Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2011 Jul 29;16(4):515. doi: 10.2478/s11658-011-0021-0

Quantitative and kinetic profile of Wnt/β-catenin signaling components during human neural progenitor cell differentiation

Orianne Mazemondet 1,4, Rayk Hubner 1, Jana Frahm 1, Dirk Koczan 2, Benjamin M Bader 3, Dieter G Weiss 3, Adelinde M Uhrmacher 4, Moritz J Frech 1, Arndt Rolfs 1,, Jiankai Luo 1,
PMCID: PMC6275579  PMID: 21805133

Abstract

ReNcell VM is an immortalized human neural progenitor cell line with the ability to differentiate in vitro into astrocytes and neurons, in which the Wnt/β-catenin pathway is known to be involved. However, little is known about kinetic changes of this pathway in human neural progenitor cell differentiation. In the present study, we provide a quantitative profile of Wnt/β-catenin pathway dynamics showing its spatio-temporal regulation during ReNcell VM cell differentiation. We show first that T-cell factor dependent transcription can be activated by stabilized β-catenin. Furthermore, endogenous Wnt ligands, pathway receptors and signaling molecules are temporally controlled, demonstrating changes related to differentiation stages. During the first three hours of differentiation the signaling molecules LRP6, Dvl2 and β-catenin are spatio-temporally regulated between distinct cellular compartments. From 24 h onward, components of the Wnt/β-catenin pathway are strongly activated and regulated as shown by mRNA up-regulation of Wnt ligands (Wnt5a and Wnt7a), receptors including Frizzled-2, -3, -6, -7, and -9, and co-receptors, and target genes including Axin2. This detailed temporal profile of the Wnt/β-catenin pathway is a first step to understand, control and to orientate, in vitro, human neural progenitor cell differentiation.

Key words: Wnt/β-catenin pathway, Spatio-temporal dynamics, Quantitative kinetics

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Abbreviations used

APC

adenomatous polyposis coli

bFGF

basic fibroblast growth factor

Cdk

cyclin-dependent kinase

CK1

casein kinase 1

DAPI

4′,6-diamidino-2-phenylindole

Dkk1

Dickkopf 1

DMEM

Dulbecco’s modified Eagle’s medium

Dvl

dishevelled

EGF

epidermal growth factor

Fz

Frizzled

GAPDH

glyceraldehyde 3-phosphate dehydrogenase

GFP

green fluorescent protein

GSK3beta

glycogen synthase kinase 3

HBSS

Hank’s buffered salt solution

hNPC

human neural progenitor cell

LRP6

low-density lipoprotein receptor-related protein 6

MAP2

microtubuleassociated protein 2

NPC

neural progenitor cell

Ror2

receptor tyrosine kinase-like orphan receptor 2

Ryk

receptor-like tyrosine kinase

TCF

T-cell factor

Footnotes

Both authors contributed equally to this work and should be considered co-first authors

Contributor Information

Arndt Rolfs, Phone: 0049-3814949540, FAX: 0049-3814949542, Email: arndt.rolfs@med.uni-rostock.de.

Jiankai Luo, Phone: 0049-3814949629, FAX: 0049-3814944899, Email: jiankai.luo@unirostock.de.

References

  • 1.Lindvall O., Kokaia Z., Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat. Med. 2004;10(Suppl):S42–50. doi: 10.1038/nm1064. [DOI] [PubMed] [Google Scholar]
  • 2.Clelland C.D., Barker R.A., Watts C. Cell therapy in Huntington disease. Neurosurg. Focus. 2008;24:E9. doi: 10.3171/FOC/2008/24/3-4/E8. [DOI] [PubMed] [Google Scholar]
  • 3.Locatelli F., Bersamo A., Ballabio E., Lanfranconi S., Papdimitriou D., Strazzer S., Bresolin N., Comi G.P., Corti S. Stem cell therapy in stroke. Cell. Mol. Life Sci. 2009;66:757–772. doi: 10.1007/s00018-008-8346-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Donato R., Miljan E.A., Hines S.J., Aouabdi S., Pollock K., Patel S., Edwards F.A., Sinden J.D. Differential development of neuronal physiological responsiveness in two human neural stem cell lines. BMC Neurosci. 2007;8:36. doi: 10.1186/1471-2202-8-36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Hoffrogge R., Mikkat S., Scharf C., Beyer S., Christoph H., Pahnke J., Mix E., Berth M., Uhrmacher A., Zubrzycki I.Z., Miljan E., Völker U., Rolfs A. 2-DE proteome analysis of a proliferating and differentiating human neuronal stem cell line (ReNcell VM) Proteomics. 2006;6:1833–1847. doi: 10.1002/pmic.200500556. [DOI] [PubMed] [Google Scholar]
  • 6.Morgan P.J., Ortinau S., Frahm J., Kruger N., Rolfs A., Frech M.J. Protection of neurons derived from human neural progenitor cells by veratridine. Neuroreport. 2009;20:1225–1229. doi: 10.1097/WNR.0b013e32832fbf49. [DOI] [PubMed] [Google Scholar]
  • 7.Logan C.Y., Nusse R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 2004;20:781–810. doi: 10.1146/annurev.cellbio.20.010403.113126. [DOI] [PubMed] [Google Scholar]
  • 8.Komiya Y., Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4:68–75. doi: 10.4161/org.4.2.5851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Hirabayashi Y., Itoh Y., Tabata H., Nakajima K., Akiyama T., Masuyama N., Gotoh Y. The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development. 2004;131:2791–2801. doi: 10.1242/dev.01165. [DOI] [PubMed] [Google Scholar]
  • 10.Mutoyama Y., Kondoh H., Takada S. Wnt proteins promote neuronal differentiation in neural stem cell culture. Biochem. Biophys. Res. Commun. 2004;313:915–921. doi: 10.1016/j.bbrc.2003.12.023. [DOI] [PubMed] [Google Scholar]
  • 11.Castelo-Branco G., Wagner J., Rodriguez F.J., Kele J., Sousa K., Rawal N., Pasolli H.A., Fuchs E., Kitajewski J., Arenas E. Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc. Natl. Acad. Sci. USA. 2003;100:12747–12752. doi: 10.1073/pnas.1534900100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Kholodenko B.N. Cell-signaling dynamics in time and space. Nat. Rev. Mol. Cell. Biol. 2006;7:165–176. doi: 10.1038/nrm1838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Nakamura T., Sano M., Songyang Z., Schneider M.D. A Wnt- and beta-catenin-dependent pathway for mammalian cardiac myogenesis. Proc. Natl. Acad. Sci. USA. 2003;100:5834–5839. doi: 10.1073/pnas.0935626100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Hübner R., Schmöle A.C., Liedmann A., Frech M.J., Rolfs A., Luo J. Differentiation of human neural progenitor cells regulated by Wnt-3a. Biochem. Biophys. Res. Commun. 2010;400:358–362. doi: 10.1016/j.bbrc.2010.08.066. [DOI] [PubMed] [Google Scholar]
  • 15.Schmöle A.C., Brenführer A., Karapetyan G., Jaster R., Pews_Davtyan A., Hübner R., Ortinau S., Beller M., Rolfs A., Frech M.J. Novel indolylmaleimide acts as GSK-3β inhibitor in human neural progenitor cells. Bioorg. Med. Chem. 2010;18:6785–6795. doi: 10.1016/j.bmc.2010.07.045. [DOI] [PubMed] [Google Scholar]
  • 16.Klipp E., Liebermeister W. Mathematical modeling of intracellular signalling pathways. BMC Neuroscience. 2006;7:S10. doi: 10.1186/1471-2202-7-S1-S10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Mazemondet, O., John, M., Maus, C., Uhrmacher A. and Rolfs, A. Integrating diverse reaction types into stochastic models — a signaling pathway case study in the imperative pi-Calculus. In: Proceedings of Winter Simulation Conference, 2009, 931–943.
  • 18.Pfaffl M.W. A new mathematical model for relative quantification in realtime RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Ohl F., Jung M., Radonic A., Sachs M., Loening S.A., Jung K. Identification and validation of suitable endogenous reference genes for gene expression studies of human bladder cancer. J. Urol. 2006;175:1915–1920. doi: 10.1016/S0022-5347(05)00919-5. [DOI] [PubMed] [Google Scholar]
  • 20.Schiling M., Maiwald T., Bohl S., Kollmann M., Kreuts C., Timmer J., Klinmüller U. Computational processing and error reduction strategies for standardized quantitative data in biological networks. FEBS J. 2005;272:6400–6411. doi: 10.1111/j.1742-4658.2005.05037.x. [DOI] [PubMed] [Google Scholar]
  • 21.Angers S., Moon R.T. Proximal events in Wnt signal transduction. Nat. Rev. Mol. Cell Biol. 2009;10:468–477. doi: 10.1038/nrm2717. [DOI] [PubMed] [Google Scholar]
  • 22.Stambolic V., Ruel L., Woodgett J.R. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol. 1996;6:1664–1668. doi: 10.1016/S0960-9822(02)70790-2. [DOI] [PubMed] [Google Scholar]
  • 23.Jho E.H., Zhang T., Domon C., Joo C.K., Freund J.N., Costantini F. Wnt/beta-catenin/Tcf signalling induces the transcription of Axin2, a negative regulator of the signalling pathway. Mol. Cell Biol. 2002;22:1172–1183. doi: 10.1128/MCB.22.4.1172-1183.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Blagosklonny M.V., Pardee A.B. The restriction point of the cell cycle. Cell Cycle. 2002;1:103–110. [PubMed] [Google Scholar]
  • 25.Li Y., Wenyan L., Xi H., Guojun B. Modulation of LRP6-mediated Wnt signaling by molecular chaperone Mesd. FEBS Lett. 2006;580:5423–5428. doi: 10.1016/j.febslet.2006.09.011. [DOI] [PubMed] [Google Scholar]
  • 26.Tamai K., Zeng X., Liu C., Zhang X., Harada Y., Chang Z., He X. A mechanism for Wnt coreceptor activation. Mol. Cell. 2004;13:149–156. doi: 10.1016/S1097-2765(03)00484-2. [DOI] [PubMed] [Google Scholar]
  • 27.Khan Z., Vijayakumar S., De La Torre T.V., Rotolo S., Bafico A. Analysis of endogenous LRP6 function reveals a novel feedback mechanism by which Wnt negatively regulates its receptor. Mol. Cell Biol. 2007;27:7291–7301. doi: 10.1128/MCB.00773-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Winer J., Jung C.K., Shackel I., Williams P.M. Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal. Biochem. 1999;270:41–49. doi: 10.1006/abio.1999.4085. [DOI] [PubMed] [Google Scholar]
  • 29.Willems E., Mateizel I., Kemp C., Gauffman G., Sermon K., Leyns L. Selection of reference genes in mouse embryos and in differentiating human and mouse ES cells. Int. J. Dev. Biol. 2006;50:627–635. doi: 10.1387/ijdb.052130ew. [DOI] [PubMed] [Google Scholar]
  • 30.Semenov M.V., Tamai K., Brott B.K., Kuehl M., Sokol S., He X. Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr. Biol. 2001;11:951–961. doi: 10.1016/S0960-9822(01)00290-1. [DOI] [PubMed] [Google Scholar]
  • 31.Mao B., Wu W., Davidson G., Marhold J., Li M., Mechler B.M., Delius H., Hoppe D., Stannek P., Walter C., Glinka A., Niehrs C. Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature. 2004;417(6889):664–667. doi: 10.1038/nature756. [DOI] [PubMed] [Google Scholar]
  • 32.Semenov M.V., Zhang X., He X. DKK1 antagonizes Wnt signaling without promotion of LRP6 internalization and degradation. J. Biol. Chem. 2008;283:21427–21432. doi: 10.1074/jbc.M800014200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Yoshikawa H., Matsubara K., Zhou X., Okumara S., Kubo T., Murase Y., Shikauchi Y., Esteller M., Herman J.G., Wei X., Harris C.C. WNT10B functional dualism: beta-catenin/Tcf-dependent growth promotion or independent suppression with deregulated expression in cancer. Mol. Biol. Cell. 2007;18:4292–4303. doi: 10.1091/mbc.E06-10-0889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Kirikoshi H., Katoh M. Expression and regulation of WNT10B in human cancer: up-regulation of WNT10B in MCF-7 cells by beta-estradiol and down-regulation of WNT10B in NT2 cells by retinoic acid. Int. J. Mol. Med. 2002;10:507–511. [PubMed] [Google Scholar]
  • 35.Ishikawa T., Tamai Y., Zorn A.M., Yoshida H., Seldin M.F., Nishikawa S., Taketo M.M. Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placenta angiogenesis. Development. 2001;128:25–33. doi: 10.1242/dev.128.1.25. [DOI] [PubMed] [Google Scholar]
  • 36.Snow G.E., Kasper A.C., Busch A.M., Schwarz E., Ewings K.E., Bee T., Spinella M.J., Dmitrovsky E., Freemantle S.J. Wnt pathway reprogramming during human embryonal carcinoma differentiation and potential for therapeutic targeting. BMC Cancer. 2009;9:83. doi: 10.1186/1471-2407-9-383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.van Amerongen R., Mikels A., Nusse R. Alternative Wnt signaling is initiated by distinct receptors. Sci. Signal. 2008;1:re9. doi: 10.1126/scisignal.135re9. [DOI] [PubMed] [Google Scholar]
  • 38.Caricasole A., Ferraro T., Iacovelli L., Barletta E., Caruso A., Melchiorri D., Terstappen G.C., Nicoletti F. Functional characterization of WNT7A signaling in PC12 cells: interaction with a FZD5-LRP6 receptor complex and modulation by Dickkopf proteins. J. Biol. Chem. 2003;278:37024–37031. doi: 10.1074/jbc.M300191200. [DOI] [PubMed] [Google Scholar]
  • 39.Carmon K.S., Loose D.S. Secreted frizzled-related protein 4 regulates two Wnt7a signaling pathways and inhibits proliferation in endometrial cancer cells. Mol. Cancer Res. 2008;6:1017–1028. doi: 10.1158/1541-7786.MCR-08-0039. [DOI] [PubMed] [Google Scholar]
  • 40.Le Grand F., Jones A.E., Seale V., Scime A., Rudnicki M.A. Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell. 2009;4:535–547. doi: 10.1016/j.stem.2009.03.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Yang Y., Topol L., Lee H., Wu J. Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development. 2003;130:1003–1015. doi: 10.1242/dev.00324. [DOI] [PubMed] [Google Scholar]
  • 42.Castelo-Brance G., Sousa K.M., Bryja V., Pinto L., Wagner J., Arenas E. Ventral midbrain glia express region-specific transcription factors and regulate dopaminergic neurogenesis through Wnt-5a secretion. Mol. Cell Neurosci. 2006;31:251–262. doi: 10.1016/j.mcn.2005.09.014. [DOI] [PubMed] [Google Scholar]
  • 43.Beagle B., Mi K., Johnson G.V.W. Phosphorylation of PPP(S/Y)P motif of the free LRP6 intracellular domains is not required to activate the Wnt/beta-catenin pathway and attenuate GSK3beta activity. J. Cell Biochem. 2009;108:886–895. doi: 10.1002/jcb.22318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Wu G., Huang H., Abreu J.G., He X. Inhibition of GSK3 phosphorylation of beta-catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6. PloS One. 2009;4:e4926. doi: 10.1371/journal.pone.0004926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Bryja V., Schulte G., Arenas E. Wnt-3a utilizes a novel low dose and rapid pathway that does not require casein kinase 1-mediated phosphorylation of Dvl to activate beta-catenin. Cell Signal. 2007;19:610–616. doi: 10.1016/j.cellsig.2006.08.011. [DOI] [PubMed] [Google Scholar]
  • 46.Yokoyama N., Yin D., Malbon C.C. Abundance, complexation, and trafficking of Wnt/beta-catenin signaling elements in response to Wnt3. J. Mol. Signal. 2007;2:11. doi: 10.1186/1750-2187-2-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Müller H.A., Samanta R., Wieschaus E. Wingless signaling in the Drosophila embryo: zygotic requirements and the role of the frizzled genes. Development. 1999;126:577–586. doi: 10.1242/dev.126.3.577. [DOI] [PubMed] [Google Scholar]
  • 48.Cadigan K.M., Nusse R. Wnt signaling: a common theme in animal development. Genes Dev. 1997;11:3286–3305. doi: 10.1101/gad.11.24.3286. [DOI] [PubMed] [Google Scholar]
  • 49.Sato A., Kojima T., Ui-Tei K., Miyata Y., Saigo K. Frizzled-3, a new Drosophila Wnt receptor, acting as an attenuator of Wingless signaling in wingless hypomorphic mutants. Development. 1999;126:4421–4430. doi: 10.1242/dev.126.20.4421. [DOI] [PubMed] [Google Scholar]
  • 50.Lustig B., Jerchow B., Sachs M., Weiler S., Pietsch T., Karsten U., van de Wetering M., Clevers H., Schlag P.M., Birchmeier W., Behrens J. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol. Cell Biol. 2004;22:1184–1193. doi: 10.1128/MCB.22.4.1184-1193.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES