carboxylate −129.9 5.50
LmajMetRS 3kfl methionyl-adenylate −172.5 3.35
LmajTyrRS 3p0h 3,7,3 ',4'-tetrahydroxyflavone −90.3 0.56
3p0j tyrosinol −77.2 1.42
LmajUGPase 2oef none ---
2oeg uridine-5 '-phosphate-glucose −143.9 3.69
LdonCatB homology none ---
LdonCyp 2haq none ---
3eov omitted ---
LdonDHODH 3c61 orotic acid −64.2 9.23
LdonNMT 2wuu none ---
LmexGAPDH 1a7k none ---
1gyp none ---
LmexGPDH 1evz NAD+ −161.6 3.80
1m66 2-bromo-6-chloropurine −54.4 5.56
1n1e adenosine 5 '-(trihydrogendiphosphate) P'-5'-ester with 3-(aminocarbonyl)-4-(1-hydroxyl-2-oxo-3-phosphonooxypropyl)-1β-d-ribofuranosylpyridinium inner salt −269.7 3.00
1n1g 2-bromo-6-chloropurine −53.8 4.24
LmexPGI 1q50 none ---
1t10 fructose-6-phosphate −74.9 2.69
LmexPMM 2i54 citric acid −73.5 3.66
2i55 1,6-di- O-phosphono-β-d-glucopyranose −120.5 2.33
LmexPYK
ATP site 1pkl none ---
3hqp adenosine-5 '-triphosphate −138.5 7.74
3pp7 suramin −123.6 1.07
FDP site 1pkl none ---
3hqp fructose-2,6-diphosphate −132.8 0.63
LmexTIM 2vxn phosphoglycolohydroxamic acid −62.6 0.86
2y61 glycerol-1-phosphate −55.9 1.26
LinfCYP51 3l4d 2-(2,4-difluorophenyl)-1,3-di(1 H-1,2,4-triazol-1-yl)propan-2-ol −91.3 1.39
LinfGLO2 2p1e lactic acid −57.7 1.88
2p18 acetic acid −55.8 1.38
LinfPnC1 3r2j nicotinic acid −65.5 1.66
LinfTDR1 4ags glutathione −102.7 6.96
LinfTR 2yau 3,4,5-triacetyloxy-6-(acetyloxymethyl)oxane-2-thiol −90.0 5.54
4adw trypanothione −142.6 10.16
4apn 4-{[1-(4-ethylphenyl)-2-methyl-5-(4-methylsulfanylphenyl)pyrrol-3-yl]-methyl}thiomorpholine −105.6 5.51

The primary sequence of the cathepsin B-like cysteine protease from T. brucei (TbCatB, PDB 3 hhi [72]) was compared to the query sequences of the same functional enzyme from L. donovani (LdonCatB) and L. major (LmajCatB) using the Protein BLAST (Basic Local Alignment Search Tool). Regions of local similarity and identity were found between the query sequences of LdonCatB and LmajCatB when compared to the model sequence of TbCatB. Both LdonCatB and LmajCatB sequences had 52% and 54% identity with that of TbCatB, respectively. The three-dimensional structure of TbCatB has been determined to 1.6 Å (PDB 3hhi [72]) but there is no structural information available for either LdonCatB or LmajCatB. Calculated models for both LdonCatB and LmajCatB were obtained from combining sequence information of the unknown target structures for LdonCatB and LmajCatB with the known model of TbCatB. The alignment between target and model sequences was used to modify the model PDB TbCatB file by pruning non-conserved residues to the last common atoms using the CCP4 chainsaw molecular replacement utility [95,96] leaving conserved residues unchanged. The resulting models were refined with conjugate gradient minimization with no experimental energy terms used in the crystallographic and NMR System (CNS) program suite [97]. The resulting detailed model was refined with conjugate gradient minimization with no experimental energy terms used. All atoms of the molecules were unrestrained and were minimized for 500 steps with a continuous dielectric constant of one.

4. Conclusions

Numerous antiparasitic plant-derived natural products have been identified but the molecular target(s) of most of these compounds remain unknown. This gap in knowledge impedes further characterization and optimization of the antiparasitic activity of many of these compounds. In this molecular docking study, we have identified molecular targets in Leishmania that preferentially interact with certain classes of antiparasitic isoprenoids from plants. Consequently, Leishmania proteins that have structural motifs similar to those identified in this work may be explored as potential drug targets by antileishmanial drug discovery programs. It is important to point out that: (a) there are likely additional Leishmania proteins or other biochemical targets that have not yet been identified; (b) some of the antiparasitic terpenoids examined in the study may have poor bioavailability due to limited solubility, membrane permeability, hydrolysis, or other metabolic transformations; (c) the ligands may also target homologous isozymes in humans. Therefore, pharmacokinetic and pharmacodymanic studies as well as structure-based design and optimization studies are needed to resolve issues of bioavailability and selectivity. In summary, this in-silico molecular docking study has provided evidence for what classes and structural types of terpenoids may be targeting certain Leishmania protein targets and could provide the framework for synthetic modification of antiparasitic terpenoids, de novo synthesis of structural designs, and further phytochemical investigations.

Acknowledgments

We are grateful to Joseph Ng (Department of Biological Sciences, University of Alabama in Huntsville) for generating the structures of L. donovani cathepsin B and L. major cathepsin B.

Conflicts of Interest

The authors declare no conflict of interest.

Footnotes

Sample Availability: Not available.

References

  • 1.WHO Technical Report Series 949. Report of a Meeting of the WHO Expert Committee on the Control of Leishmaniases. 2010. [(accessed on 15 April 2013)]. Available online: http://apps.who.int/iris/bitstream/10665/44412/1/WHO_TRS_949_eng.pdf.
  • 2.Barrett M.P., Mottram J.C., Goombs G.H. Recent advances in identifying and validating drug targets in trypanosomes and leishmanias. Trends Microbiol. 1999;7:82–88. doi: 10.1016/s0966-842x(98)01433-4. [DOI] [PubMed] [Google Scholar]
  • 3.Chawla B., Madhubala R. Drug targets in Leishmania. J. Parasit. Dis. 2010;34:1–13. doi: 10.1007/s12639-010-0006-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Crowther G.J., Shanmugam D., Carmona S.J., Doyle M.A., Herz-Fowler C., Berriman M., Nwaka S., Ralph S.A., Roos D.S., Van Voorhis W.C., et al. Identification of attractive drug targets in neglected disease pathogens using an in silico approach. PLoS Negl. Trop. Dis. 2010;4:e804. doi: 10.1371/journal.pntd.0000804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Schmidt T.J., Khalid S.A., Romanha A.J., Alves T.M.A., Biavatti M.W., Brun R., Da Costa F.B., de Castro S.L., Ferreira V.F., de Lacerda M.V.G., et al. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected ideases-Part I. Curr. Med. Chem. 2012;19:2128–2175. doi: 10.2174/092986712800229023. [DOI] [PubMed] [Google Scholar]
  • 6.Rigden D.J., Phillips S.E.V., Michels P.A.M., Fothergill-Gilmore L.A. The structure of pyruvate kinase from Leishmania mexicana reveals details of the allosteric transition and unusual effector specificity. J. Mol. Biol. 1999;291:615–635. doi: 10.1006/jmbi.1999.2918. [DOI] [PubMed] [Google Scholar]
  • 7.Morgan H.P., Walsh M.J., Blackburn E.A., Wear M.A., Boxer M.B., Shen M., Veith H., McNae I.W., Nowicki M.W., Michels P.A., et al. A new family of covalent inhibitors block nucleotide binding to the active site of pyruvate kinase. Biochem. J. 2012;448:67–72. doi: 10.1042/BJ20121014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Cordeiro A.T., Michels P.A., Delboni L.F., Thiemann O.H. The crystal structure of glucose-6-phosphate isomerase from Leishmania mexicana reveals novel active site features. Eur. J. Biochem. 2004;271:2765–2772. doi: 10.1111/j.1432-1033.2004.04205.x. [DOI] [PubMed] [Google Scholar]
  • 9.Arsenieva D., Appavu B.L., Mazock G.H., Jeffery C.J. Crystal structure of phosphoglucose isomerase from Trypanosoma brucei complexed with glucose-6-phosphate at 1.6 Å resolution. Proteins. 2008;74:72–80. doi: 10.1002/prot.22133. [DOI] [PubMed] [Google Scholar]
  • 10.Steiner T., Lamerz A.C., Hess P., Breithaupt C., Krapp S., Bourenkov G., Huber R., Gerardy-Schahn R., Jacob U. Open and closed structures of the UDP-glucose pyrophosphorylase from Leishmania major. J. Biol. Chem. 2007;282:13003–13010. doi: 10.1074/jbc.M609984200. [DOI] [PubMed] [Google Scholar]
  • 11.Kim H., Hol W.G. Crystal structure of Leishmania mexicana glycosomal glyceraldehyde-3-phosphate dehydrogenase in a new crystal form confirms the putative physiological active site structure. J. Mol. Biol. 1998;278:5–11. doi: 10.1006/jmbi.1998.1661. [DOI] [PubMed] [Google Scholar]
  • 12.Guido R.V.C., Oliva G., Montanari C.A., Andricopulo A.D. Structural basis for selective inhibition of trypanosomatid glyceraldehyde-3-phosphate dehydrogenase: Molecular docking and 3D QSAR studies. J. Chem. Inf. Model. 2008;48:918–929. doi: 10.1021/ci700453j. [DOI] [PubMed] [Google Scholar]
  • 13.Zhang W.W., McCall L.I., Matlashewski G. Role of cytosolic glyceraldehyde-3-phosphate dehydrogenase in visceral organ infection by Leishmania donovani. Eukaryot. Cell. 2013;12:70–77. doi: 10.1128/EC.00263-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Suresh S., Turley S., Opperdoes F.R., Michels P.A., Hol W.G. A potential target enzyme for trypanocidal drugs revealed by the crystal structure of NAD-dependent glycerol-3-phosphate dehydrogenase from Leishmania mexicana. Structure. 2000;8:541–552. doi: 10.1016/S0969-2126(00)00135-0. [DOI] [PubMed] [Google Scholar]
  • 15.Choe J., Guerra D., Michels P.A., Hol W.G. Leishmania mexicana glycerol-3-phosphate dehydrogenase showed conformational changes upon binding a bi-substrate adduct. J. Mol. Biol. 2003;329:335–349. doi: 10.1016/s0022-2836(03)00421-2. [DOI] [PubMed] [Google Scholar]
  • 16.Olivares-Illana V., Pérez-Montfort R., López-Calahorra F., Costas M., Rodríguez-Romero A., Tuena de Gómez-Puyou M., Gómez-Puyou A. Structural differences in triosephosphate isomerase from different species and discovery of a multitrypanosomatid inhibitor. Biochemistry. 2006;45:2556–2560. doi: 10.1021/bi0522293. [DOI] [PubMed] [Google Scholar]
  • 17.Alahuhta M., Wierenga R.K. Atomic resolution crystallography of a complex of triosephosphate isomerase with a reaction-intermediate analog: New insight in the proton transfer reaction mechanism. Proteins. 2010;78:1878–1888. doi: 10.1002/prot.22701. [DOI] [PubMed] [Google Scholar]
  • 18.Kumar K., Bhargava P., Roy U. Cloning, overexpression and characterization of Leishmania donovani triosephosphate isomerase. Exp. Parasitol. 2012;130:430–436. doi: 10.1016/j.exppara.2012.01.016. [DOI] [PubMed] [Google Scholar]
  • 19.Fyfe P.K., Westrop G.D., Silva A.M., Coombs G.H., Hunter W.N. Leishmania TDR1 structure, a unique trimeric glutathione transferase capable of deglutathionylation and antimonial prodrug activation. Proc. Natl. Acad. Sci. USA. 2012;109:11693–11698. doi: 10.1073/pnas.1202593109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Garami A., Mehlert A., Ilg T. Glycosylation defects and virulence phenotypes of Leishmania mexicana phosphomannomutase and dolicholphosphate-mannose synthase gene deletion mutants. Mol. Cell Biol. 2001;21:8168–8183. doi: 10.1128/MCB.21.23.8168-8183.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Silva M.S., Barata L., Ferreira A.E.N., Romão S., Tomás A.M., Freire A.P., Cordeiro C. Catalysis and structural properties of Leishmania infantum glyoxalase II: Trypanothione specificity and phylogeny. Biochemistry. 2008;47:195–204. doi: 10.1021/bi700989m. [DOI] [PubMed] [Google Scholar]
  • 22.Padmanabhan P.K., Mukherjee A., Madhubala R. Characterization of the gene encoding glyoxalase II from Leishmania donovani: A potential target for anti-parasite drugs. Biochem. J. 2006;393:227–234. doi: 10.1042/BJ20050948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Silva M.S., Ferreira A.E.N., Tomás A.M., Cordeiro C., Freire A.P. Quantitative assessment of the glyoxalase pathway in Leishmania infantum as a therapeutic target by modeling and computer simulation. FEBS J. 2005;272:2388–2398. doi: 10.1111/j.1742-4658.2005.04632.x. [DOI] [PubMed] [Google Scholar]
  • 24.Sajid M., McKerrow J.H. Cysteine proteases of parasitic organisms. Mol. Biochem. Parasitol. 2002;120:1–21. doi: 10.1016/S0166-6851(01)00438-8. [DOI] [PubMed] [Google Scholar]
  • 25.Paladi C.D.S., Pimentel I.A., Katz S., Cunha R.L., Judice W.A., Caires A.C., Barbiéri C.L. In vitro and in vivo activity of a palladacycle complex on Leishmania (Leishmania) amazonensis. PLoS Negl. Trop. Dis. 2012;6:e1626. doi: 10.1371/journal.pntd.0001626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Coetzer T.H.T., Goldring J.P.D., Huson L.E.J. Oligopeptidase B: A processing peptidase involved in pathogenesis. Biochemie. 2008;90:336–344. doi: 10.1016/j.biochi.2007.10.011. [DOI] [PubMed] [Google Scholar]
  • 27.McLuskey K., Paterson N.G., Bland N.D., Isaacs N.W., Mottram J.C. Crystal structure of Leishmania major oligopeptidase B gives insight into the enzymatic properties of a trypanosomatid virulence factor. J. Biol. Chem. 2010;285:39249–39259. doi: 10.1074/jbc.M110.156679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Swenerton R.K., Zhang S., Sajid M., Medzihradszky K.F., Craik C.S., Kelly B.L., McKerrow J.H. The oligopeptidase B of Leishmania regulates parasite enolase and immune evasion. J. Biol. Chem. 2011;286:429–240. doi: 10.1074/jbc.M110.138313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Cordeiro A.T., Feliciano P.R., Pinkeiro M.P., Nonato M.C. Crystal structure of dihydroorotate dehydrogenase from Leishmania major. Biochemie. 2012;94:1739–1748. doi: 10.1016/j.biochi.2012.04.003. [DOI] [PubMed] [Google Scholar]
  • 30.Pinheiro M.P., Emery F.D.S., Nonato M.C. Target sites for the design of anti-trypanosomatid drugs based on the structure of dihydroorotate dehydrogenase. Curr. Pharm. Des. 2013;19:2615–2627. doi: 10.2174/1381612811319140011. [DOI] [PubMed] [Google Scholar]
  • 31.Camacho A., Hidalgo-Zarco F., Bernier-Villamor V., Ruiz-Pérez L.M., González-Pacanowska D. Properties of Leishmania major dUTP nucleotidohydrolase, a distinct nucleotide-hydrolysing enzyme in kinetoplastids. Biochem. J. 2000;346:163–168. doi: 10.1042/0264-6021:3460163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Nguyen C., Kasinathan G., Leal-Cortijo I., Musso-Buendia A., Kaiser M., Brun R., Ruiz-Pérez L.M., Johansson N.G., González-Pacanowska D., Gilbert I.H. Deoxyuridine triphosphate nucleotidohydrolase as a potential antiparasitic drug target. J. Med. Chem. 2005;48:5942–5954. doi: 10.1021/jm050111e. [DOI] [PubMed] [Google Scholar]
  • 33.Hemsworth G.R., Moroz O.V., Fogg M.J., Scott B., Bosch-Navarrete C., González-Pacanowska D., Wilson K.S. The crystal structure of the Leishmania major deoxyuridine triphosphate nucleotidohydrolase in complex with nucleotide analogues, dUMP, and deoxyuridine. J. Biol. Chem. 2011;286:16470–16481. doi: 10.1074/jbc.M111.224873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Gazanion E., Garcia D., Silvestre R., Gérard C., Guichou J.F., Labesse G., Seveno M., Cordeiro-Da-Silva A., Ouaissi A., Sereno D., et al. The Leishmania nicotinamidase is essential for NAD+ production and parasite proliferation. Mol. Microbiol. 2011;82:21–38. doi: 10.1111/j.1365-2958.2011.07799.x. [DOI] [PubMed] [Google Scholar]
  • 35.Shi W., Schramm V.L., Almo S.C. Nucleoside hydrolase from Leishmania major. Cloning, expression, catalytic properties, transition state inhibitors, and the 2.5-Å crystal structure. J. Biol. Chem. 1999;274:21114–21120. doi: 10.1074/jbc.274.30.21114. [DOI] [PubMed] [Google Scholar]
  • 36.Cui L., Rajasekariah G.R., Martin S.K. A nonspecific nucleoside hydrolase from Leishmania donovani: Implications for purine salvage by the parasite. Gene. 2001;280:153–162. doi: 10.1016/S0378-1119(01)00768-5. [DOI] [PubMed] [Google Scholar]
  • 37.Rennó M.N., França T.C., Nico D., Palatnik-de-Sousa C.B., Tinoco L.W., Figueroa-Villar J.D. Kinetics and docking studies of two potential new inhibitors of the nucleoside hydrolase from Leishmania donovani. Eur. J. Med. Chem. 2012;56:301–307. doi: 10.1016/j.ejmech.2012.07.052. [DOI] [PubMed] [Google Scholar]
  • 38.Souza T.A.C.B., Trindade D.M., Tonoli C.C.C., Santos C.R., Ward R.J., Arni R.K., Oliveira A.H.C., Murakami M.T. Molecular adaptability of nucleoside diphosphate kinase b from trypanosomatid parasites: Stability, oligomerization and structural determinants of nucleotide binding. Mol. BioSyst. 2011;7:2189–2195. doi: 10.1039/c0mb00307g. [DOI] [PubMed] [Google Scholar]
  • 39.Seebeck T., Gong K.W., Kunz S., Schaub R., Shalaby T., Zorghi R. cAMP signaling in Trypanosoma brucei. Int. J. Parasitol. 2001;31:491–498. doi: 10.1016/S0020-7519(01)00164-3. [DOI] [PubMed] [Google Scholar]
  • 40.Wang H., Yan Z., Geng J., Kunz S., Seebeck T., Ke H. Crystal structure of the Leishmania major phosphodiesterase LmjPDEB1 and insight into the design of the parasite-selective inhibitors. Mol. Microbiol. 2007;66:1029–1038. doi: 10.1111/j.1365-2958.2007.05976.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Malki-Feldman L., Jaffe C.L. Leishmania major: Effect of protein kinase A and phosphodiesterase activity on infectivity and proliferation of promastigotes. Exp. Parasitol. 2009;123:39–44. doi: 10.1016/j.exppara.2009.05.010. [DOI] [PubMed] [Google Scholar]
  • 42.Nare B., Luba J., Hardy L.W., Beverly S. New approaches to Leishmania chemotherapy: Pteridine reductase 1 (PTR1) as a target and modulator of antifolate sensitivity. Parasitology. 1997;114:S101–S110. [PubMed] [Google Scholar]
  • 43.Gourley D.G., Schüttelkopf A.W., Leonard G.A., Luba J., Hardy L.W., Beverley S.M., Hunter W.N. Pteridine reductase mechanism correlates pterin metabolism with drug resistance in trypanosomatid parasites. Nat. Struct. Biol. 2001;8:521–525. doi: 10.1038/88584. [DOI] [PubMed] [Google Scholar]
  • 44.Kaur J., Kumar P., Tyagi S., Pathak R., Batra S., Singh P., Singh N. In silico screening, structure-activity relationship, and biologic evaluation of selective pteridine reductase inhibitors targeting visceral leishmaniasis. Antimicrob. Agents Chemother. 2011;55:659–666. doi: 10.1128/AAC.00436-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Guerrieri D., Ferrari S., Costi M.P., Michels P.A. Biochemical effects of riluzole on Leishmania parasites. Exp. Parasitol. 2013;133:250–254. doi: 10.1016/j.exppara.2012.11.013. [DOI] [PubMed] [Google Scholar]
  • 46.Price H.P., Menon M.R., Panethymitaki C., Goulding D., McKean P.G., Smith D.F. Myristoyl-CoA: Protein N-myristoyltransferase, an essential enzyme and potential drug target in kinetoplastid parasites. J. Biol. Chem. 2003;278:7206–7214. doi: 10.1074/jbc.M211391200. [DOI] [PubMed] [Google Scholar]
  • 47.Frearson J.A., Brand S., McElroy S.P., Cleghorn L.A., Smid O., Stojanovski L., Price H.P., Guther M.L., Torrie L.S., Robinson D.A., et al. N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature. 2010;464:728–732. doi: 10.1038/nature08893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Brannigan J.A., Smith B.A., Yu Z., Brzozowski A.M., Hodgkinson M.R., Maroof A., Price H.P., Meier F., Leatherbarrow R.J., Tate E.W., et al. N-myristoyltransferase from Leishmania donovani: Structural and functional characterisation of a potential drug target for visceral leishmaniasis. J. Mol. Biol. 2010;396:985–999. doi: 10.1016/j.jmb.2009.12.032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Venugopal V., Sen B., Datta A.K., Banerjee R. Structure of cyclophilin from Leishmania donovani at 1.97 Å resolution. Acta Crystallogr. Sect. F. 2007;F63:60–64. doi: 10.1107/S1744309106056351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Yau W.L., Blisnick T., Taly J.F., Helmer-Citterich M., Schiene-Fischer C., Leclercq O., Li J., Schmidt-Arras D., Morales M.A., Notredame C., et al. Cyclosporin A treatment of Leishmania donovani reveals stage-specific functions of cyclophilins in parasite proliferation and viability. PLoS Negl. Trop. Dis. 2010;4:e729. doi: 10.1371/journal.pntd.0000729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Larson E.T., Kim J.E., Zucker F.H., Kelley A., Mueller N., Napuli A.J., Verlinde C.L.M.J., Fan E., Buckner F.S., Van Voorhis W.C., et al. Structure of Leishmania major methionyl-tRNA synthetase in complex with intermediate products methionyladenylate and pyrophosphate. Biochemie. 2011;93:570–582. doi: 10.1016/j.biochi.2010.11.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Larson E.T., Kim J.E., Castaneda L.J., Napuli A.J., Zhang Z., Fan E., Zucker F.H., Verlinde C.L., Buckner F.S., Van Voorhis W.C., et al. The double-length tyrosyl-tRNA synthetase from the eukaryote Leishmania major forms an intrinsically asymmetric pseudo-dimer. J. Mol. Biol. 2011;3:159–176. doi: 10.1016/j.jmb.2011.03.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Chan-Bacab M.J., Peña-Rodríguez LM. Plant natural products with leishmanicidal activity. Nat. Prod. Rep. 2001;18:674–688. doi: 10.1039/b100455g. [DOI] [PubMed] [Google Scholar]
  • 54.Rocha L.G., Almeida J.R.G.S., Macêdo R.O., Barbosa-Filho J.M. A review of natural products with antileishmanial activity. Phytomedicine. 2005;12:514–535. doi: 10.1016/j.phymed.2003.10.006. [DOI] [PubMed] [Google Scholar]
  • 55.Salem M.M., Werbovetz K.A. Natural products from plants as drug candidates and lead compounds against leishmaniasis and trypanosomiasis. Curr. Med. Chem. 2006;13:2571–2598. doi: 10.2174/092986706778201611. [DOI] [PubMed] [Google Scholar]
  • 56.Polonio T., Efferth T. Leishmaniasis: Drug resistance and natural products (Review) Int. J. Mol. Med. 2008;22:277–286. [PubMed] [Google Scholar]
  • 57.Mishra B.B., Singh R.K., Strivastava A., Tripathi V.J., Tiwari V.K. Fighting against leishmaniasis: Search of alkaloids as future true potential anti-leishmanial agents. Mini-Rev. Med. Chem. 2009;9:107–123. doi: 10.2174/138955709787001758. [DOI] [PubMed] [Google Scholar]
  • 58.Sen R., Chatterjee M. Plant derived therapeutics for the treatment of leishmaniasis. Phytomedicine. 2011;18:1056–1069. doi: 10.1016/j.phymed.2011.03.004. [DOI] [PubMed] [Google Scholar]
  • 59.Ogungbe I.V., Singh M., Setzer W.N. Antileishmanial natural products from plants. Stud. Nat. Prod. Chem. 2012;36:331–382. doi: 10.1016/B978-0-444-53836-9.00027-X. [DOI] [Google Scholar]
  • 60.Schmidt T.J., Khalid S.A., Romanha A.J., Alves T.M.A., Biavatti M.W., Brun R., Da Costa F.B., de Castro S.L., Ferreira V.F., de Lacerda M.V.G., et al. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases-Part II. Curr. Med. Chem. 2012;19:2176–2228. [PubMed] [Google Scholar]
  • 61.Monzote L., Alarcón O., Setzer W.N. Antiprotozoal activity of essential oils. Agric. Consp. Sci. 2012;77:167–175. [Google Scholar]
  • 62.Congreve M., Chessari G., Tisi D., Woodhead A.J. Recent developments in fragment-based drug discovery. J. Med. Chem. 2008;51:3661–3680. doi: 10.1021/jm8000373. [DOI] [PubMed] [Google Scholar]
  • 63.Zoete V., Grosdidier A., Michielin O. Docking, virtual high throughput screening and in silico fragment-based drug design. J. Cell Mol. Med. 2009;13:238–248. doi: 10.1111/j.1582-4934.2008.00665.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Lekphrom R., Kanokmedhakul S., Kanokmedhakul K. Bioactive diterpenes from the aerial parts of Anisochilus harmandii. Planta Med. 2010;76:726–728. doi: 10.1055/s-0029-1240656. [DOI] [PubMed] [Google Scholar]
  • 65.Yuan T., Zhu R.X., Zhang H., Odeku O.A., Yang S.P., Liao S.G., Yue J.M. Structure determination of grandifotane A from Khaya grandifoliola by NMR, X-ray diffraction, and ECD calculation. Org. Lett. 2010;12:252–255. doi: 10.1021/ol902565s. [DOI] [PubMed] [Google Scholar]
  • 66.Idowu O.A., Soniran O.T., Ajana O., Aworinde D.O. Ethnobotanical survey of antimalarial plants used in Ogun State, southwest Nigeria. Afr. J. Pharm. Pharmacol. 2010;4:55–60. [Google Scholar]
  • 67.Bickii J., Njifutie N., Foyere J.A., Basco L.K., Ringwald P. In vitro antimalarial activity of limonoids from Khaya grandifoliola C.D.C. (Meliaceae) J. Ethnopharmacol. 2000;69:27–33. doi: 10.1016/S0378-8741(99)00117-8. [DOI] [PubMed] [Google Scholar]
  • 68.Sartorelli P., Andrade S.P., Melhem M.S.C., Prado F.O., Tempone A.G. Isolation of antileishmanial sterol from the fruits of Cassia fistula using bioguided fractionation. Phytother. Res. 2007;21:644–647. doi: 10.1002/ptr.2131. [DOI] [PubMed] [Google Scholar]
  • 69.Hoet S., Pieters L., Muccioli G.G., Habib-Jiwan J.L., Opperdoes F.R., Quetin-Leclercq J. Antitrypanosomal activity of triterpenoids and sterols from the leaves of Strychnos spinosa and related compounds. J. Nat. Prod. 2007;70:1360–1363. doi: 10.1021/np070038q. [DOI] [PubMed] [Google Scholar]
  • 70.Nweze N.E., Anene B.M., Asuzu I.U. In vitro anti-trypanosomal activities of crude extracts, β-sitosterol and α-sulfur from Buchholzia coriacea seed. Afr. J. Biotechnol. 2011;10:15626–15632. [Google Scholar]
  • 71.Setzer W.N., Ogungbe I.V. In-silico investigation of antitrypanosomal phytochemicals from Nigerian medicinal plants. PLoS Negl. Trop. Dis. 2012;6:e1727. doi: 10.1371/journal.pntd.0001727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Kerr I.D., Wu P., Marion-Tsukamaki R., Mackey Z.B., Brinen L.S. Crystal structures of TbCatB and rhodesain, potential chemotherapeutic targets and major cysteine proteases of Trypanosoma brucei. PLoS Negl. Trop. Dis. 2010;4:e701. doi: 10.1371/journal.pntd.0000701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Cordeiro A.T., Feliciano P.R., Nonato M.C. Crystal structure of Leishmania major dihydroorotate dehydrogenase. Biochimie. 2012 doi: 10.2210/pdb3gye/pdb. [DOI] [PubMed] [Google Scholar]
  • 74.Cheleski J., Rocha J.R., Pinheiro M.P., Wiggers H.J., da Silva A.B.F., Nonato M.C., Montanari C.A. Novel insights for dihydroorotate dehydrogenase class 1A inhibitors discovery. Eur. J. Med. Chem. 2010;45:5899–5909. doi: 10.1016/j.ejmech.2010.09.055. [DOI] [PubMed] [Google Scholar]
  • 75.Brand S., Cleghorn L.A., McElroy S.P., Robinson D.A., Smith V.C., Hallyburton I., Harrison J.R., Norcross N.R., Spinks D., Bayliss T., et al. Discovery of a novel class of orally active trypanocidal N-myristoyltransferase inhibitors. J. Med. Chem. 2012;55:140–152. doi: 10.1021/jm201091t. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.McLuskey K., Gibellini F., Carvalho P., Avery M.A., Hunter W.N. Inhibition of Leishmania major pteridine reductase by 2,4,6-triaminoquinazoline: Structure of the NADPH ternary complex. Acta Crystallogr. Sect. D. 2004;D60:1780–1785. doi: 10.1107/S0907444904018955. [DOI] [PubMed] [Google Scholar]
  • 77.Schüttelkopf A.W., Hardy L.W., Beverley S.M., Hunter W.N. Structures of Leishmania major pteridine reductase complexes reveal the active site features important for ligand binding and to guide inhibitor design. J. Mol. Biol. 2005;352:105–116. doi: 10.1016/j.jmb.2005.06.076. [DOI] [PubMed] [Google Scholar]
  • 78.Cavazzuti A., Paglietti G., Hunter W.N., Gamarro F., Piras S., Loriga M., Allecca S., Corona P., McLuskey K., Tulloch L., et al. Discovery of potent pteridine reductase inhibitors to guide antiparasite drug development. Proc. Natl. Acad. Sci. USA. 2008;105:1448–1453. doi: 10.1073/pnas.0704384105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Venugopal V., Datta A.K., Bhattacharyya D., Dasgupta D., Banerjee R. Structure of cyclophilin from Leishmania donovani bound to cyclosporin at 2.6 Å resolution: Correlation between structure and thermodynamic data. Acta Crystallogr. Sect. D. 2009;D65:1187–1195. doi: 10.1107/S0907444909034234. [DOI] [PubMed] [Google Scholar]
  • 80.Arakaki T.L., Merritt E.A., Ullman B., Yates P.A. Crystal structure of dihydroorotate dehydrogenase from Leishmania donovani. 2013 doi: 10.2210/pdb3c61/pdb. To be published. [DOI] [Google Scholar]
  • 81.Kim H., Feil I.K., Verlinde C.L., Petra P.H., Hol W.G. Crystal structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Leishmania mexicana: Implications for structure-based drug design and a new position for the inorganic phosphate binding site. Biochemistry. 1995;34:14975–14986. doi: 10.1021/bi00046a004. [DOI] [PubMed] [Google Scholar]
  • 82.Choe J., Suresh S., Wisedchaisri G., Kennedy K.J., Gelb M.H., Hol W.G. Anomalous differences of light elements in determining precise binding modes of ligands to glycerol-3-phosphate dehydrogenase. Chem. Biol. 2002;9:1189–1197. doi: 10.1016/S1074-5521(02)00243-0. [DOI] [PubMed] [Google Scholar]
  • 83.Kedzierski L., Malby R.L., Smith B.J., Perugini M.A., Hodder A.N., Ilg T., Colman P.M., Handman E. Structure of Leishmania mexicana phosphomannomutase highlights similarities with human isoforms. J. Mol. Biol. 2006;363:215–227. doi: 10.1016/j.jmb.2006.08.023. [DOI] [PubMed] [Google Scholar]
  • 84.Morgan H.P., McNae I.W., Nowicki M.W., Hannaert V., Michels P.A., Fothergill-Gilmore L.A., Walkinshaw M.D. Allosteric mechanism of pyruvate kinase from Leishmania mexicana uses a rock and lock model. J. Biol. Chem. 2010;285:12892–12898. doi: 10.1074/jbc.M109.079905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Morgan H.P., McNae I.W., Nowicki M.W., Zhong W., Michels P.A., Auld D.S., Fothergill-Gilmore L.A., Walkinshaw M.D. The trypanocidal drug suramin and other trypan blue mimetics are inhibitors of pyruvate kinases and bind to the adenosine site. J. Biol. Chem. 2011;286:31232–31240. doi: 10.1074/jbc.M110.212613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Venkatesan R., Alahuhta M., Pihko P.M., Wierenga R.K. High resolution crystal structures of triosephosphate isomerase complexed with its suicide inhibitors: The conformational flexibility of the catalytic glutamate in its closed, liganded active site. Protein Sci. 2011;20:1387–1397. doi: 10.1002/pro.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Hargrove T.Y., Wawrzak Z., Liu J., Nes W.D., Waterman M.R., Lepesheva G.I. Substrate preferences and catalytic parameters determined by structural characteristics of sterol 14α-demethylase (CYP51) from Leishmania infantum. J. Biol. Chem. 2011;286:26838–26848. doi: 10.1074/jbc.M111.237099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Ilari A., Baiocco P., Messori L., Fiorillo A., Boffi A., Gramiccia M., Di Muccio T., Coltti G. A gold-containing drug against parasitic polyamine metabolism: The X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition. Amino Acids. 2012;42:803–811. doi: 10.1007/s00726-011-0997-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Baiocco P., Ilari A., Colotti G., Malatesta F., Fiorillo A. Crystal structure of Leishmania infantum trypanothione reductase in complex with NADPH and trypanothione. doi: 10.2210/pdb4adw/pdb. To be published. [DOI] [Google Scholar]
  • 90.Baiocco P., Ilari A., Colotti G., Biava M. Structure of TR from Leishmania infantum in complex with a diarylpirrole-based inhibitor. doi: 10.2210/pdb4apn/pdb. To be published. [DOI] [Google Scholar]
  • 91.Molegro Virtual Docker v 5.0. Molegro ApS; Aarhus, Denmark: 2011. [Google Scholar]
  • 92.Thomsen R., Christensen M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. [DOI] [PubMed] [Google Scholar]
  • 93.Spartan ’10 for Windows, v 1.1. Wavefunction, Inc.; Irvine, CA, USA: 2011. [Google Scholar]
  • 94.Halgren T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF 94. J. Comput. Chem. 1996;17:490–519. doi: 10.1002/(SICI)1096-987X(199604)17:5/6&#x0003c;490::AID-JCC1&#x0003e;3.0.CO;2-P. [DOI] [Google Scholar]
  • 95.The CCP4 suite: Program for protein crystallography. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 1994;50:760–763. doi: 10.1107/S0907444994003112. Collaborative Computational Project, Number 4. [DOI] [PubMed] [Google Scholar]
  • 96.Stein N. CHAINSAW: A program for mutating pdb files used as templates in molecular replacement. J. Appl. Crystallogr. 2008;41:641–643. doi: 10.1107/S0021889808006985. [DOI] [Google Scholar]
  • 97.Brünger A.T., Adams P.D., Clore G.M., DeLano W.L., Gros P., Grosse-Kunstleve R.W., Jiang J.S., Kuszewski J., Nilges M., Pannu N.S., et al. Crystallography & NMR System: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 1998;54:905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]

Articles from Molecules are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES