Abstract
Acellular (true) slime moulds (Myxomycetes) are capable of a transition to the stage of sclerotium — a dormant form of plasmodium produced under unfavourable environmental conditions. In this study, sclerotia of Fuligo septica were analyzed by means of electron paramagnetic resonance (EPR) spectroscopy. The moulds were cultivated in vitro on filter paper, fed with oat flour, and kept until the plasmodia began to produce sclerotia. The obtained sclerotia differed in colour from yellow through orange to dark-brown. The EPR spectra revealed a free radical, melanin-like signal correlated with the depth of the colour; it was strongest in the dark sclerotia. Sclerotization only took place when the plasmodia were starved and very slowly dried. Only the yellow sclerotia were able to regenerate into viable plasmodia. This suggests that myxomycete cytoplasm dehydration is an active process regulated metabolically. Plasmodial sclerotization may therefore serve as a convenient model system to study the regulation of cytoplasmatic water balance, and sclerotia as a convenient material for EPR measurements, combining the quality of plasmodia with the technical simplicity of the measurements characteristic of dry spores. Darkening of the sclerotia is most probably a pathological phenomenon connected with the impairment of water balance during sclerotization.
Key words: Aquaporins, Dehydration, EPR, Melanin, Myxomycetes, Pigmentation
Full Text
The Full Text of this article is available as a PDF (584.9 KB).
Abbreviations used
- DOPA
3,4-dihydroksyphenylalanine
- DPPH
1,1-diphenyl-2-picrylhydrazyl
- EPR
electron paramagnetic resonance
Footnotes
Paper authored by participants of the international conference: XXXIV Winter School of the Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Zakopane, March 7–11, 2007, “The Cell and Its Environment”. Publication costs were partially covered by the organisers of this meeting.
References
- 1.Stephenson S.L., Stempen H. Myxomycetes. A Handbook of Slime Molds. 1. Portland, Oregon: Timber Press, Inc.; 1994. [Google Scholar]
- 2.Towpik J. Regulation of mitochondrial translation in yeast. Cell. Mol. Biol. Lett. 2005;10:571–594. [PubMed] [Google Scholar]
- 3.Rakoczy L. [. The acellular slime moulds (Myxomycetes) — a model system for the modern biology. In: Dubert F., editor. Application of the In Vitro Cultures in Plant Physiology. 1. Kraków, Poland: The Franciszek Górski Department of Plant Physiology, Polish Academy of Science; 1995. pp. 301–308. [Google Scholar]
- 4.Płonka P.M., Rakoczy L. Electron paramagnetic resonance spectroscopy (EPR) as a method for studying the biology of the acellular slime moulds (Myxomycetes) Acta Physiol. Plant. 1997;19:233. [Google Scholar]
- 5.Płonka P.M., Rakoczy L. [. Usefulness of the EPR method in the research on slime moulds. In: Dubert F., Skoczowski A., editors. Application of the In Vitro Cultures in Plant Physiology. 1. Kraków, Poland: The Franciszek Górski Department of Plant Physiology, Polish Academy of Science; 1997. pp. 175–180. [Google Scholar]
- 6.Rakoczy L., Panz T. Melanin revealed in spores of true slime moulds using the electron paramagnetic resonance method. Acta Protozool. 1994;33:227–231. [Google Scholar]
- 7.Loganathan L., Kalyanasundram I. The melanin of the myxomycete Stemonitis herbatica. Acta Protozool. 1999;38:97–103. [Google Scholar]
- 8.Sarna T., Lukiewicz S. The double role of water in quantitative electron spin resonance (ESR) determinations on samples of biological materials. Folia Histochem. Cytochem. (Krakow) 1971;9:203–216. [PubMed] [Google Scholar]
- 9.Płonka P.M., Rakoczy L. [. Heme and non-heme iron complexes of nitric oxide in the plasmodia of acellular slime moulds cultured in vitro. Zesz. Probl. Post. N. Roln. 2000;473:249–259. [Google Scholar]
- 10.Płonka P.M., Rakoczy L. The electron paramagnetic resonance signals of the acellular slime mould Physarum nudum plasmodia irradiated with white light. Curr. Top. Biophys. 1997;21:83–86. [Google Scholar]
- 11.Rakoczy L., Płonka P.M. [. Accumulation of manganese in plasmodia of the acellular slime mould (Myxomycetes) Metatrichia vesparium. Ochr. Środ. Zas. Nat. 1997;18:299–308. [Google Scholar]
- 12.Rakoczy L. [. Preservation of the ability to sporulate of the myxomycete Physarum polycephalum in its dormant stage — spherules. In: Dubert F., Skoczowski A., editors. Application ofthe In Vitro Cultures in Plant Physiology. 1. Kraków, Poland: The Franciszek Górski Department of Plant Physiology, Polish Academy of Science; 1997. pp. 467–473. [Google Scholar]
- 13.Verkman A.S. More than just water channels: unexpected cellular roles of aquaporins. J. Cell Sci. 2005;118:3225–3232. doi: 10.1242/jcs.02519. [DOI] [PubMed] [Google Scholar]
- 14.Levin M.H., Verkman A.S. Aquaporin-3-dependent cell migration and proliferation during corneal re-epithelialization. Invest. Ophthalmol. Vis. Sci. 2006;47:4365–4372. doi: 10.1167/iovs.06-0335. [DOI] [PubMed] [Google Scholar]
- 15.Verkman A. Role of aquaporins in endothelial water transport. J. Anat. 2002;200:528. doi: 10.1046/j.1469-7580.2002.00058.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Felix C.C., Hyde J.S., Sarna T., Sealy R.C. Interactions of melanin with metal ions. Electron spin resonance evidence for chelate complexes of metal ions with free radicals. J. Amer. Chem. Soc. 1978;100:3922–3926. doi: 10.1021/ja00480a044. [DOI] [Google Scholar]
- 17.Deibel R.M.B., Chedekel M.R. Biosynthetic and structural studies on pheomelanin. J. Amer. Chem. Soc. 1982;104:7306–7309. doi: 10.1021/ja00389a066. [DOI] [Google Scholar]
- 18.Lukiewicz S.J., Sarna T. Double internal standard for quantitative demonstration of free radicals. Folia Histochem. Cytochem. 1971;9:127–128. [PubMed] [Google Scholar]
- 19.Sarna T., Plonka P.M. Biophysical studies of melanin: paramagnetic, ion-exchange and redox properties of melanin pigments and their photoreactivity. In: Eaton S.S., Eaton G.R., Berliner L.J., editors. Biomedical ESR. Biological Magnetic Resonance Series. vol. 23. 1. The Netherlands-New York-Boston: Kluwer Acad. Publ.; 2005. pp. 125–146. [Google Scholar]
- 20.Commoner B., Townsend J., Pake G.W. Free radicals in biological materials. Nature. 1954;174:689–691. doi: 10.1038/174689a0. [DOI] [PubMed] [Google Scholar]
- 21.Sealy R.C., Hyde J.S., Felix C.C., Menon I.A., Prota G., Swartz H.M., Persad S., Haberman H.F. Novel free radicals in synthetic and natural pheomelanins: Distinction between dopa melanins and cysteinyldopa melanins by ESR spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 1982;79:2885–2889. doi: 10.1073/pnas.79.9.2885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Yordanov N.D., Pachova Z. Gamma-irradiated dry fruits. An example of a wide variety of long-time dependent EPR spectra. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2006;63:891–895. doi: 10.1016/j.saa.2005.10.023. [DOI] [PubMed] [Google Scholar]
- 23.McCormick J.J., Blomquist J.C., Rusch H.P. Isolation and characterization of a galactosamine wall from spores and spherules of Physarum polycephalum. J. Bacteriol. 1970;104:1119–1125. doi: 10.1128/jb.104.3.1119-1125.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Plonka P.M., Grabacka M. Melanin synthesis in microorganisms — biotechnological and medical aspects. Acta Biochim. Pol. 2006;53:429–443. [PubMed] [Google Scholar]
- 25.Slominski A., Tobin D.J., Shibahara S., Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 2004;84:1155–1228. doi: 10.1152/physrev.00044.2003. [DOI] [PubMed] [Google Scholar]
- 26.Wood J.M., Jimbow K., Boissy R.E., Slominski A., Plonka P.M., Slawinski J., Wortsman J., Tosk J. What is the use of generating melanin? Exp. Dermatol. 1999;8:153–164. doi: 10.1111/j.1600-0625.1999.tb00365.x. [DOI] [PubMed] [Google Scholar]
- 27.Talarczyk A., Hennig J. Early defence responses in plants infected with pathogenic organisms. Cell. Mol. Biol. Lett. 2001;6:955–970. [PubMed] [Google Scholar]
- 28.Sommer A., Ne’eman E., Steffens J.C., Mayer A.M., Harel E. Import, targeting, and processing of a plant polyphenol oxidase. Plant Physiol. 1994;105:1301–1311. doi: 10.1104/pp.105.4.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Rakoczy L., Płonka P.M. [. Plasmodia of acellular slime moulds — materials for verification of the procedure used for natural melanin purification. Zesz. Probl. Post. N. Roln. 2000;473:267–277. [Google Scholar]
- 30.Majcherczyk A., Rakoczy L., Hüttermann A. A method for separation of pigments from plasmodia of the true slime molds, Physarum polycephalum and Physarum nudum. Anal. Biochem. 1987;160:178–183. doi: 10.1016/0003-2697(87)90628-2. [DOI] [PubMed] [Google Scholar]
- 31.Okazaki M., Kuwata K., Miki Y., Shiga S., Shiga T. Electron spin relaxation of synthetic melanin and melanin-containing human tissues as studied by electron spin echo and electron spin resonance. Arch. Biochem. Biophys. 1985;242:197–205. doi: 10.1016/0003-9861(85)90493-X. [DOI] [PubMed] [Google Scholar]
- 32.Jara J.R., Solano F., Garcia-Borron J., Aroca P., Lozano P. Regulation of mammalian melanogenesis II: the role of metal cations. Biochim. Biophys. Acta. 1990;1035:276–285. doi: 10.1016/0304-4165(90)90089-f. [DOI] [PubMed] [Google Scholar]
- 33.Napolitano A., Di Donato P., Prota G. Zinc-catalyzed oxidation of 5-S-cysteinyldopa to 2,2′-bi(2H-1,4-benzothiazine): Tracking the biosynthetic pathway of trichochromes, the characteristic pigments of red hair. J. Org. Chem. 2001;66:6958–6966. doi: 10.1021/jo010320g. [DOI] [PubMed] [Google Scholar]
- 34.Zhulidov D.A., Robarts R.D., Zhulidov A.V., Zhulidova O.V., Markelov D.A., Rusanov V.A., Headley J.V. Zinc accumulation by the slime mold Fuligo septica (L.) Wiggers in the former Soviet Union and North Korea. J. Environ. Qual. 2002;31:1038–1042. doi: 10.2134/jeq2002.1038. [DOI] [PubMed] [Google Scholar]
- 35.Buitink J., Dzuba S.A., Hoekstra F.A., Tsvetkov Y.D. Pulsed EPR spin-probe study of intracellular glasses in seed and pollen. J. Magn. Reson. 2000;142:364–368. doi: 10.1006/jmre.1999.1950. [DOI] [PubMed] [Google Scholar]
- 36.Rakoczy L., Płonka P. [. Pigment changes in irradiated plasmodia of the acellular slime moulds Physarum polycephalum and Physarum nudum. In: Dubert F., editor. Application of the In Vitro Cultures in Plant Physiology. 1. Kraków, Poland: The Franciszek Górski Department of Plant Physiology, Polish Academy of Science; 1995. pp. 309–315. [Google Scholar]